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RIGID CANTOR SETS IN R3

WITH SIMPLY CONNECTED COMPLEMENT

DENNIS J. GARITY, DUŠAN REPOVŠ, AND MATJAŽ ŽELJKO

(Communicated by Alexander N. Dranishnikov)

Abstract. We prove that there exist uncountably many inequivalent rigid
wild Cantor sets in R3 with simply connected complement. Previous con-
structions of wild Cantor sets in R3 with simply connected complement, in
particular the Bing-Whitehead Cantor sets, had strong homogeneity proper-
ties. This suggested it might not be possible to construct such sets that were

rigid. The examples in this paper are constructed using a generalization of
a construction of Skora together with a careful analysis of the local genus of
points in the Cantor sets.

1. Introduction

A subset A ⊂ Rn is rigid if whenever f : Rn → Rn is a homeomorphism with
f(A) = A it follows that f |A = idA. There are known examples in R3 of wild
Cantor sets that are either rigid or have simply connected complement. However,
until now, no examples were known having both properties.

The class of wild Cantor sets having simply connected complement known as
Bing-Whitehead Cantor sets seemed to suggest that no such example exists because
every one-to-one mapping between two finite subsets of a Bing-Whitehead Cantor
set X ⊂ R3 is extendable to a homeomorphism of R3 which takes X to X (see
[Wr4] for details). In fact, any Cantor set in R3 with simply connected complement
has the property that any 2 points in the Cantor set can be separated by a 2-sphere
missing the Cantor set (see [Sk]). This allows the components of the stages of a
defining sequence to be separated and again suggests some type of homogeneity
might exist which would prevent rigidity.

See Kirkor [Ki], DeGryse and Osborne [DO], Ancel and Starbird [AS], and Wright
[Wr4] for further discussion of wild Cantor sets with simply connected complement.

Two Cantor sets X and Y in R3 are said to be topologically distinct or inequiv-
alent if there is no homeomorphism of R3 to itself taking X to Y . Sher proved in
[Sh] that there exist uncountably many inequivalent Cantor sets in R3. He showed
that varying the number of components in the Antoine construction leads to these
inequivalent Cantor sets.
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Shilepsky used Sher’s result and constructed a rigid Cantor set in R3 (see [Sl]).
Using a slightly different approach, Wright constructed a rigid Cantor set in R3 as
well (see [Wr2]), and using the Blankinship construction [Bl] Wright later extended
this result to Rn, n ≥ 4 (see [Wr3]). All these results rely heavily on the linking of
the components of defining sequences for the Cantor sets. This linking yields non-
simply connected complements of the Cantor sets, so these constructions cannot be
modified to give examples of rigid Cantor sets with simply connected complement.

Martin [Ma] gave an example of a rigid sphere in R3. The proof of the rigidity
of the sphere used a clever idea of constructing a specific countable dense set with
special properties. A similar idea will be used in our paper (see Lemma 3.1). The
proof of the wildness of our examples is based on a modification of the proof of
the wildness of the Antoine construction as detailed in Daverman [Da]. We will
show that in fact uncountably many inequivalent examples of rigid Cantor sets with
simply connected complement exist. The key technique used is that of local genus,
introduced in [Ze].

2. Local genus of points in a Cantor set

Let us review the definition and some basic facts from [Ze] about the genus of a
Cantor set and the local genus of points in a Cantor set.

A defining sequence for a Cantor set X ⊂ R3 is a sequence (Mi) of compact
3-manifolds with boundary such that

(a) each Mi consists of pairwise disjoint cubes with handles;
(b) Mi+1 ⊂ IntMi for each i; and
(c) X =

⋂
i Mi.

Let D(X) be the set of all defining sequences for X.
It is known (see [Ar]) that every Cantor set has a defining sequence, but the

sequence is not uniquely determined. In fact, every Cantor set has many nonequiv-
alent (see [Sh] for the definition) defining sequences.

Let M be a handlebody. We denote the genus of M by g(M). For a disjoint
union of handlebodies M =

⊔
λ∈Λ Mλ, we define g(M) = sup{g(Mλ); λ ∈ Λ}.

Let (Mi) ∈ D(X) be a defining sequence for a Cantor set X ⊂ R3. For any subset
A ⊂ X we denote by MA

i the union of those components of Mi which intersect A.
Define

gA(X; (Mi)) = sup{g(MA
i ); i ≥ 0} and

gA(X) = inf{gA(X; (Mi)); (Mi) ∈ D(X)}.

The number gA(X) is called the genus of the Cantor set X with respect to the subset
A. For A = {x} we call the number g{x}(X) the local genus of the Cantor set X
at the point x and denote it by gx(X). For A = X we call the number gX(X) the
genus of the Cantor set X and denote it by g(X).

Let x be an arbitrary point of a Cantor set X and let h : R3 → R3 be a home-
omorphism. Then any defining sequence for X is mapped by h onto a defining
sequence for h(X). Hence the local genus gx(X) is the same as the local genus
gh(x)(h(X)).

Determining the (local) genus of a given Cantor set using the definition is not
easy. If a Cantor set is given by a defining sequence, one can easily determine an
upper bound. The idea of slicing discs introduced in [Ba] can be used to derive the
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following addition theorem for local genus. This can then be used for establishing
the exact local genus. See [Ze, Theorem 14] for details.

Theorem 2.1. Let X, Y ⊂ S3 be Cantor sets and let p be a point in X∩Y . Suppose
there exists a 3-ball B and a 2-disc D ⊂ B such that

(1) p ∈ Int B, Fr D = D ∩ Fr B, D ∩ (X ∪ Y ) = {p}; and
(2) X ∩ B ⊂ BX ∪ {p} and Y ∩ B ⊂ BY ∪ {p} where BX and BY are the

components of B \ D.
Then gp(X ∪ Y ) = gp(X) + gp(Y ).

The 2-disc D in the above theorem is called a slicing disc for the Cantor set
X ∪ Y .

3. Main results

Lemma 3.1. Let X ⊂ R3 be a Cantor set and let A ⊂ X be a countable dense
subset such that

(1) gx(X) ≤ 2 for every x ∈ X \ A,
(2) ga(X) > 2 for every a ∈ A, and
(3) ga(X) = gb(X) for a, b ∈ A if and only if a = b.

Then X is a rigid Cantor set in R3.

Proof. Let h : R3 → R3 be a homeomorphism such that h(X) = X. We will prove
that h(x) = x for every x ∈ X. Since A is dense in X it suffices to prove that
h(a) = a for every a ∈ A.

Let b = h(a). As in Section 2, ga(X) = gh(a)(h(X)) = gh(a)(X) = gb(X). If
b /∈ A, then gb(X) ≤ 2, but ga(X) > 2. Hence b ∈ A and then it follows from
ga(X) = gb(X) that a = b. �

Remark 3.2. In the lemma above one can replace the function g (i.e. the local genus)
by an arbitrary real valued embedding invariant function satisfying conditions (1),
(2) and (3). In this setting the set A need not be countable.

The main theorem, which we will prove after detailing the construction, is the
following.

Theorem 3.3. For each increasing sequence S = (n1, n2, . . .) of integers such that
n1 > 2, there exist a wild Cantor set in R3, X = C(S), and a countable dense set
A = {a1, a2, . . .} ⊂ X such that the following conditions hold.

(1) gx(X) ≤ 2 for every x ∈ X \ A,
(2) gai

(X) = ni for every ai ∈ A, and
(3) R3 \ X is simply connected.

An immediate consequence of this theorem is the following.

Theorem 3.4. There exist uncountably many inequivalent rigid wild Cantor sets
in R3 with simply connected complement.

4. The construction

Let us fix an increasing sequence S = (n1, n2, . . .) of integers with n1 > 2.
We will construct inductively a defining sequence M1, M2, . . . for a Cantor set
X = C(S). The components of M2k+1 will be handlebodies of genus higher than
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x0

Figure 1. Manifold N

x0

Figure 2. Linking along the spine of some handle of N

Figure 3. Modification in defining sequence
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2 and these components will be obtained from M2k by suitably replacing all genus
2 handlebodies. The components of M2k will be obtained by replacing each com-
ponent of M2k−1 by an appropriate chain of linked handlebodies. All except one
handlebody in the chain will have genus 2.

To begin the construction, let M1 be an unknotted genus n1 handlebody in R3.

4.1. Stage n + 1 if n is odd. If n is odd, then by the inductive hypothesis every
component of Mn is a handlebody of genus higher than 2. Let N be a genus r
component of Mn.

The manifold N can be viewed as a union of r handlebodies of genus 1, T1 ∪
. . . ∪ Tr, identified along some 2-discs in their boundaries as shown in Figure 1.

We replace the component N of genus r by a single smaller central genus r han-
dlebody and a linked chain of genus 2 handlebodies. We use 6 genus 2 handlebodies
for each handle of N . See Figure 2 for the linking pattern in one of the genus 1
handlebodies whose union is N .

Note that the new components in N are actually unlinked if we regard them as
handlebodies in R3. Stage n + 1 consists of all the new components constructed as
above. The construction can be done so that each new component at stage n + 1
has diameter less than half of the diameter of the component that contains it at
stage n.

4.2. Stage n + 1 if n is even. If n is even, we replace every genus r torus in Mn,
r > 2, by a parallel interior copy of itself and every genus 2 torus by an embedded
higher genus handlebody as shown in Figure 3.

More precisely, let us assume inductively that there exist handlebodies of genus
n1, n2, . . . , nN among the components of Mn. There are also K genus 2 compo-
nents for some K and we replace one of these genus 2 handlebodies by a genus
nN+1 handlebody, one by a genus nN+2 handlebody, . . . , and one by a genus
nN+K handlebody. The components of Mn+1 then consist of handlebodies of genus
n1, . . . , nN+K .

This completes the inductive description of the defining sequence. Define the
Cantor set associated with the sequence S, X = C(S) to be

X =
⋂

i

Mi .

In the next section we will derive some results needed for computing the local genus
of points of X. In the following section we will prove that X has simply connected
complement and is rigidly embedded in R3. From the construction it is clear that
X is a Cantor set.

5. Results needed for local genus computations

The following technical results will be needed in the next section in the proof of
the main results. Let N be a component of M2i+1. Then N is a union of genus 1
handlebodies as in the previous section. Let T be one of these genus 1 handlebodies.
By construction we have that Bd(T ) ∩ X is a singleton {x0}. Let W be a loop in
Bd(T ) that bounds a disc in Bd(T ) containing x0 in its interior as in Figure 4.

Lemma 5.1. If there exists a 2-disc D ⊂ T such that D ∩ Mr+1 = ∅ for some
r > 2i+1, and Bd(D) = W , then there exists a 2-disc D ′ ⊂ T such that Bd(D ′) =
Bd(D) and D ′ ∩ Mr = ∅.
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x0

J

W

Figure 4. Added annuli

Proof. We consider separately the cases where r is even and where r is odd.
If r is even, each component C of Mr ∩ T is either a genus 2 handlebody that

is also a component of Mr or a genus 1 handlebody containing x0 that is one of
the genus 1 handlebodies whose union is a component of Mr as in Figure 1. In
both cases, C ∩Mr+1 consists of a single component that contains a spine of C. So
D misses a spine of C and so D ∩ C can be isotoped to be near Bd(C). Using a
bicollar of Bd(C) the disc D can be further pushed outside C.

We repeat the same procedure for every component C of Mr ∩ T and finally
obtain the disc D ′.

If r is odd, each component C of Mr ∩T is either a genus g handlebody for g ≥ 3
that is also a component of Mr or a genus 1 handlebody containing x0 that is one
of the genus 1 handlebodies whose union is a component of Mr as in Figure 1.

Let C be any component of Mr ∩ T . Then C is either a genus 1 handlebody or
a union of genus 1 handlebodies. Let C ′ be one of these genus 1 handlebodies as
in Figure 4. The manifold C ′ ∩ Mr+1 together with added discs B1, B2, . . . , Bs

as in Figure 4 contains a spine of C ′. Adjust D so that it is transverse to each
Bk. Then D ∩ (B1 ∪ . . . ∪ Bk) is a finite collection of single closed curves. Pick an
innermost one, say L, with respect to D.

If L bounds a disc on some annulus Bl \Mr+1, we replace the disc on D bounded
by L by a disc on Bl \Mr+1 and then push the new D off Bl \Mr+1. Repeating the
same procedure one can modify D to obtain a disc D ′ so that there are no simple
closed curves in D ∩ (B1 ∪ . . .∪Bk) which bound a disc on (B1 ∪ . . .∪Bk) \Mr+1.

Now assume that L is a loop in D ∩ (B1 ∪ . . . ∪ Bk) which does not bound a
disc on (B1 ∪ . . . ∪Bk) \Mr+1. L certainly bounds a disc, say El, on some Bl. By
construction we have (consider Figure 4) that for every disc Bl there exists a loop
J0 in some small neighborhood of Mr+1 ∪ Bl which transversally intersects El in
one point. Now we attach to El a disc on D bounded by L to get a 2-sphere which
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transversally intersects a loop J0 in one point. But this is impossible, so there are
no essential loops in D ∩ (B1 ∪ . . . ∪ Bk) \ Mr+1.

Hence D can be modified not to intersect the added discs B1 ∪ . . .∪Bk and one
can use the same idea as in the case where r is even to push D∩C ′ outside C ′. �

Lemma 5.2. Let T be one of the genus 1 handlebodies making up a component N
of some Mi of genus ≥ 3. Let W be a loop on Bd(T ) as in Figure 4 and let x0 be
the point in X ∩Bd(T ). If gx0(X ∩ T ) = 0, then W bounds a disc D in T missing
X.

Proof. If gx0(X ∩ T ) = 0, there exists an arbitrary small 2- sphere S having x0 in
its interior and not intersecting X ∩T . Let B be the disc bounded by W in Bd(T ).
We may assume that S intersects the disc B transversally. Then S ∩ B is a finite
collection of simple closed curves. By cutting and pasting one can easily modify S
to remove all simple closed curves in S ∩ B which do not encircle x0. Because x0

lies in the interior of S, there are an odd number of simple closed curves in S ∩ B
encircling x0. If there is more than one such curve, one can pick two consecutive
ones (starting from the outer one), say J1 and J2, and modify the sphere S by
replacing the annulus on S, bounded by J1 and J2, by the annulus on B, bounded
by J1 and J2. Hence the sphere S can be modified to some small 2-sphere which
contains x0 in its interior and intersects B in only one simple closed curve L. The
disc D is then formed as a union of the annulus on B bounded by L and W and a
disc on S ∩ T bounded by L. �

Remark 5.3. By a small move, D can be adjusted to intersect the boundary of T
only in its boundary, i.e. D ∩ Bd(T ) = Bd(D).

6. Proof of the main results

Let S = (n1, n2, . . .) be an increasing sequence of integers and let X = C(S) be
the Cantor set constructed as in Section 4. We prove that X has the properties
listed in Theorem 3.3.

6.1. The countable dense subset A. Each point p in X can be associated with
a nondecreasing sequence of positive integers greater than 2 as follows. At stage
2n − 1, p is in a unique component. Let mn be the genus of this component. The
sequence we are looking for is m1, m2, . . .. By construction, each mn+1 is either
equal to mn or is greater than mn. It is greater than mn precisely when the
component of stage 2n containing p is a genus 2 torus. Let A be the set of points
in X for which the associated sequence is bounded. Then A is countable and each
point in A is associated with a sequence that is eventually constant. A is dense
because each component of each Mi contains a point of A.

6.2. Local genus at points of A. Given a point x0 in A, the associated sequence
is eventually constant at an integer K ≥ 3. We can replace the original defining
sequence in the construction of X by the defining sequence consisting of only the odd
stages in the original sequence past the point where the component containing x0

is always a handlebody of genus K. Let M ′
1 , M ′

2 , . . . be this new defining sequence,
and let Ni be the component of M ′

i containing x0. Then each Ni is a genus K
handlebody and this new defining sequence for X shows that gx0(X) ≤ K by
definition.
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Note that N1 ⊃ N2 ⊃ . . . and that
⋂

i Ni = x0. Any two successive stages Ni

and Ni+1 are positioned like the manifold N and the smaller central copy of N
in Figure 1. As in the description of the construction, the manifold N1 can be
viewed as a union of K handlebodies of genus 1, T1∪ . . .∪TK , identified along some
2-discs in their boundaries. These 2-discs can be viewed as slicing discs that satisfy
Theorem 2.1. So gx0(X) = gx0(X1) + gx0(X2) + . . . + gx0(XK).

Here Xj = X ∩ Tj and X ∩ N1 is a wedge of Cantor sets X1, . . . , XK , wedged
at x0. We will prove that for each j, 1 ≤ j ≤ K, gx0(Xj) ≥ 1. It will follow that
gx0(X ∩ N1) ≥ K and therefore gx0(X) = K.

Assume to the contrary that for some j, gx0(Xj) = 0. Then By Lemma 5.2 the
loop W in Bd(Tj) (see Figure 4) bounds a disc D in Tj missing Xj .

Then by construction, there is a stage M ′
r+1 in the defining sequence such that

D misses M ′
r+1. Among all such discs bounded by W missing Xj , choose one for

which r is minimal. That is, all discs in Tj bounded by W necessarily intersect
M ′

r . By Lemma 5.1, D may now be adjusted so as to miss M ′
r . This contradicts

the minimality of r. Hence D does not intersect M ′
2 . Using the same idea as in the

proof of 5.1 we may adjust D to miss the spine of Tj . Hence D can be pushed onto
Bd(Tj)\{x0} but this is impossible since Bd(D) is not contractible in Bd(Tj)\{x0}.

As a consequence, gx0(Xj) cannot be 0. So gx0(Xj) ≥ 1. This completes the
proof that gx0(X) = K.

6.3. Local genus at points of X \A. Let x0 be a point of X \A. Then the non-
decreasing sequence of integers associated with x0 is unbounded. Suppose this se-
quence is (m1, m2, m3, . . .). Choose a subsequence of this sequence as follows. Keep
only the terms in the sequence that represent the first time that an integer appears.
That is, if mi = mi−1, discard the term mi. The subsequence m1, mn2 , mn3 , . . .
obtained has the property that it is strictly increasing.

Now consider the defining sequence for the Cantor set X obtained by only con-
sidering stages M2i where 2i + 1 is equal to some nj . Consider a specific stage M2i

in this new defining sequence. Let N2i be the component of this stage containing
x0. This component must be a genus 2 handlebody because at the very next stage
x0 is contained in a genus nj handlebody for the first time. So the new defining
sequence for X has the property that at every stage the component containing x0

is a genus 2 handlebody. This shows that gx0(X) ≤ 2.

6.4. Simple connectivity of the complement. Let γ : S1 → S3 \ X. The set
γ(S1) is compact and misses X so there exists n large enough such that γ(S1) ∩
Mn = ∅. We may assume that n is odd so Mn consists of handlebodies of genus
higher than 2.

It is clear from the construction that the components of Mn are not linked in R3.
In fact they lie in pairwise disjoint 3-cells. Since the components are cubes with
unknotted handles, the fundamental group of the complement of the components
is generated by the meridional curves on the components. It therefore suffices to
show how one meridional loop (say J) of some component N can be shrunk to a
point in the complement of the components. By construction it is clear that J can
be moved in N \ Mn+1 to the waist loop W of N (see Figure 4) and then moved
off N . Hence [J ] = 0 ∈ π1(S3 \ X).

This completes the proof of Theorem 3.3 and by Lemma 3.1 we can conclude
that X is indeed rigidly embedded in R3. �
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Comment on wildness of X. This follows from the fact that gx(X) > 0 for every
x ∈ A. By a theorem of Osborne [Os, Theorem 4] we know that the Cantor set
X ⊂ R3 is tame if and only if gx(X) = 0 for every point x ∈ X.

6.5. Proof of Theorem 3.4. The above shows that for each increasing sequence
S = (n1, n2, . . .) of integers, such that n1 > 2, there is a wild Cantor set C(S) with
a countable dense subset of points a1, a2, . . . so that the local genus at ai is ni and
the local genus at other points is less than or equal to 2. It is well known that there
are uncountably many increasing sequences of integers S = (n1, n2, . . .) such that
n1 > 2.

To complete the proof, it suffices to show that the Cantor sets associated with
distinct sequences S and S′ are embedded in an inequivalent way. Let X = C(S)
and X ′ = C(S′) where sequences S = (n1, n2, . . .) and S′ = (n′

1, n
′
2, . . .) are distinct.

Without loss of generality there exists k, such that n′
i 
= nk for every i. Let ak ∈ X

be the point where gak
(X) = nk. Assume to the contrary that there exists a

homeomorphism h : R3 → R3 such that h(X) = X ′. Then we have gh(ak)(h(X)) =
gak

(X) = nk. This is a contradiction as there is no point in h(X) = X ′ at which
the local genus of X ′ is equal to nk. �

7. Questions

As stated in the introduction Bing-Whitehead Cantor sets have some strong
homogeneity properties and therefore are not rigid.

• Does varying the numbers of consecutive Bing links and Whitehead links
yield inequivalent Cantor sets? (This number cannot be arbitrary. See [AS]
and [Wr4] for details.)

The construction above gives a rigid Cantor set such that gx(X) ≤ 2 for x ∈ X\A
and gai

(X) = ni for ai ∈ A. Hence g(X) = ∞.
Let a positive integer r be given.

• Does there exist a rigid Cantor set X such that gx(X) = r for every x ∈ X?
(For r = 1 the answer is affirmative. See [Sl], [Wr2].)

• Does there exist a rigid Cantor set X having simply connected complement
such that gx(X) = r for every x ∈ X?
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