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Introduction

A multivalued transformation of a set A into a set β is a map that puts

every element a E A into correspondence with some non-empty subset F(a)

of B. In this case a single-valued selection of the multivalued transformation

(m-transformation) F: A —» Β is a single-valued transformation / : A —> Β such

that f(a) e F(a) for every a £ A.

In terms of the simplest mathematical category—the category of sets and

their maps — the question of finding a single-valued selection from a

multivalued transformation is simply the same as the axiom of choice, and so

we will not consider it here—one either accepts the axiom of choice or not.

Of course, we remain in the usual framework of a positive variant of the

axiom of choice.

The work of the first author was supported by a grant from the Ministry of Science and
Technology of Slovenia; that of the second was supported by a grant from the J. Soros
Foundation.



158 D. Repovs and P.V. Semenov

In more meaningful categories the question of the existence of single-valued
selections for a multivalued map is more subtle and interesting: the first
complication consists in defining a multivalued morphism suitably. In practice
throughout this survey we will work in the framework of the category of
topological spaces or in one of its subcategories. The main problem here can
be formulated as follows.

What conditions should be imposed on the topological spaces X and Y, on the
family of subsets of Υ where the multivalued transformation F: X —> Υ takes its
values, and on the type of continuity of the multivalued map F to guarantee that
F has a continuous single-valued selection ?

In this survey we will not consider problems on the approximation of
multivalued maps by single-valued ones, fixed-point theory, applied aspects of
the theory of multivalued maps (differential equations with multivalued right-
hand sides, problems of the optimal equation), and many other connections
with multivalued maps.

In our view these restrictions are natural, since clearly it is true for
multivalued maps that one cannot envelop the infinite. An indirect confirmation
of this view lies in simply adding up the number of articles in the references
given in the surveys [6]-[8] and [113]. There are more than 2500. To touch on
them all is not practical.

To be concise, almost without exception we will only look at the theory
based on Michael's papers from the mid-50s, [57]-[62]. There are four main
selection theorems that have already established their place in the
mathematical folklore: Michael's 0-dimensional, convex-valued, compact-valued
and finite-dimensional theorems. Almost everything that is known now in the
theory of continuous selections for multivalued maps can be traced back
directly to one of these theorems. In fact, this paper is a detailed confirmation
of this thesis, in particular beginning at the fourth section. We remark that the
0-dimensional and compact-valued selection theorems are more often used in
general topology. In geometrical topology the finite-dimensional selection
theorem is more important. As for the convex-valued theorem, in our view
everyone who is a professional mathematician should be familiar with it.

§1. Basic concepts and formulations of the main theorems

Definition 1.1. A multivalued map F from a topological space X into a
topological space Υ is said to be:

a) lower semicontinuous if for any non-empty open set G in Υ the set

F~l{G) = {i£ X:F(x) nG^0}

is open in X;
b) upper semicontinuous if for any non-empty open set G in Υ the set

{χ β X: F{x) C G)

is open in X;
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c) continuous if it is both lower and upper semicontinuous.
Almost everywhere in this paper we will be dealing with lower

semicontinuous mappings. The next result shows clearly why.

Lemma ([58], Proposition 2.2). Suppose that the multivalued map F: X —> Υ is
such that for any points XQ e X and yo e F(xo) we can find a neighbourhood U
of xo and a continuous single-valued selection f of F\v such that f(xo) = yo-
Then F is lower semicontinuous.

Example 1.1. Suppose that the map F is the inverse of a single-valued surjective
m a p / so F=f~l. Then the lower semicontinuity of F is equivalent to /being
open. In this case the continuous single-valued selections of the multivalued
map F=f~x are precisely the continuous sections of the surjection/.

Example 1.2. Suppose that we are given a continuous map g of a subset A of
a topological space X into a topological space Y, and let the multivalued map
Fg:X-+ Γ be defined by

{g(x)} if χ 6 A,

Υ if χ Φ A

If A is closed in X, then Fg is lower semicontinuous.
In this case, the continuous single-valued selections of Fg are precisely the

continuous extensions of the continuous map g from A to the whole space X.

Example 1.3. Let A be a subset of a topological space X and suppose that we
are given a continuous single-valued selection g of a map G\A, where G is a
lower semicontinuous map from X to a topological space Y. Define the map
Fgfi : X -+ Υ by

g(x)} if xeA,

J{X) if x$A.

If v4 is closed in X, then FS IG is lower semicontinuous.

Example 1.4. Suppose that in a topological space X we are given two functions
g : X —> R and Λ : Ζ —> R, with g < h throughout X. If g and A are lower
semicontinuous (as real-valued functions), then so is the "interval-valued" map

In this case, a selection / of F is a continuous function / : X —> R that
separates g and A.

We will now state the main selection theorems. They are all concerned with
a paracompact domain of definition of a multivalued map. We recall that if X
is Hausdorff, then its paracompactness is equivalent to the fact that in any
open cover of X we can refine a locally finite continuous partition of unity.
The class of paracompact spaces, that is, the class of all paracompact
Hausdorff spaces, is contained in the class of all normal spaces, and contains
the classes of all compact and all metrizable spaces. As a rule, selection
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theorems are used either for compact or for metrizable spaces X. For the
dimension of a normal space X we will throughout mean its Lebesgue
dimension dimX

Theorem 1.1 (the 0-dimensional selection theorem, [57], Theorem 2). Any lower
semicontinuous map of a 0-dimensional paracompact space X into a complete
metrizable space Υ that takes non-empty closed values has a continuous single-
valued selection.

Theorem 1.2 (the convex-valued selection theorem, [57], Theorem 1). Any lower
semicontinuous map of a paracompact space X into a Banach space Υ that takes
non-empty closed convex values has a continuous single-valued selection.

Theorem 1.3 (the compact-valued selection theorem, [61], Theorem 1). Any
lower semicontinuous map of a paracompact space X into a complete metrizable
space Υ that takes non-empty closed values has an upper semicontinuous compact
selection, which in turn has a lower semicontinuous compact selection.

To formulate «-dimensional selection theorems we need additional
definitions. A space Υ is called η-connected if we can retract any continuous
image of the ^-dimensional sphere (k < n) in Y. We write this Υ EC". Υ is
called locally η-connected if for any neighbourhood U of any of its points we
can find a neighbourhood V of this point such that any continuous image of
the ^-dimensional sphere (k < n) lying in the neighbourhood V can be
retracted in U. We use the notation Ye LC. Finally, a family £f of subsets
of Υ is equilocally η-connected if for any neighbourhood U of any point in any
member of the family <£ we can find a neighbourhood V of this point such
that if a member S of the family SC intersects V, then any continuous image
of the £;-dimensional sphere (k < n) lying in SnV can be retracted in SC\U.
We denote this by & £ ELC".

Theorem 1.4 (the «-dimensional selection theorem, [59], Theorem 1.2). Let A be
a closed subset of a space X that is paracompact, aimx(X\A) < η + 1, and let
Υ be a complete metric space. Let ££ be an equilocally η-connected family of
non-empty closed subsets of Y, and F a lower semicontinuous map from X to Y,
all of whose values are members of the family 1£. Then every selection of the
map F\A can be extended to a selection of F\u for some open set U D A. If all
the members of JS? are η-connected, then U can be taken to be the entire
space X.

The most commonly used version of this theorem is when A — 0 and all
values of F(x) are «-connected. Then the statement of the theorem consists in
the existence of at least one continuous single-valued selection.
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§2. Applications of the theory of continuous selections

1. The Bartle-Graves theorem.

We begin with some standard results from linear algebra. If an operator L is a
linear map from a finite-dimensional vector space X (over R or C) into a vector
space Y, then X is isomorphic to the direct sum of Υ with the kernel of L,
Ker(L). An analogous result is true for a finite-dimensional space Υ and an
arbitrary locally convex (infinite-dimensional) topological vector space X. Here the
isomorphism, and also the operator L, are considered in the category of
topological vector spaces. However, if both the spaces X and Υ are infinite-
dimensional, there can be no question of this kind of topological isomorphism. In
fact, for any separable Banach space Υ there exists a continuous linear operator
L mapping l\, the space of summable sequences, into Y. If we assume that l\ is
isomorphic to the direct sum Y(BK.er(L), then we find that Υ is isomorphic to a
complementary subspace of l\. But in l\ an infinite-dimensional subspace is
complementary only if it is isomorphic to the whole of h, [86]. Thus, all infinite-
dimensional separable Banach spaces are isomorphic to l\, giving a contradiction.

It turns out that in this situation a homeomorphism between X and
F0Ker(L) nevertheless exists.

Theorem 2.1 [10]. If L is a continuous linear operator that maps a Banach space
X into a Banach space Y, then the space X is homeomorphic to the direct sum
FeKer(L) .

Proof. By Banach's open map theorem L is an open map from X into Y, that
is, the multivalued map F'= L~l is a lower semicontinuous map from the
paracompact space Υ into the Banach space X (any metric space is
paracompact). But then the values of F are closed and convex in X: they are
simply parallel translations of the kernel of L. By Theorem 1.2, F has a
selection g : Υ —> X. Then another selection for F will be the map / : Υ —> X
that is given by f(y) — g(y) - g(0), y e Y. Here /(0) = 0. It remains to define
the homeomorphism h mapping X into the direct sum Y®Ker(L) by
h(x) = (L(x),x-f(L(x))).D

Remark 1. This theorem is of course true for any pair of spaces (X, Y) where
Banach's open map theorem and the selection theorem 1.2 can be applied. For
example, it holds for Frechet spaces (complete metrizable locally convex vector
spaces). In fact, we require complete metrizability for both X and Y, but it is
enough to require only that the kernel Ker(L) of L is locally convex (see [62],
Corollary 7.3 or [4], Chapter 2, Proposition 7.1). We give a new proof of this
generalization of Theorem 2.1 in §6.

Remark!. Theorem 2.1 is the simplest version of some results of Bartle and
Graves and of Michael. We now state a stronger (parametric) version. For given
Banach spaces X and Y, we let Ζ denote the set of continuous linear surjections
from X onto Y. We take Ζ to be non-empty and use the usual sup-norm. We
define the function m : Ζ θ Υ-* [Ο,οο) by m(L,y) = inf{||x|| : Λ: G L~X{ y)}.



162 D. Repovs and P.V. Semenov

Theorem 2.2 ([58], Corollary 7.5). Let h: Τ -> Ζ and g: Τ -> Υ be continuous
maps of some topological space T. Then for any λ > 1 there exists a continuous
map f: Τ —• X such that:

a) f{x) e [h(x)}-l(g(x)) for all χ G X;
b) || /(x)| | < λ • m(h(x),g(x)) for all χ € X;
c) if h{x\) = <xh(x2) and g(x\) — &g{xi) for Χ\,ΧΪ € X and scalars οί^Ο,β,

As a particular case we see that in the proof of Theorem 2.1 the selection/
of the map L~l can be chosen so that /(αχ) = ocf(x): for / to be linear,
additivity alone is not enough. But in principle it cannot be attained, for the
reasons given at the start of this subsection.

2. The problem of whether there is a homeomorphism between a Hubert space
and any separable Banach space.
This problem, due to Banach and Mazur, was resolved positively in 1967 by
Kadets [45]. In a sequence of papers he proved a succession of theorems on
replacing norms in Banach spaces with bases by equivalent, but "smoother"
norms. However, what about spaces that do not have a basis? We recall that
in 1967 the question of whether or not such spaces existed was open.

Theorem 2.3 [5]. If every infinite-dimensional Banach space with a basis is
homeomorphic to the Hilbert space li, then every infinite-dimensional separable
Banach space is homeomorphic to h-

Proof. We will use Pelczynski's decomposition method, which is a version of
the Cantor-Bernstein theorem in the category of Banach spaces and the
homeomorphisms between them. Thus, suppose that X is an infinite-
dimensional separable Banach space. By a theorem due to Banach, it contains
an infinite-dimensional closed subspace Ζ with a basis. We let w denote the
fact that the spaces are homeomorphic and apply the hypotheses of the
theorem. Then by Theorem 2.1 we obtain

Χ πΖ® (X/Z) « l2 Φ {XIΖ) « h θ h θ (Χ/Ζ) « Ι 2 Φ Ι .

On the other hand, X is isomorphic to the factor space of the space l\ and
again using Theorem 2.1 we find that l\ « J ® 7 for some closed subspace
Ych· Then

h « co[h] « co[X Φ Υ] « Χ φ co[X φ Υ] κ Χ φ co[/i] « Χ φ h,

that is, Χ is homeomorphic to h. Here, for a Banach space B, co[B] denotes
the space of all sequences of elements of Β that converge to zero with the
standard max-norm, and we use without proof the easily verified fact that the
space co[h] has a Schauder basis and therefore, by hypothesis, is
homeomorphic to lj. D
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3. Retracts of zero-dimensional metric spaces.
One of the remarkable properties of the Cantor set is that any of its compact
subsets is one of its retracts. An analogous result holds for zero-dimensional
metric spaces and their complete subsets (Mazurkiewicz's theorem). In fact, for
a metric space (X,p) and any of its complete subsets A, we consider the
multivalued map R : X —> A that equals A for points in X\A and is the
identity map on A. By Example 1.2 the map R is lower semicontinuous and if
X is O-dimensional, then applying Theorem 1.1 to the map R we obtain a
continuous selection of this map, which is also a retract of X on A.

Now we give yet another version of the same theme. Suppose that X is
paracompact and O-dimensional and is the image of some complete metrizable
space Υ under some continuous open map g: Υ ^> X. Then Υ contains some
homeomorphic image of the paracompact space X. The set we require that is
homeomorphic to X will be the image of X under a continuous section / of F,
the inverse of g. This section exists by Theorem 1.1.

Again, let Ρ : C —> C be a polynomial, and let g : X —> C be a continuous
map of a zero-dimensional paracompact space X. Then for every χ we can
choose a solution ζ of the equation P(z) = g(x), so that the solution depends
continuously on χ; ζ = ζ(χ). To prove this it is enough to use the fact that any
analytic map is open, in order to obtain a continuous selection ζ = ζ(χ) of the
map F = P~x og.

4. Strictly regular maps and Hurewicz fiberings.
We will discuss Ferry's result [36] and a sketch of how the finite-dimensional
selection theorem is used to prove it. We say that a map f:X—*Y between
two metrizable separable spaces is strictly regular if for any y e Υ and any
ε > 0, in some neighbourhood U of y the inverse images of all points are
pairwise ε-homotopic, that is, in the time of the homotopy the points do not
shift by more than ε.

Theorem 2.4. Let f be a strictly regular proper map on a finite-dimensional
complete space. If all the fibres are ANR-compact, then f is a fibering in the
sense of Hurewicz.

Sketch of the proof. For any point y € Υ we can find a compact
ANR-neighbourhood Μ of the inverse image f~l(y) which can be retracted to
the inverse image itself. Since the inverse images of compact sets under the
map / are compact, there exists a neighbourhood W of y such that
f~\W) CM. For every point ζ e W we define H(z) to be the set of all
continuous maps from Μ into f~x{W) that retract the whole compact set Μ
onto the inverse image f~x{z). The topology in H(z) is induced by its
embedding in the metric space C(M,f~l(W)) of all continuous maps of Μ
into f~l(W). We may assume that X lies in a Hubert cube and take the
sup-metric in C(M,f~l(W)). The main point of the proof consists in showing
that we can apply Theorem 1.4 to the map Η: W -»· C(M,f~1{W)), with
dim W < oo. Next we fix a selection s of Η that is continuous in ζ and selects
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a retract of the compact set Μ onto the inverse image f~x(z). In the next
subsection we look at the case when the convex-valued selection theorem is
used in roughly the same way, only to prove the local triviality of a regular
map.

5. Topologically regular maps.

Now we introduce some results from [88], see also [92].

Definition 2Λ. a) Let (X,p) be a metric space and expM(X) the family of all
closed subsets of X that are homeomorphic to a fixed space M. The distance
between two elements of the family expM(X) is the infimum of the ε > 0 for
which we can find a homeomorphism between these elements that shifts points
by a distance no greater than ε.

b) A map ρ from the metric space X onto a topological space Υ is called
topologically regular if the inverse map p~l maps Υ continuously into expM(X)
for some M, where we take the metric given in a) on expM(X); (see also [32]).

Theorem 2.5. Let ρ be a continuous map of a locally compact metric space X
into a perfectly normal space Υ such that all its inverse-images p~x{y), y € Y,
are homeomorphic to the interval 1= [0,1]. Then, if the map ρ is topologically
regular, it is a locally trivial fiber ing.

Proof. We fix a point >>o G Υ and let co,do be the end points of the arc
P~l(yo)· We take 0 < 2ε0 < p(co, do). By the definition of topological
regularity, we can find a neighbourhood U of jo such that for all y e U the
arcs p~l{y) are the results of some homeomorphic εο-shifts of the arc p~l(yo).
Then for these y we can distinguish the ends of the arc p~l(y): exactly one
end of the arc p~l(y) lies in an εο-neighbourhood of CQ (we will denote it by
c(y)) and the other end of the arc p~~l{y) lies in an εο-neighbourhood of do
(we will denote it by d(y)). Let G be a neighbourhood of the arc p~l(yo)
whose closure cl(G) is compact. Since the map is topologically regular, it is
easy to see that it is open. Let W be a neighbourhood of JO such that
c\(W) C Ur\p(G). We define a multivalued map F of the perfectly normal
space c\(W) into the Banach space C(E) of all continuous functions on the
compact space Ε = cl(G) as follows:

F{y) = {/ G C(E) \f maps the arc p~\y) homeomorphically onto [0,1]

and f(c(y)) = 0,f(d(y)) = l}.

Obviously, F(y) is non-empty and convex. The lower semicontinuity of
F: cl(W) —> C{E) is easily verified. Unfortunately, F(y) is not closed in C(E),
and so we cannot apply Theorem 1.2. We can, however, apply the selection
theorem for open-valued maps (see §4, subsection 1 below) to obtain a
continuous single-valued selection s : c\{W) —> C{E) of F. Then the trivialization
of the map ρ over the neighbourhood W is given in the standard way:

Φ(χ) = (p(x), [s(p(x))](x)) £Wx[0,1], χ e p
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We note that: a) in Theorem 2.5 the dimensional restrictions on the image of
the map ρ are removed; b) an analogous result is proved in [93] in the case
when the inverse-images of the points are homeomorphic to a one-dimensional
polyhedron, and X and Υ are compact metrizable spaces; c) a case of interest
is the two-dimensional disk as a layer, when there is no "good" convex
structure in the space of homeomorphisms, but nonetheless it is known [56]
that the space of homeomorphisms of the disk is an absolute retract.

6. The problem of groups of homeomorphisms.
Is the group of homeomorphisms of an η-dimensional compact manifold an
/2-manifold? This is one of the few fundamental problems in the theory of
infinite-dimensional manifolds that was posed when the subject originated at
the end of the 60s, and had not made at least some appreciable progress up
until 1972. The problem reduces to the following (see [115]). Is the group
Authn of homeomorphisms of the «-dimensional disk that are the identity on
the boundary of the disk an absolute retract? For η = 1 the group Authi is
well known: it consists of all continuous strictly increasing maps of the
interval [0,1] onto itself. Anderson proved that Authi is homeomorphic to fe.
We will see how the finite-dimensional selection theorem, Theorem 1.4, was
used in [56] to prove the same result for Autli2. It may be that an analogue of
Mason's construction will also yield a proof for « = 3.

As Authn is contractible (Alexander's result), it is enough to prove that Authn is
an absolute neighbourhood retract. In order to do this, using Torunczyk's theorem
[105] we need only find a basis of open sets in Authn such that any non-empty
intersection of members of this basis has trivial homotopic groups π^ for all k G N.
We now give the construction of such a basis in the case « = 2. For the disk in
two dimensions we will take the square S = [0,1] χ [0,1]. Autli2 is a complete
space in the metric d{f,g) = sup{max(p(/(x),g(x)),p(/~1(x),g-1(x)))}.

Let Ln be the lattice in S of closed intervals dividing the sides of S into 2"
equal subintervals. We take a fixed homeomorphism / G Auth2. The image
f(Ln) will be a strongly twisted lattice that has the same endpoints on its
boundary as the lattice Ln. For every vertical of the lattice f(Ln) we can
choose a tubular neighbourhood such that these vertical neighbourhoods are
disjoint and polygonal with vertices at points with rational coordinates. We
will denote these vertical neighbourhoods by V\, Vi, ..., Vn. We can construct
horizontal tubes Ηχ,Η^, • . . , # „ similarly. We emphasize that a vertical element
in the lattice f(Ln) intersects a horizontal element in one point, whereas a
vertical tube can intersect a horizontal tube in a very complicated manner. To
obtain an invariant definition of the basis of open sets we forget about the
homeomorphism / and leave only the system of vertical and horizontal tubes
Vu ...,Vn,Hu ..., Hn. We define an open set G = G(VU .. .,Vn,Hu ..., Hn)
as the set of homeomorphisms g G Auth2 that carry vertical and horizontal
elements of the lattice Ln into corresponding vertical and horizontal tubes. We
call the set of all neighbourhoods G = G{VU ..., Vn, Hu ..., Hn) for all « G Ν
and for all possible tubes V\, ...,Vn,H\, ...,Hn an 7/Fr-basis. It is not hard
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to show that HVT is in fact a basis in Auth2, and further, the intersection of
two members of HVT lies in HVT (or is empty). In other words, HVT is a
base of open sets in Auth2 and to apply Torunczyk's theorem we have to
show that each element G e HVT is weakly homotopic to zero. Here we use
Michael's Theorem 1.4. For the finite-dimensional paracompact space X we
take Kx[0,1], where K is a finite-dimensional connected compact set (the
image of the sphere) in G, the closed set A coincides with Κ χ {0}, the
complete metric space Υ is G itself, and the multivalued lower semicontinuous
maps at different stages of the proof are chosen differently with the aim of
retracting Κ to a point in the interior of G.

7. Soft maps. The functor of probability measures.
The concept of a soft (η-soft) map was introduced by Shchepin and was an
adequate carrier in the category of maps for the concept of absolute extensor
(extensor in dimension n) in the category of compact sets. A detailed survey of
soft maps is given in [100].

A map / : X —> Γ is said to be soft with respect to the pair A C Ζ if for any
map g: Ζ —> Υ and any selection h : A —> X of the multivalued map
f~iog\A:A—>X there exists a continuous extension of this selection to some
selection h : Ζ —> X of the multivalued map f~log:Z—*X.

If a map is soft with respect to all paracompact spaces (paracompact spaces
of dimension n) and their closed subspaces, then it is called a soft (n-soft)
map.

We give an example that will be useful to us in §6. If X is compact, we let
P(X) denote the set of all regular Borel probability measures on it. We
consider P(X) as embedded in the space dual to the Banach space C(X) of
continuous functions on X; we take P(X) with the weak-* topology. Then
P(X) is a convex compact space, and any continuous map f:X—>Y will
induce a map P(f): P{X) —>· P(Y)· To determine the value of the measure
.Ρ(/)(μ) on a subset Ζ C Υ we need only calculate the value of μ(f~1(Z)).
Thus we have constructed a covariant functor from the category of compact
spaces and their continuous maps into the category of convex compact spaces
and their linear (affine) maps. Details of the properties of the functor of
probability measures are given, for instance, in [33] and [34]. Here we remark
that a map P(f) is soft if the maps / we take are open maps between
metrizable compact spaces X and Y. In fact, in this case P(X) and P(Y) can
be considered as convex compact subsets in a Hubert space and all the values
of the map [P(f)]~l °g will be convex compact sets. As / is open, it follows
that P{f) is open [28], that is, [P{f)\~x is a lower semicontinuous map, and
so if A is closed in the paracompact set Ζ we can apply Theorem 1.2 to the
map [P(f)]~l og and the pair (Z,A). Thus P(f) is a soft map.

The finite-dimensional selection theorem (with η = 1) is used in [35] to
prove that the continual functor expc of the exponential preserves the
1-softness of a map/between Peano continua provided exp c (/) is open.
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For an example of the use of the (zero-dimensional) selection theorem we
refer the reader to [44], where this theorem is used to prove that any Dugundji
space is an absolute extensor for zero-dimensional compact sets.

8. Various examples.

a) The continuity of choice in the definition of continuity. Let C(X, Y) be the
space of continuous maps from one metric space to another. The definition of
continuity is

) V i g X V £ > 0 3δ > 0:

Then, to every triple (/, χ, ε) G C(X, Υ) χ Χ χ R>o there corresponds some
subset (non-empty by definition) A(f,x, ε) of the set of positive numbers,
namely the set of all δ in (*). We obtain a multivalued map
Δ : C(X, Υ) χ Χ χ R>o —>• M>o with non-empty convex (not closed) values. Our
statement is that for X locally compact, this map is lower semicontinuous and
has a continuous single-valued selection. In other words, δ can always be
considered as a continuous function of/,χ,ε.

b) The continuity of choice in the Stone-Weierstrass theorem. Let I be a
normed space and V a convex everywhere dense subset of it. Then every χ e X
can be approximated to within an arbitrary accuracy of ε > 0 by some υ e V.
Our assertion is that υ may be chosen in a single-valued continuous way that
depends on χ and ε. More formally, there exists a continuous map
υ : Χ χ M>o -+ V such that \\x — ν(χ,ε)\\ < ε for every (χ,ε) e Χ χ R>o. As an
illustration, we find that in the Stone-Weierstrass theorem the approximating
polynomial (a member of the algebra of functions) can be chosen to depend
continuously both on the approximant and the degree of accuracy of the
approximation. The proof for fixed ε > 0 proceeds by using the scheme of
proof for the convex-valued selection theorem, Theorem 1.2. However, instead
of taking open ε-balls with centres at every point of X we take only those
balls with centres at points of V. Then ε,,-approximations are simply joined by
broken lines; let εη —+ 0.

c) More on approximations. Let V be a closed convex subset of a Banach
space X and let p(x,V) be the usual distance from a point to the set. For any
ε > 0 and any χ e X we define the set Ρε

ν(χ) = {υ e V\ \\x - v\\ < p(x, V) + ε}.
Clearly Ρε

ν(χ) is non-empty, closed and convex in X. After checking that
P\ : X —> X is lower semicontinuous we can apply Theorem 1.2 to show that
the ε-approximations υ € V of elements χ in the space X can be chosen to
depend continuously on χ; υ = υ(χ) G Py(x)- An analogous process was used
in [49] to construct a continuous sample from the values of the operator of
generalized rational approximation.

d) Complemented spaces. In a Hubert space every closed subspace has a
complement. An example is the orthogonal complement. For a long time it
was an open question whether there existed closed non-complemented
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subspaces in any Banach space that was not isomorphic to a Hubert space.
A positive example was given in 1971 by Lindenstrauss who used Dvoretskii's
well-known theorem on almost Euclidean sections of spheres in a Banach
space. Thus there always exist non-complemented spaces. But we can ask
whether in complemented spaces it is possible to choose the complement in
some single-valued and continuous manner? An affirmative answer is given
in [89].

e) Fixed points of multivalued maps.

Theorem ([31], Theorem 11.6). Let C be a convex, but not necessarily closed,
subset of a Banach space E, and let F be a lower semicontinuous map of C into
itself with convex closed values. Then if the closure of F{C) is compact in C, the
map F has a fixed point xo £ C; x0 £ F(XQ).

Proof. We apply the convex-valued Theorem 1.2 to F. Let / be a selection
of F. Then f(x) 6 F(x) C c\(F(x)) c C. We can apply Schauder's theorem to
the single-valued continuous map / of the convex set C into itself, giving a
fixed point x0 £ C such that xo =/(*o) £ F(xo)·

§3. Proofs of the main theorems. Selection characteristics
of paracompactness and of properties of normality type

1. Proof of the zero-dimensional selection theorem, Theorem 1.1.
We take a cover of the metric space (Y,p) by open balls B(y,ε) with radius ε
and centred at each point y £ Y. The family of sets {F~i(B(y, ε))}, y £ Y, is
then an open cover of X. The fact that X is zero-dimensional and
paracompact guarantees that we can find an open cover {Wa},a £ A, that is a
refinement of {F~1(B(y,s))}, y e Y, consisting of pairwise disjoint sets Wa.
For each α £ A we take an arbitrary element ya e Υ such that
Wa C F-l(B(ya,e)) and we define the map/, : Z-> Υ by fs(x) = yx if χ € Wa.
The fact that fE is continuous follows from the fact that Wa, a. £ A, are
disjoint, and we see from the construction of ft that dist(^(x),i7(jc)) < ε for
all χ £ X. In brief, we have constructed a single-valued continuous (.-selection
fe of the multivalued map F. Conveniently, in addition in every set F(x) we
can find a point x(e) such that p(fe(x),x(s)) < ε.

Now we set ε = 1 and we take the previous paragraph as the first step in
an induction proof. The second step goes as follows. We put every point
χ £ X in correspondence with the set F2(x) given by the intersection of F(x)
with the open ball B(f\(x), 1). The set F2(x) is non-empty as, by construction,
f\ is the 1-selection of F. Thus, F2 maps the zero-dimensional paracompact
space X into the metric space Y. It is not hard to show that since F is lower
semicontinuous and f is continuous, Fj is also lower semicontinuous. We now
make the same construction as in the previous paragraph for Fz with ε = 1/2.
We obtain a continuous single-valued map f2 : X —+ Υ such that for every
χ £ X there is x2 £ F2(x) with p{fi{x),x2) < 2~'. Moreover, by construction,

./2W) < 1 +2~\ p{xuxi) < 1 + 1.
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Proceeding by induction (with ε = 2~") we obtain a sequence of lower
semicontinuous maps Fn : X —> Υ and a sequence of continuous single-valued
maps fn:X—y Y, and for every χ e X a sequence of points xn € Fn(x) such
that

Fn(x) C Fn_!(a;) C · • · C F(x), p(fn(x),xn) < 2~n,

P(fn(x), Jn+i(x)) < 2 " n + 1 + 2~n , p(xn,Xn+l) < 2~n + 2~n

for all natural numbers n.
It follows from the third inequality and the fact that F(x) is dense that for

every χ € X the sequence {xn} has a limit, which we will denote by
f(x) e F(x). The first inequality implies that the sequence of functions /„
converges pointwise to / . Finally, the second inequality implies that {/„}
converges uniformly to / and so the limit function is continuous. Π

Remark. Instead of assuming that the whole metric space Υ is complete and
that the values F(x) of the lower semicontinuous map F are closed, it is
sufficient to simply assume that the values F{x) themselves, χ £ X, are
complete.

2. Proof of the convex-valued selection theorem, Theorem 1.2.
The idea of the proof is the same as for Theorem 1.1. First, for fixed ε > 0 we
construct an ε-selection of the lower semicontinuous map F: X —> Υ with
convex non-empty values. To do this, as in the previous theorem, we look at
the cover of the space X by the sets F~l(B(y,e)), ye Y. In this cover we take
some locally finite continuous partition of unity { c a } , a E i , and for every
index α we choose an arbitrary element ya in Υ such that
supp(ea) C F~l(B(yx,e)). Then we define a map f£ : X —> Υ by

f£{x) = ^ e Q ( x ) y Q , α ξ. A.

Since the partition of unity is locally finite, fe is continuous. Further, if for
some index a, ea(x) is positive, then by construction the point ya lies within ε
of the set F(x). But then since fe(x) is a convex combination of all such
points ya, it also lies within ε of F(x).

Now the proof follows that of Theorem 1.1. We set ε = 1 and consider the
multivalued map ^ ( x ) = conv(jF(x) Π ί ( / ι ( ΐ ) , 1)), use the procedure we have
described for ε = 1/2, and so on. In doing this we use in addition a purely
technical assertion: a multivalued map that is the convex hull of a lower
semicontinuous map is itself lower semicontinuous. This proves
Theorem 1.2. Π

3. Proof of the compact-valued selection theorem, Theorem 1.3.
The proof is very different from that of the previous theorems. The only
common idea is that of some induction process on ε,,-approximations,
εη = 2~". Our starting point is the following observation. In order that the
open sets {F~x(B(y,ε))} (see the proofs of Theorems 1.1 and 1.2) form a
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cover of the whole paracompact set X it is in fact not necessary to consider
open balls B{ y, ε) with centres at all points y of the metric space Y. We can
"economise" and for every χ e X take an open ball B(y,e) with its centre at
some point y that is chosen in some arbitrary way from the set F(x). In other
words, we can start with an arbitrary, and not necessarily continuous selection
of the multivalued map (the axiom of choice!) and then using the process of
ε,,-approximations attempt to improve this selection.

A rigorous version of this proof will be given below in §4 (the method of
covers) and in §6 the compact-valued theorem will be deduced as a corollary
of the 0-dimensional selection theorem.

4. Converse selection theorems.

Theorem 3.1. Suppose that the T\-space X is such that any lower semicontinuous
map from X into any Banach space that has non-empty closed and convex values
has a selection. Then X is paracompact.

Proof [4]. For any open cover ω — {Ga}, α G A, of X we consider the Banach
space Υ — l\(A) that consists of all maps y : A —> R for which y(a) is non-zero
only for no more than a countable set of α and for which
||j>|| = ^ | . y ( a | < o o . We consider the following multivalued map F: X —> Y:

F{x) = {y G h(A) | y > 0,\\y\\ = !,»(<*) = 0 if χ ί Ga).

In other words, F(x) is the standard simplex in the closed subspace 1\{AX) of
the space 1\{A); Ax — {a e A : χ e Ga}- That F is lower semicontinuous is
clear.

From the hypothesis of the theorem, F has a selection f:X—> h(A). For
every α G A we define the function ea : X —> [0,1] by ea(x) = [/(·*)](a). The set
of functions {ea} is almost what we require; they are continuous, they sum at
every point to unity, and supp(ea) C Ga. Only the local finiteness does not
suffice.

Let e(x) = sup{ea(x)|a e A}, and for any α e A let Va = {x\ea(x) > e(x)/2}.
Then {Va} is the desired cover refined from the cover {Ga} of X. Let us prove
this. For every χ G X we take β = β(χ) such that ββ(χ) > 0. Then for some
finite set of indices Γ(χ) c A we have

1 - Σ ea(x) < εβ(χ)/2, a G Γ(χ).

The continuity of a finite number of functions shows that this inequality holds
in some neighbourhood U(x) of x. But then in this neighbourhood for every
index γ £ Γ (χ) we have ey(x) < ββ{χ). Thus, the function e(-) in the
neighbourhood U{x) is the maximum of a finite number of continuous
functions, and therefore is itself continuous. As e() is continuous, the Va are
open, and every one is contained in Ga. Local finiteness follows from the
construction: in fact, if γ g Γ(χ), then Vy Π U(x) = 0. Finally, since e(-) is
strictly positive, it follows that {Va},a G A, covers the whole of X. This proves
Theorem 3.1. Π
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We now give a list of other selection theorems that are expressed in the
form of an equivalence between some conditions on a Γι-space X. (We have
numbered these to coincide with the numbering in [58].) We denote by C'(Y)
(F(Y)) the family of all non-empty convex subsets of the Banach space Υ that
are either compact or coincide with the whole of Υ (are closed in Y).

Theorem 3.1'. The following properties of the T-space X are equivalent:
a) X is normal;
b) any lower semicontinuous map from X into R with values in C'(R) has a

selection;
c) if Υ is a separable Banach space, then any lower semicontinuous map from

X to Υ with values in C(Y) has a selection.

Theorem 3.2'. The following properties of the T-space X are equivalent:
a) X is collectively normal;
b) if Υ is a Banach space, then any lower semicontinuous map from X to Υ

with values in C'(Y) has a selection.

Theorem 3.1". The following properties of the T-space are equivalent:
a) X is normal and countably paracompact;
b) any lower semicontinuous map from X into R with values in F(M) has a

selection;
c) if Υ is a separable Banach space, then any lower semicontinuous map from

X to Υ with values in F(Y) has a selection.

Theorem 3.2": see earlier, Theorems 1.2 and 3.1.

Theorem 3.1'": see below, §4, subsection 1.

According to these results, if a space is countably paracompact, then this
implies that it is possible to refine any cover of the space that consists of a
countable number of open sets to some locally finite open cover; collective
normality of a space means that for any disjoint locally finite family of closed
subsets of the space we may include every member of the family in some open
subset such that the open sets we obtain are pairwise disjoint.

§4. Generalizations of the main selection theorems.
The method of covers.

Theorems on "the modulus of countable sets".
Amalgamated selection theorems

1. In each of Theorems 1.1-1.4 we have conditions on:
I) the domain of definition X of the multivalued map F;
II) the space Υ where F(x) takes its values;
III) the family of subsets of Υ whose members are the values F(x);
IV) the type of continuity of the multivalued map F(x),

that are sufficient for there to exist a continuous single-valued selection of F.



172 D. Repovs and P.V. Semenov

The first and in many respects the most important questions are connected
with whether these conditions are also necessary. For definiteness we take the
convex-valued selection theorem, Theorem 1.2.

Question 1. To what extent is it essential to make the following hypotheses in
order to prove Theorem 1.2?

I) X is paracompact;
Π) Υ is a Banach space;
III) a) the map F has convex values;

b) these values are closed;
IV) F is lower semicontinuous.
The difficulty with formally giving a single solution to all these questions is

connected with the fact that these questions are not independent. For example,
if we reduce the class of Banach spaces {Y} where the lower semicontinuous
map can take its values, then we weaken the conditions on the corresponding
class of spaces {X}, and paracompactness in its pure form becomes an
unnecessarily strong hypothesis. A similar situation obtains if we restrict the
family of subsets where the values of F lie: formally we can restrict this family
to one member, and then the paracompactness of the domain of definition, the
type of continuity of the map, and so on, are no longer essential. Thus, we
can formulate the question better as follows:

Question 1'. Suppose that in the "four-parameter" set of hypotheses in
Theorem 1.2 the ranges of three of these parameters are fixed as given in the
theorem. Is the fourth condition necessary to obtain a continuous single-valued
selection?

To a large extent, an unending set of questions that are currently open can
be obtained by fixing any three of the parameters in a manner different from
the formulation of the theorem. Most often, even a hypothetical answer for
the fourth parameter remains unclear. For example, what can we say about
the class of T\ -spaces X for which any lower semicontinuous map with convex
closed values in any reflexive Banach space has a continuous single-valued
selection? A very unexpected example due to Nedev [78] shows that besides all
the paracompact spaces, this class contains, as a minimum, one that is not
paracompact: the set of all ordinals less than the first uncountable one with
the order topology. As another example, what can we say about the class of
topological vector spaces {Y} for which any lower semicontinuous map with
convex closed values and with any metrizable {completely metrizable, compact,
n-dimensional, ...) domain of definition has a continuous single-valued
selection?

But we must return to question 1, or more precisely, question 1'. In a large
measure one answer is already known, and has been given (Theorem 3.1).

Answer I. If we fix hypotheses II)-IV) in the convex-valued selection theorem,
Theorem 1.2, then hypothesis I), that the domain of definition is paracompact,
is necessary.
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Answer II. In the proof of Theorem 1.2, the requirement that Υ be a Banach
space is not formally used to its full extent: we only need Υ to be locally
convex and completely metrizable. Thus (for fixed I), III) and IV)) we have
three questions:

a) Is it necessary that Υ be locally convex?
b) Is it necessary that Υ be metrizable?
c) If the answers to a) and b) are both positive, then is it necessary that Υ

be complete?
II a). We do not have any results in this direction (even under the

hypothesis of complete metrizability). As a corollary of the universality of the
O-dimensional selection theorem we will prove (see §6 below) a generalization
of one of Michael's results to complete but not necessarily locally convex
spaces. We remark that this question is closely connected with one of the old
problems of infinite-dimensional topology: is there an absolute retract of any
infinite-dimensional completely metrizable vector space (see [115])?^

II b). For this part the situation is as follows. In practice, for any concrete
non-metrizable locally convex space from the standard list (inductive limits,
Banach spaces in weak topologies, spaces of continuous functions with the
topology of pointwise convergence) we can give a corresponding
counterexample (see for example [25]). But up to now there is no proof that
the condition that Υ be measurable is necessary in the general case.

Under the assumption that Υ is normal the best possible positive answer
has been obtained by Nedev and Valov [79], [80].

Theorem 4.1. For any normal locally convex space Υ the following are
equivalent:

a) Y is a closed separable weakly compact subspace of some Frechet space;
b) for any normal space X, any lower semicontinuous map from X into Υ

with closed convex values has a lower semicontinuous closed selection.

II c). Here we have a positive answer in the case of normed spaces. From
Klee's results it follows that a normed space that is not complete is not
complete in the topological sense, and so there is no extensor for the class of
paracompact spaces, and moreover there is no positive solution to the
selection problem (see the references in [58], p. 364). The following example
due to Michael is also relevant here.

Example. There exists a lower semicontinuous map from the interval I = [0,1]
into a normed space Υ that is not complete and in which all the values are
closed and convex, but for which there is no continuous selection.

Proof. For the space Υ we take the subspace of the Banach space l\ that
consists of all sequences that have non-zero entries only for a finite set of indices.

(') Recently R. Canty has constructed a counterexample. Dranishnikov's example on
infinite-dimensional compact sets with finite cohomological dimension was essential to this.
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Then we may assume that the set of indices for the sequences in /] is precisely
the set of all rational points in / with some fixed numberings. Then the
mapping

( C if χ is irrational,
F^X)=\Cn{yeY\y(rn)>l/n} ifx = rn,

where C — {y € Y\y ^ 0}, is the map we seek.

Answer III a). §5 of this survey will deal with the question of convexity.

Answer III b). Sometimes we can do without assuming that the values of a
multivalued map are closed (under the assumption that they are convex).

Theorem ([58], Theorem 3.1'")· For T\-spaces X, the following are equivalent:
a) X is perfectly normal;
b) for any separable Banach space Υ and for any lower semicontinuous map

from X to Υ with values that are convex of type (D) there exists a continuous
single-valued selection.

A convex set in a Banach space is of type (D) if it contains all interior
points (in the convex sense) of its closure; a point in the closure of a convex
set is called interior (in the convex sense) if it does not lie on any supporting
hyperplane for the set. The following are of type (D): a) all closed convex sets;
b) all convex sets that contain at least one interior point (in the usual metric
sense); c) all finite-dimensional convex sets; d) the set S of all continuous
functions that are strictly increasing on the interval [0,1] and keep the
endpoints of the interval fixed, Sc C[0,1]. This last example is important in
the proof of Theorem 2.5 (see §2 above, on topologically regular maps). The
hypothesis that Υ is separable is essential in this theorem, as we see from [58],
Example 6.3.

We now give one version where the requirement that the values are closed
is dropped, not for each set individually but for all the values F(x) at once.

Theorem 4.2. For any open subset G of any Banach space Y, and for any lower
semicontinuous map of an arbitrary paracompact space X into G with convex
closed (in G) values there exists a continuous single-valued selection.

Recently Gutev proved an analogous theorem for maps of a countable-
dimensional metric space into a G^-subset of a Banach space.

Answer IV. The assumption of lower semicontinuity for a multivalued map is
of course not a necessary condition in order for it to have at least one
continuous selection (compare Proposition 1.1, where the question was about
the existence of a large number of local continuous selections). Clearly, if from
a map Η we can manage to refine some lower semicontinuous map F, then
after this we may restrict the problem to obtaining a selection of F, which will
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then automatically be a selection of H. This simple observation has been made
at different times by various authors. We give a result due to
Lindenstrauss [52]; for a generalization see [97].

Theorem 4.3. Let Η be a convex-valued closed-valued map of a metric space Μ
into a separable Banach space Y, such that for any countable compact set
KcM the restriction H\K has a continuous single-valued selection. Then the
map Η has a continuous single-valued selection on the whole of M.

Proof. For any point χ £ Μ and for any countable compact set Κ that
contains χ we can define a non-empty convex subset F(x,K) of the set H(x):

F(x,K) = {h(x) | h is a selection of the map H\K}.

Now we define the closed convex subset F(x) of H(x) as the intersection of
the closures of all the sets F(x,K) with respect to all countable compact sets
Κ that contain x. It is clear that the set F(x) is non-empty and the map
F: Μ —> Υ is lower semicontinuous. Π

Remark. In this theorem it is not sufficient to assume that sequences in Μ
converge.

The question of whether a lower semicontinuous map can be refined to a
given w-map was also studied in [39] by Gel'man, who restricted consideration
to a metrizable domain of definition X and a map F with convex compact
values in some convex paracompact subset Υ of a Banach space. In this case
every map F defines some operator L(F) by

= η d (u (n
e>0 \i>0

If we look at the transfinite iterates of L, then we obtain the following
theorem [39].

Theorem 4.4. For a map F of a metric space X into a convex compact subset of
a Banach space Υ with convex closed values to have a continuous selection, it is
necessary and sufficient that the sequence {La(F)} stabilizes at some step oto,
and further (L«»(F))(x) φ 0 for all χ £ X.

Finally, we give a recent result due to Gutev [43].

Theorem 4.5. Any closed-valued lower quasi-semicontinuous map of a topological
space into a complete metric space has a lower semicontinuous selection.

Here a multivalued map Η: X —> Υ is called lower quasi-semicontinuous if
for every χ £ X, every neighbourhood V = V(x) and every ε > 0 we can find a
point x1 G V such that for any point y G H(x') there exists a neighbourhood U
of χ such that y = Π{Βε(Η(ζ))\ζ G U}, where Be(S) is an open
ε-neighbourhood of the subset S in the metric space (Y,p).
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2. The method of covers.
Both the terminology and methods introduced by Choban have, as a result of
careful analysis of the proof of the compact-valued theorem, Theorem 1.3,
axiomatized the method used in such a proof, turning it into a good working
tool to obtain theorems on compact-valued selections of multivalued maps.

Suppose we are given a topological space X, a metric space (Y,p), and a
multivalued map F: X —> Y. Suppose further that we are given three types of
objects:

a) a countable spectrum ρ = {(pn, An)} of discrete (pairwise disjoint)
indexed sets An and their maps pn

{*} = Ao «— Αι <— ... i— An <— An+i <— ...;
PO PI P n - 1 F n

we denote the limit of this spectrum by A;
b) a sequence γ = (yj of covers (not necessarily open) of the topological

space X, indexed for each η by the set An, that is, yn = {Vnfi\ct e An};
c) a sequence ω = (ωη) of systems of open subsets (not necessarily covers)

of the metric space Y, indexed for each η by the set An, that is,
ω η = {WnA\<x £ An}.

We assume that the triple (ρ,γ,ω) satisfies the following axioms.
MCI. sup{diam WnA\a £ An} < 2"";
MC2. Wn>a ( ?
MC3. Vnt
MC4. cl(VnA) C F-\WnA);
MC5. if a* = (an) e A, then the intersection D(a*) = C\Wnfln is non-empty.
For a complete metric space (Y,p) the axiom MC5 is a consequence of

MCI and MC2.
Now we define two multivalued selections G and Η of the map cl(F) as

follows:

G(x) = \J{D(a·) \a*€A, xG nVn,an},

H(x) = \J{D(a*) \a*eA,xe n c l ( V n , e J } .

It turns out that under the fixed properties MC1-MC5 the triple (ρ,γ,ω)
clearly manages to take those properties from the covers yn that guarantee the
compactness and appropriate semicontinuity of the maps G and H.

Theorem 4.5. In the notation introduced earlier.
a) if the covers yn, η EN, are pointwise finite, then the sets G(x) are compact;
b) if the covers yn, η £N, are open, then G is lower semicontinuous;
c) if the covers yn, η G N, are locally finite, then the sets H(x) are compact

and Η is lower semicontinuous.

We now state some results from a series due to Choban [16], [17].

Theorem 4.6. Any continuous closed-valued map of a normal space X into a
completely metrizable space has an upper semicontinuous compact-valued
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selection, which has a lower semicontinuous compact-valued selection. If the
space X has zero measure, then there exists a continuous single-valued selection
of such a multivalued map.

Theorem A.I. If X is a Τχ-space, the following are equivalent:
a) X is weakly paracompact;
b) any closed-valued lower semicontinuous map of X into a complete metric

space has a compact-valued lower semicontinuous selection.

Using the method of covers, in [112] a proof of Theorem 3.2' is presented
with simultaneous "filtration" through all Banach spaces. This method is
applied in [76] and [42] to obtain selection theorems that connect the
"collective normal" Theorem 3.2 with the corresponding O-dimensional and
finite-dimensional selection theorems.

3. "Countable" selection theorems.
In 1974 at the International Congress of Mathematicians in Vancouver,
Michael announced the following theorem [66].

Theorem 4.8. Any lower semicontinuous map from a countable regular space into
a space with the first axiom of countability has a single-valued continuous
selection.

The proof was published in 1981 in [68]. In addition six theorems appeared,
connected with discarding the need for the values of a multivalued map to be
closed on a countable subset of the domain of definition, and a theorem that
connected the O-dimensional and convex-valued theorems with Theorem 4.8.
By way of a remark, Michael noted that these theorems also hold for
σ-discrete sets, although in Theorem 4.8, for this to be true, regularity must be
changed to paracompactness. In 1978 in [18] Choban used the method of
covers to prove a stronger statement.

Theorem 4.9. The compact-valued selection theorem remains true if the subset L
of all points in the domain of definition where the values of the lower
semicontinuous map are not closed is σ-discrete. Moreover, a compact-valued
selection of the given map can be constructed so that for χ e L its values are
finite.

Theorem 4.10. Any lower semicontinuous map F of the O-dimensional
paracompact space X into a complete metric space has a continuous single-valued
selection if the subset of all points in X where its values are not closed is
σ-discrete.

Theorem 4.11. Theorem 4.7 {on the characterization of weak paracompactness)
holds if we omit the assumption that the values of the lower semicontinuous map
are closed on an arbitrary σ-discrete subset of the domain of definition.

We must not fail to point out that Theorem 4.9 (without the statement that
the values of the selections are finite on the σ-discrete set) and Theorem 4.10,
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together with Theorem 4.8 (directly for a σ-discrete set), were all announced
by Choban in 1970 [20].

Kolesnikov proved the following [48].

Theorem 4.12. Suppose that X is completely regular {collectively normal) and Υ
is a complete metric space. Let C C X be a countable {σ-discrete) subset of X
and F-.X^Y a map such that F{x) = Υ for χ ^ C and c\F{x) = Υ for χ e C.
Then F has a selection if Υ is either locally connected or is an ANR.

Michael strengthened Kolesnikov's results somewhat in [69].

4. Amalgamated selection theorems.
The start of this area of research was a short paper [74] where the following
theorem was proved, which coincides with the convex-valued selection theorem
for Ζ — 0 and with the 0-dimensional selection theorem for Z = X. The
inequality dim^ Ζ < 0 implies that for any subset Ε of X that is closed in X
the inclusion Ε c Ζ implies that dim Ε < 0.

Theorem 4.13. Let X be paracompact, Υ a Banach space, and Ζ a subset of X
with ά\ναχ Ζ ^ 0. Then any lower semicontinuous map F from X to Υ with
convex values F{x) for all χ $ Ζ has a continuous single-valued selection.

Theorem 4.14 (Theorem 1.2 and Lemma 6.16 in [67]). Let X be paracompact, Υ
a Banach space, and Ζ a subset of X with dim^ Ζ < η + 1. Then any closed-
valued lower semicontinuous map F from X to Υ such that the values F{x) are
convex for χ $ Ζ has a continuous single-valued selection if for all χ € Ζ the
values F{x) are η-connected and the family {F{x)\x £ Z} is uniformly equilocally
n-connected.

For versions of amalgamations of these theorems with "countable"
theorems see [73].

§5. Attempts to waive convexity. Convexity in metric spaces.
Paraconvexity. Topological convexity

1. We begin with an example ([58], Example 6.1), to show that in Theorem 1.2
the condition that the values F{x) of the map F be convex is essential.

Example 5.1. There exists a lower semicontinuous {and even continuous) map of
the interval [0,1] into the Euclidean plane whose values are the graphs of
continuous functions on some intervals, and which does not have a continuous
single-valued selection.

Proof. Naturally, we use sin(l/x). More precisely, we put each t G (0,1] in
correspondence with the set

F{t) = {(x,y) | χ € [t/2,t],y = sin(l/z)},

and we put F(0) = {(0,y)\y e [-1,1]}. D
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In this example the values of F{t) as t —> 0 are very non-convex. The
natural way to try to waive convexity is not so radical.

Let Υ be a normed space and Ρ a non-empty closed subset of Y. We fix
R > 0 and for any open ball D of radius R we define the number

S(D,P) = (sup{dist(g,P) | q e conv(D Π P)})/R.

If D does not intersect P, then d(D,P)=0. We define hP(R) to be the
supremum of the set {d(D, P)} for all open balls D of radius R.

Roughly speaking, we consider all simplexes of radius R with vertices in the
set Ρ and we look at how far from Ρ points of the same simplex go:
dist(q,P) ^ hP(R) R, qe conv(DDP). It is clear that hP(R) cannot exceed 2,
and examples in the space l^ show that in general we cannot obtain a smaller
upper bound. In a Euclidean space Υ for any closed Ρ c Υ and any R > 0 a
better estimate holds, hp{R) ^ 1. Klee has shown that such an estimate for
any Ρ when dim Ε > 2 characterizes the spaces with scalar product among the
normed spaces. Thus, every non-empty closed subset Ρ of the normed space Υ
can be put in correspondence with some function hP : (0, oo) —• [0,2].

Definition 5.1. The function hp constructed above is called the function of non-
convexity of the non-empty closed set P.

If the identity hp = 0 holds, then Ρ is convex. The further hp is from zero,
the less convex Ρ is. For instance, in the Euclidean plane, for a semicircle of
radius r we have hp{r) = 1, and for a parabola, the function of non-convexity
monotonically tends to 1 from below.

Definition 5.2 [63]. Let α G [0,1). A non-empty closed subset Ρ of a normed
space Υ is called tx-paraconvex if its function of non-convexity hp nowhere
exceeds a.

Theorem 5.1. Let h : (0, oo) —> [0,1) be a fixed monotone non-decreasing
function. Then any lower semi-continuous map F of a paracompact space X into
a Banach space Y, whose function of non-convexity hF^ takes values that are
strictly less than h, has a continuous single-valued selection.

Establishing α-paraconvexity and further verifying that the function hF(x)
majorizes the non-convex values of F(x) for some fixed function
h : (0, oo) —> [0,1) is itself rather hard. In the definition of paraconvexity there
are six quantifiers (3,V,V,V, V, 3). Nonetheless there has been success in
obtaining some results for a finite-dimensional Euclidean space and graphical
maps.

Theorem 5.2 [98]. For any η € Ν and any C ^ 0 there exists α = α(«, C) G [0,1)
such that the graph of any Lipschitz function of η real variables with constant C
and with a closed convex domain of definition is a-paraconvex in
(n + I)-dimensional Euclidean space.
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Theorem 5.3 [91]. For fixed « e Ν and fixed C > 0 for the set of graphs of all
polynomials of the form

P{x) = anx
n + · · · + oil + ao, K| < C, |oi/on| < C,

with closed convex domain of definition there exists a function h : (0, oo) —> [0,1)
that strictly majorizes the functions of non-convexity of all such graphs in the
Euclidean plane.

Clearly, using Theorem 5.1, in Theorem 1.2 the requirement that the values
F(x) of the lower semicontinuous map F be convex can be changed to the
requirement that F(x) lies in the set of graphs in Theorems 5.2, 5.3. We note
that for this, the system of coordinates in which we consider the value F(x) as
a graph can depend arbitrarily on χ e X. The condition of uniform
boundedness of the coefficients of the polynomials is essential in this theorem.
An interesting open question is the case of polynomials of several real variables.

2. In the theory of differential inclusions (Cauchy's problem with a
multivalued right-hand side) there is a series of papers on continuous
selections of maps with non-convex values. The details of this theory reduce to
posing selection problems for maps with values in the particular Banach space
Ζ,ι(μ) and with a particular version of non-convexity: convexity by switching
(the native term) or the decomposability of the subset in the space Ι-ι(μ).

Let Γ be a compact space with a non-negative non-atomic Borel measure μ
on it, let Ζ be a. separable Banach space, and L\{T,Z) the Banach space of
Bochner integrable classes of summable maps from Τ to Z. A subset D of
L\(T,Z) is decomposable if for any fig e D and any μ-measurable subset
A c Τ there is a map in D that equals/on A and g on T\A.

Theorem (Friszkowski [37], 1983). Any lower semicontinuous map of a compact
space into the Banach space L\{T,Z) with non-empty closed decomposable values
has a continuous single-valued selection.

The first result of this kind was obtained by Antosiewicz and Cellina [2] in
1975 in the case when the compact space to be mapped is a compact space S
in the Banach space of continuous maps of the interval [0,1] into the space
W, and the multivalued map F:S-+ Li([0, 1],R") is defined by

F(s) = {u£ Li([0,l],ln) ! u(t) e P(t,s(t)) almost everywhere on [0,1]}.

All cases were examined for a fixed compact-valued map Ρ : [0,1] x W —> R",
relative to which there were solutions of the differential inclusion
x'(t) e P(t,s(t)). The results in [2] are that for a bounded map Ρ that is
measurable in / (for all x) and continuous in χ (for almost all /) the function
F defined above has a selection, and the corresponding differential inclusion
has a solution. Next, in [9] the condition of continuity in χ was weakened to
lower semicontinuity. The theorem we gave earlier was proved by analysing
the proofs in [2] in abstract terms.
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For generalizations and different applications see, for instance,
[41], [10], [12] and the references cited there. We also make a simple
observation that shows that decomposable subsets of L\ [0,1] are in general not
paraconvex, that is, the techniques of the last subsection do not apply to
them. If fg G Li[0,1], then the decomposable set D is the family of functions
{(1 ~ x)/+ %g}> where χ is changed by the characteristic functions of
measurable subsets from being identically zero to being identically one. But
the whole set D is centrally symmetric relative to (f+g)/2 and lies on a
sphere with centre at this point. Thus, the set D made up of the functions /
and g and all "natural" paths between them is decomposable, but not
α-paracompact for any α < 1.

3. In subsection 1 we looked at the case when the metric structure of the
(Banach) space Υ combined well with the canonical structure of the convexity
of Υ as a vector space and we estimated the "degree of non-convexity" of the
values of the multivalued map. However, instead of non-convex sets in
"standard convexity", we can consider convex sets in some "non-standard
convexity".

Definition 5.3 [62]. Let Δ" be the standard unit simplex with η vertices in
«-dimensional Euclidean space. The convex structure of a metric space (Y, p) is
a sequence of pairs {(M^kn)}^, where Mn is a subset of the nth Cartesian
power Y" and kn are maps kn : Mn χ Δ" —> Υ such that the following
conditions hold:

a) if x G M\, then k\{x, 1) = x;
b) if x e Mn, then 9,-JC G Mn_i and if further i, = 0 for t e A", then

kn(x, t) = fcn_i(9,x, 9,-i) where 8; is the operator that omits the rth coordinate;
c) if x G Mn and x, = χ,+i, then for t G Δ"

kn(x,t) = kn-i(diX,ii,... , i i _ i , i i + i i + i , f i + 2 , . . . , £ „ ) ;

d) for fixed x G Mn, the map kn(x, •) is continuous;
e) for every ε > 0 there exists a neighbourhood V of the diagonal in Υ χ Υ

such that for all η G Ν and all x,y G Mn if (x^yt) G V, l^i^n, then

p{kn(x, t),kn{y, 0) < ε f o r a 1 1 ' e Δ".
Conditions a)-c) give the usual compatability conditions for curvilinear

simplexes kn(x, •) with respect to their faces. Condition e) is essential, and in
real examples it is hard to verify: the ε-closeness of points of curvilinear
simplexes with the same coordinates should ensure some closeness
(independent of the dimension!) of the vertices of these simplexes.

Definition 5.4. A subset C of a metric space Υ with a convex structure
{(Mn,kn)} is said to be convex if for any n s N and any x\ G C, . . . ,xn G C
the η-tuple χ = (χι, ... ,xn) lies in Mn and kn(x, t) G C for all t G Δ".

The proof of the corresponding analogue of the Selection Theorem 1.2 for
metric spaces with convex structure does not proceed analogously to that of
Theorem 1.2. In Theorem 1.2 the desired selection is constructed as a uniform
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limit of a sequence of continuous maps /„ with values en-close to the values of
the multivalued map, but, in general lying outside these values: an exterior
approximation. Here the maps /„ in general are discontinuous and their values
lie in the values of the given multivalued map: it is an interior approximation.

Theorem 5.4 [62]. Any lower semicontinuous map F from a paracompact space X
into a metric space (Y,p) with convex structure {(Mn,kn)}, whose values are
complete with respect to the metric ρ and convex relative to the structure
{(Mn,kn)}, has a continuous single-valued selection.

In essence the proof is the same as the method of covers, where compact-
valued selections are approximated by finite-valued (discontinuous) selections.
Here at the nth step we have to look at convex combinations (relative to the
structure {(Mn,kn)}) of elements of these finite-valued selections.

Curvilinear simplexes in the space with the given metric cannot be defined
simultaneously in all dimensions, as we did in Definition 5.3, but we can begin
with curvilinear segments, and then give an inductive construction on the
dimension. Thus we arrive at the definition of a geodesic structure on a metric
space.

Definition 5.5 [62]. A geodesic structure of a metric space (Y,p) is a pair
(M,k), where Μ is a subset οι Υχ Υ and £ is a map k : Μ χ [0,1] —> Υ such
that the following conditions are satisfied:

a) if (x, x) G M, then k{x, x, i) = x;
b) if (χ\,χ2) G M, then k(xi,x2,0) = x\, k(x\,x2,1) = x2,
c) if (xi,x2,t)eMx [0,1] and (k{x\,x2,t),x2) e M, then k(k(x\,x2,t),x2,s) -

= k(xux2,t + s(l -ή) for all j e [0,1];
d) for fixed (x],x2) £ Μ the map k(xi,x2,·) is continuous;
e) for each ε > 0 there exist neighbourhoods W c V of the diagonal in

Υ χ Υ such that if (x,y) € V, then p(x,y) < ε, and such that if (x\,x2) e M,
{y\,yi) e M, {x\,y\) e V, (x2,y2) e W, then (k(x1,x2,t),k(yuy2,t)) e V for all
i € [0 , l ] .

We should remark that condition e) in the last definition is strongly
analogous to the condition in Definition 5.3 for n = 2. This is connected with
the need to proceed inductively with the construction of the curvilinear
simplexes. To construct a curvilinear triangle with ordered vertices x\,x2,xi, we
first take the "segment" with endpoints at x2 and xy and then join its points
by means of "segments" to the vertex x\\ that this is well defined follows
from c). "Simplexes" of arbitrary dimensions are defined analogously. We will
say that a subset G of a metric space Υ with geodesic structure (M,k) is a
geodesic set if x\,x2 e G implies that the pair (x\,x2) lies in M, and all the
points on the segment k{x\,x2, t) lie in G.

Theorem 5.5. For any geodesic structure in a metric space there exists a convex
structure in this space such that any geodesic set is convex with respect to this
convex structure.
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A fairly typical example is a Riemannian manifold Υ with Riemannian
metric p. We take L to be the set of all pairs of points on the manifold Υ for
which there exists exactly one shortest geodesic connecting the two points, and
let h : Lx [0,1] —• Υ be the natural map that translates every point of the
triple {xi,X2,t) to the corresponding point of the shortest geodesic with
endpoints JCI and xi.

Theorem 5.6 ([62], Proposition 6.1). On any compact Riemannian manifold there
exists a geodesic structure (M,k) such that Μ C L, k — h\M and for every point
y £ Υ there exists a neighbourhood V with V χ V c Μ.

We mention the paper [26] by Curtis on the contractibility of the
hyperspace of subsets of a metric continuum. In this, condition c) from
Definition 5.3 is omitted, but condition e) is strengthened to a condition of
uniform type ( V e > 0 3 5 > 0 . . . ) and with these changes he gives a proof of
the analogue to Theorem 5.4. It is possible to construct such a modified
convex structure in the space of maximal arcs in the hyperspace C{X), which
consists of subcontinua of the given metric continuum X. Any such maximal
arc γ connects some one-point arc e(y) = γ(0) continuously in C(X) with the
whole space X. One of the main results in [26] is that C[X) is contractible if
and only if the map e~l has a lower semicontinuous selection, that is, if e is
inductively open. The proof is based on finding a single-valued continuous selection
for some lower semicontinuous selection of e~\ that is, finding a section for e.

4. Topological convexity.
A systematic study of topological convex structures was first made, so it
seems, in the papers of van de Vel [106], [107] and in his joint papers with
van Mill [109], [110] (see also the recent paper [108]).

Definition 5.6. A family of subsets of a given set X is called a convex structure if:
CONV 1. The empty set and the whole set X lie in the family.
CONV 2. The family is closed under the intersection of an arbitrary

number of its elements.
CONV 3. The family is closed under the union of an arbitrary number of

its elements that are linearly ordered by inclusion.
If we remove the condition that the whole set X lies in the family from the

above axioms, then the family is called a convex system. Elements of a convex
structure (system) are called convex sets.

As in the case of standard convexity, the convex hull conv^l of a subset A
of a set X with a convex structure (system) is the intersection of all convex
sets that contain A; a polytope is the convex hull of a finite set; a half-space is
a convex (non-empty) subset, whose complement is also convex. For a convex
structure we can introduce analogues S\-S^ to the separability axioms T\-T^
for topological spaces. For instance, 5Ί: all sets consisting of a single point are
convex. Similarly, S4: if two convex sets are disjoint, then they lie in some
mutually complementary half-spaces.
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Definition 5.7. A topological convex structure is a set with a convex structure,
determined by the topology, in which all polytopes are closed. If, further, the
closures of the convex sets are closed, then the structure is closure-stable.

Definition 5.8. A topological convex structure is called uniformizable if there
exists a uniformity μ generating the given topology such that for a uniform
cover U G μ we can find a uniform cover V Ε μ for which the convex hull of
the star of any convex set with respect to V lies in the star of this convex set
with respect to U. If this uniformity μ is induced by some metric d, then the
topological convex structure is said to be metrizable, and the metric d is said
to be compatible.

Theorem 5.6. Suppose that a closure-stable topological structure has properties
S\ and S4, that the convex sets in it are connected, and the polytopes are
compact. Let C be a non-empty convex set, and ω a cover of C by open convex
sets. Then the nerve of the cover ω is contractible.

Finally, we state the analogues of the selection Theorems 3.1' and 3.2" for
topological convex structures.

Theorem 5.7. Suppose that under the hypotheses of the last theorem there is a
metric d that is compatible with a topological structure Y. Then:

a) if X is normal, and Υ is separable, then any lower semicontinuous map
from X to Υ with compact convex values has a continuous selection;

b) if X is paracompact, then any lower semicontinuous map from X to Υ with
d-complete convex values has a continuous selection.

We stress that there is a difference in the approaches to defining convex
structures even on the level of metric spaces. Michael has this version of the
"exterior" definition. Van de Vel makes all the constructions in an "interior"
way. Michael constructs a selection as a uniform limit of single-valued
continuous maps ("exterior approximations") or 2~" -continuous maps
("interior approximations"), whereas van de Vel cuts off open convex sets
from the complete convex values of a multivalued map until only a single-
point set remains.

§6. Selections and averaging operators.
The universality of the O-dimensional selection theorem

1. The main aim of this subsection is to show that as corollaries of the simple
O-dimensional selection theorem, Theorem 1.1, we can obtain both the
compact-valued and convex-valued selection theorems. We will call this
property of Theorem 1.1 its universality.

This idea of universality for this theorem, it seems, was first introduced
in [1], where the O-dimensional selection theorem was used to derive a
compact-valued selection theorem with transposed order of lower and upper
semicontinuous selections. An analogous result was obtained independently
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in [99], where such a "transposition" theorem was mistakenly called a
compact-valued theorem. The main thrust of [99] is nonetheless to deduce the
convex-valued Theorem 1.2 from the O-dimensional theorem. This is done by
using Milyutin maps, that is, continuous surjections that have a regular linear
averaging operator. This idea of using Milyutin maps in the case of
multivalued operators with compact domains of definition is due to Shchepin
and was announced in the Tiraspol' Symposium on Topology in 1985. In [99]
the proof is given for a wide class of paracompact spaces (compact, strongly
paracompact, /?-paracompact . . . ) , and in [94] it is given for all paracompact
spaces. It remains to point out that universality can easily be obtained for
metrizable spaces by using Choban's results [19].

If X is completely regular, we let C(X) denote the Banach space of all
continuous bounded real functions on X with the usual sup-norm; it is useful
to identity C(X) with the space C(/?X) of continuous functions on the Stone-
Cech compactification βΧ of the space X. We let P(X) denote the space of all
regular probability Borel measures on X; the topology on P(X) is induced by
the weak-* topology from the space dual to C(/JA").

Definition 6.1 [102]. A continuous surjection/: X —> Υ is called a Milyutin map
if there exists a continuous map ν : Υ —> P{X) such that suppv(j') c/~'(_y)
for all χ ζ X, where suppv(j) is the support of the measure v(y).

2. Theorem 6.1. Any paracompact space X is the image of some zero-dimensional
paracompact space XQ for some Milyutin perfect inductively open map p.

Corollary 1. The compact-valued selection Theorem 1.3 is a consequence of the
O-dimensional selection Theorem 1.1.

Corollary 2. The convex-valued selection Theorem 1.2 is a consequence of the
O-dimensional selection Theorem 1.1.

Corollary 3. Let Υ be a locally convex topological vector space, Μ a metrizable
subset of Y, and F a lower semicontinuous map from X to Μ such that:

a) all the values F{x) are complete with respect to some metric compatible
with the topology induced from Y;

b) the closed convex hull of any compact set that lies in any value F(x) is
compact.

Then F has a continuous single-valued selection f such that
f ( x ) G cl ( c o n v e x ) ) for any x £ l

Corollary 4. Suppose that X and Υ are completely metrizable topological vector
spaces, and that L is a linear continuous surjection from Υ onto X, with kernel
Ζ = KerL a locally convex space. Then the map L has a continuous section, and
in particular, Υ is homeomorphic to X® KerL.

Proof of Corollary 1. Let F: X —> Υ be a lower semicontinuous map from the
paracompact space X into the metric space (Y,p) with values F(x) that are
complete in Y. Let ρ : Xo —» X be the map in Theorem 6.1. Then we may
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apply Theorem 1.1 to Fop-.X0—> Υ and so it has a single-valued selection
g: Xo —> Y. The map ρ is closed, and so p~x is upper semicontinuous. Thus,
gop~l is an upper semicontinuous selection of F. Since ρ is perfect, all the
inverse images p~l(x) are compact. But then the values of the selection gop~l

are also compact. Further, since ρ is inductively open, we can find some lower
semicontinuous selection of / r 1 , say G: X —* Xo, G(x)cp~1(x). Then the
composition g ο G is a lower semicontinuous compact-valued selection of
g°P~l- D

Proof of Corollary 2. Let F: X —> Υ be a lower semicontinuous map of a
paracompact space X into a Banach space Υ that has closed convex values
F(x). Let ρ : Xo-* X be the map in Theorem 6.1. Then we may apply
Theorem 1.2 to Fop : Xo-+ Υ and so it has a continuous single-valued
selection g : Xo —> Y. Let ν : X —> Ρ(ΛΓο) be the map that is associated with the
Milyutin map />.

We define the single-valued m a p / : ΛΓ—» Υ by the equality

where the integral is taken over the compact set p~l{x) that contains the
support of the measure v(x). By the definition of integration with respect to a
probability measure, its value lies in the closed convex hull of the values of
the integrand. But, by construction, g(p~l(x)) C F(x), and since F(x) is closed
and convex, f(x) 6 F(x). Π

Proof of Corollary 3. In the last proof it is enough to use the fact that in
order for the integral to exist over a compact set relative to the probability
measure in the given case it is sufficient that the closed convex hulls
c\(conv(gop~l(x)) of the compact sets gop~l(x) c F(x) are compact for

xeX.\J

The proof of Corollary 4 is analogous to that of Corollary 3. Π

Remark 1. The proof of Corollary 3 gives a new proof of the theorem in [65]
and strengthens its statement somewhat: property b) need not be relative to
the whole set M, but just the values F{x). Corollary 4, which generalizes the
Bartle - Graves theorem, gives a new proof of Corollary 7.3 in [62] (see also
Proposition 7.1 in Chapter 2 of [4]).

Remark 2. Corollaries 3 and 4 can be strengthened somewhat if we note the
fact that to have an integral we do not need the space containing the values
of the integrand to be locally convex. It is sufficient that the closed convex
hull of the set of values of the continuous function to be integrated over the
compact set is itself compact.

3. Proof of Theorem 6.1. We consider the set of all distinguished locally finite
open covers of the given paracompact space X, that is, the set of all pairs
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(y,e), where γ = {Ga} is a locally finite open cover, and e = {ea} is some local
partition of unity that is fixed for y and refined in y; a. runs through some
discrete set of indices A = A(y).

First we construct some Milyutin map for every pair (y, e). For this we
define the set Xyfi to be a subset of the Cartesian product of X with the
discrete set Α(γ):

X-r,e = {(z,a) | x € supp(ea)}

and the map py : Xy<e - * I a s the natural projection onto the first component.
As e is locally finite and supp(ea) is closed, py is closed. All the inverse images
of points of this map are finite, that is, compact. Hence py is perfect, and Xy<e

is paracompact as the inverse image of a paracompact space under a perfect
map. The map py is a Milyutin map. In fact, let

p~l{x) = {(ζ, α ϊ ) , . . . , (ζ, α η ) } .

Then we take the value of the measure v(x) at the point (JC, a,·) to equal eXj(x).
It is clear that v(x) is a probability measure, and its support lies in p~l(x).
The fact that v(x) depends continuously on χ follows from the fact that e is
locally finite and the functions ex, a G A(y), are continuous.

Now we consider a partial product (pull-back) of the maps py>e over all
pairs (y,e). Stated less formally, we embed X diagonally in its Cartesian degree
of cardinality, equal to the cardinality of the set of all y, and we define the set
XQ to be the following subset of the Cartesian product of the paracompact
space X and the Cartesian product of the discrete sets A(y) for all y; γ e Γ:

xo = {{x, {a(7)}7er) | x € supp(ea(7)), 7 <Ξ Γ}

and the map ρ : XQ —> X as the natural projection onto the first component.
This completes the construction. The proof is in [94].

§7. Miscellaneous results

1. The characterization of metrizability in the compact case.
Suppose that a compact set Κ is such that for any zero-dimensional compact
set S and any closed lower semicontinuous map F: S —> Κ there exists a
continuous single-valued selection. A simple observation, due to Magerl [54], is
that in this case Κ is metrizable. In fact, by Alexandrov's theorem, any
compact subset Τ c Κ is the continuous image g(A) of some closed subset A
of some power D1 of the two-point set D. But, once we have solved the
selection problem for zero-dimensional compact sets with values in Κ we can
continue the map g: A —> Τ to a continuous map of the whole of the power
DT of D. Thus, the compact set Τ is dyadic, and consequently so is K. Then,
using a theorem of Efimov, Κ is metrizable. Here is a more fundamental result
from [54].
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Theorem 7.1. Let α(Γ) be the one-point bicompactiflcation of an uncountable
discrete set Γ that lies in some locally convex vector space Y. Let
X = εχρ3(α(Γ)) be a compact set that consists of no more than three-point
subsets of α(Γ). Then the map F that associates with every χ e X the convex
hull of elements that are re-entrant in χ is lower semicontinuous and does not
have a continuous single-valued selection.

Corollary. For any convex compact set K, the condition that it is metrizable is
equivalent to a condition on the existence of selections for arbitrary lower
semicontinuous maps with a compact domain of definition, taking values in the
convex compact subsets of K.

Proof. We will deduce that Κ is metrizable from the solubility of the selection
problem. The fact that Κ is dyadic was proved at the start of this subsection.
If we assume that Κ is not metrizable, then using another of Efimov's
theorems, Κ contains a copy of αΓ for some uncountable discrete set Γ. It
remains to apply Theorem 7.1.

The next question now seems natural. Is a convex compact set with the
property that all its convex compact subsets are dyadic metrizable [54]? Valov
has found a positive solution to this question [80] and thus also an alternative
proof of the last corollary.

2. Measurable selections.
If we compare the proofs of Michael's selection theorems with the proof of
one of the main theorems on obtaining measurable selections—theorems due
to Kuratowski and Ryll-Nardzewski [51], the overlap is clear: in both cases the
desired selection is constructed as a limit of 2~"-selections. Thus it is natural
to look for a single approach to the proofs of these theorems,. This has also
been done by Lindenstrauss in [52]. In fact, he considered the family Ω of
subsets of an arbitrary set X, with X and the empty set as members, that is
closed under finite intersections and countable unions. A multivalued map F
from such a space (Χ, Ω) into a topological space Υ is called Ω-measurable if
the inverse image F~l(G) of any open set G lies in the family Ω. The space
(Χ, Ω) is called (k, «)-paracompact if for any cover Ωι c Ω, with card Ωι < k,
there exists a cover Ω2 C Ω that is a refinement of Ωι such that:

a) the dimension of the nerve Ν(ίΪ2) ^ n;
b) there exists an Ω-measurable map F: X —• Ν{€Ϊ2) such that

F~l(St{eB)) CB for all Β e Ω2 and the open star of the vertex eB

corresponding to Β in this nerve.
Now for the abstract version of the operator of taking the convex hull.

This is a map Η that puts every subset A of Υ in correspondence with some
subset H(A) C Υ such that H({y}) = {y}, and from A c Β it follows that
H(A)cH(B) and Η (A) = H(H(A)). If Η leaves all balls relative to some
metric d fixed, then Η is called compatible with d. Further, an operator Η in
a topological space Υ is called η-convex if for any simplicial complex Δ of
dimension ^ n, and any map g of its vertices into Y, there exists a continuous
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extension / of g to Δ such that for any simplex S G Δ the image f(S) lies in
the i/-hull of the image of its vertices under g.

Theorem 7.2. Let (Χ, Ω) be (n, k)-paracompact, Υ a k-bounded complete metric
space, and Η the operator of taking the convex hull that is compatible with the
metric and η-convex. Then any Ω-measurable map from X to Υ whose values
coincide with their convex hulls has an Ω-measurable single-valued selection.

Here fc-bounded means there exists a ε-net of cardinality strictly less than k
for any ε > 0.

3. Is it possible to manage without convexity in the infinite-dimensional case?
In the case when the lower semicontinuous maps have n-dimensional
paracompact domains of definition, Theorem 1.4 gives sufficient (and almost
necessary) conditions for the existence of selections. Is it possible to obtain a
topological analogue of the selection Theorem 1.2 in infinite dimensions, that
does not use "additional" structure, namely the structure of convexity?

The following example due to Pixley [87] shows that a positive answer to
this question, if it exists at all, must be highly non-trivial. In this example all
the values of the lower semicontinuous map are contractible, locally
contractible, and locally contractible "with a single speed", and nonetheless
there are no continuous single-valued selections.

Theorem 7.3. There exists a lower semicontinuous mapping F of the Hilbert cube
into itself such that:

a) all the values of F(x) not consisting of a single point are homeomorphic
either to a finite-dimensional cube or to the entire Hilbert cube;

b) the family of values {F(x)} is a uniform and equilocal absolute extensor
(UE-LAE);

c) F has no selection, and moreover for some point χ Ε Q there is no selection
of the restriction of F to any neighbourhood of this point.

We restrict ourselves to a construction that is a modification of Borsuk's
well-known example in "the theory of retracts" of a locally contractible metric
compact set that is not an ANR. For every η ^ 2 let

En = {x G Q | (n + I ) " 1 < x\ < n~l and Xi = 0 for all i > η + l},

Xn = {x G En | one of the following conditions is satisfied: χι = (n + I)""1,

x\=n~l, xi = 0, Xi € {0,1} for some 2 < i < n + l } .

We define the map F: Q -+ Q as follows. If χ G \J{Xn \n^2} or JCI = 0,
then F(x) — {x}. If χ G En\Xn, then F(x) = Xn. In all remaining cases

F(x) = Q.
Finally, the point χ in condition c) can be chosen as follows: the first

coordinate is equal to zero, and the rest are equal to 1/2.
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4. Continuous multivalued selections.

Theorem 7.4 [82]. Let F be a lower semicontinuous map from a paracompact
space X into a complete metric space Υ with closed connected values, and let the
family {F(x)}, χ € X, of these values be equilocally connected. Then any
continuous multivalued selection of F can be extended from any closed subset of
X to a continuous multivalued selection of F on the whole of X. Moreover, an
analogous result holds for continuum-valued selections.

Here, an equilocal connection of the family {5} of subsets of a metric
space Υ is defined by analogy with the property ELC" as follows. For any
5 ' G {S}, any y G S" and any neighbourhood W{y) there exists a
neighbourhood V(y) C W{y) such that for any element S" € {S} and for any
points a,be V(y)C\S" in the set W(y)C\S' there exists a connected subset
that contains both a and b.

Gutev [42] proved a collectively normal version of Theorem 7.4.

Two further papers of Michael's.
a) If F: X —> Υ is a multivalued map, we let F* denote the map from X to the
graph TF of F:

F*{x) = {χ} χ F(x) cXxY.

If the family of values of F* is equilocally «-connected, then so is F. Thus,
since F is an .ELC"-map it follows that the family {F(x)} is an ELC "-family.
The converse is false: here is a simple counterexample. Let X = N, y — R and
F(k) = {0, I/A:}. Then F is an ELC "-map for any n, but the family {F(n)} is
not a ELC °-family.

Theorem 7.5 [71]. The finite-value Theorem 1.4 can be strengthened in two
directions:

a) the hypothesis that the family of values {F(x)} is equilocally n-connected
can be changed to the hypothesis that the map F is equilocally n-connected;

b) the hypothesis that the values F(x) are closed in Υ can be changed to the
hypothesis that the values of F*(x) are closed in some Gs-subset of the Cartesian
product Χ χ Υ.

b) In [90] Saint-Raymond proved the following fact. If F is a lower
semicontinuous map of an «-dimensional compact metric space X into a
Banach space Υ with convex closed values F(x) that contain 0 e Y, then from
the condition dim F(x) > η for all χ G X it follows that there exists a selection
/ of F such that f(x) φ 0 for all χ e X. Roughly speaking, in the values F(x)
there is enough room to avoid the origin. Michael developed this theme
in [60].

On the one hand, the condition of finite-dimensionality is essential even if
we replace lower semicontinuity by continuity. In fact, consider a map of the
Hubert cube Q into the Hubert space that for each χ e Q shifts Q onto -x. If
this continuous map had a selection g that avoids the origin, then the
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single-valued map g(x) + χ would carry the cube Q continuously into itself
without fixed points. On the other hand, there are positive results.

Theorem 7.6. Let X be a topological space, Υ a Banach space, and F a
continuous map from X to Υ with closed convex infinite-dimensional values.
Suppose further that if y£F(x), γφΰ, then {y/\\y\\) G F(x). Then F has a
selection that avoids the origin.

Theorem 7.7. Let F be a lower semicontinuous map of a paracompact space X
into a Banach space Υ with convex closed values, and let Ε C Υ be closed,
Z = F~\Y) = {xeX\F{x)r\E^0}, and suppose that dimJST< a\mF(x)-
— dim(conv(F(x) C\E)) for all χ e Z. Then F has a continuous selection that
avoids E.

6. Selections and regularizability.
One version of the selection problem is the question of selections in the family
expZ of all closed subsets of a topological space X. In expZ we take the
Vietoris topology, which coincides with the topology given by the Hausdorff
metric in the metric case. More precisely, the question goes as follows. Does
there exists a continuous map /:expZ—>X such that f(A)eA for all
A e expX? It is clear that for the order compact set X we can take
f(A) =minv4. In 1981 in [111] it was shown that (in the compact case) this is
the only possibility.

Theorem 7.8. If X is a compact space, then the following are equivalent:
a) X can be ordered;
b) X has a selection from exp X into X;
c) X has a selection from exp2 X into X.

Here exp2 X is the subspace of exp X that consists of all subsets of X with
no more than two points. For a continuum X this was proved by Michael in
1951, and for zero-dimensional metric compact spaces by Yang in 1971.
In [50], published in 1970, it was shown that for a locally compact separable
metric space condition c) of Theorem 7.8 is equivalent to a condition that this
space can be embedded in the real line.

7. Selections with non-metrizable images.
As we have already remarked, in [25] there is a series of examples that show
that for limits of metrizable topological vector spaces, the convex selection
theorem does not, as a rule, hold. In some cases it is nonetheless possible to
obtain some positive results connected with the Lindelof property. By
developing methods from [52] the following theorem is proved in [25].

Theorem 7.9. Any lower semicontinuous map from a paracompact space X into
the space Y= CQ(T) with convex compact values has a continuous selection if Γ
is a discrete set and every point of X has a neighbourhood that is the continuous
image of some separable semi-metrizable space.
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Here Co(F) is the space of real functions on Γ that degenerate at infinity,

that is, fe Co(r) if for any neighbourhood U of the origin there exists a finite

subset of Γ whose dual is mapped by / into U.

In the non-convex case, we mention some results of Kolesnikov [47]. We

state one theorem.

Theorem 7.10. Any continuous map of a zero-dimensional paracompact space into

a regular pointwise perfect rarified space with arbitrary values has a continuous

single-valued selection.
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