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We continue to investigate cases when the Repovš–Semenov splitting problem for
selections has an affirmative solution for continuous set-valued mappings. We consider
the situation in infinite-dimensional uniformly convex Banach spaces. We use the notion
of Polyak of uniform convexity and modulus of uniform convexity for arbitrary convex
sets (not necessary balls). We study general geometric properties of uniformly convex sets.
We also obtain an affirmative solution of the splitting problem for selections of certain
set-valued mappings with uniformly convex images.
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1. Introduction

The questions concerning continuity of set-valued mappings and existence of continuous, uniformly continuous and Lip-
schitz continuous selections of set-valued mappings have for a long time been the central questions of nonsmooth analysis
[2,3]. The classical Michael theorem [16] guarantees the existence of continuous selections for lower semicontinuous set-
valued mappings with convex closed images. However, the condition of lower semicontinuity for a set-valued mapping is
not typical for (many) problems in which the set-valued mappings are represented as the intersection of two set-valued
mappings. This occurs e.g. in approximation theory [5,14].

It is well known [2,3] that even the intersection of Lipschitz continuous set-valued mappings with convex compact
images, defined on R

n , is only upper semicontinuous. In certain minimization problems [19] and problems of stability of
functionals [5] it is necessary to obtain uniformly continuous selections and explicit estimates for their moduli of con-
tinuity. This explains the necessity for additional constraints on the type of convexity of the set-valued mappings under
consideration.

Let E be a Banach space. The diameter of the subset A ⊂ E is defined as diam A = supx1,x2∈A ‖x1 − x2‖. Let ∂ A be the
boundary of the set A, int A the interior of A, and cl A the closure of A. Let 〈p, x〉 be the value of the functional p ∈ E∗ at the
point x ∈ E . We define the closed ball with center a ∈ E and radius r as follows: Br(a) = {x ∈ E | ‖x − a‖ � r}. Following [19],
we define uniformly convex set as follows:

Definition 1.1. (See [19].) Let E be a Banach space and A ⊂ E a closed convex set. The modulus of convexity δA : (0,diam A) →
[0,+∞) is the function defined by
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δA(ε) = sup

{
δ � 0

∣∣∣ Bδ

(
x1 + x2

2

)
⊂ A, ∀x1, x2 ∈ A: ‖x1 − x2‖ = ε

}
.

Definition 1.2. (See [19].) Let E be a Banach space and A ⊂ E a closed convex set. If the modulus of convexity δA(ε) is
strictly positive for all ε ∈ (0,diam A), then we call the set A uniformly convex (with modulus δA(·)).

Definition 1.1 is very similar to the well-known definition of the modulus of convexity for uniformly convex function
[23, Chapter 4, §7]. If the set A is bounded and has the center of symmetry then δA(·) is the modulus of convexity for
space E with the ball A [8,12]. Note that, as in the case of the bodies with center of symmetry (under assumption A �= E ,
see [12, Part e]), it suffices to choose points x1, x2 ∈ ∂ A, i.e.

δA(ε) = sup

{
δ � 0

∣∣∣ Bδ

(
x1 + x2

2

)
⊂ A, ∀x1, x2 ∈ ∂ A: ‖x1 − x2‖ = ε

}
.

The properties of uniformly convex sets were used in [11,19] for the proof of convergence of minimizing sequences in
certain extremal problems. Similar constructions appeared in approximation theory (see for example [5], [6, p. 12]). We plan
to consider the entire class of uniformly convex sets and apply their properties for the solution of the splitting problem for
selections.

The splitting problem for selections was formulated in [20]. Let Fi : X → 2Yi , i = 1,2, be any (lower semi)continuous
mappings with closed convex images and let L : Y1 ⊕ Y2 → Y be any linear surjection. The splitting problem is the prob-
lem of representing any continuous selection f ∈ L(F1, F2) in the form f = L( f1, f2), where f i ∈ Fi are some continuous
selections, i = 1,2. Some special cases of this problem in finite-dimensional spaces were considered in [17,21].

In [4] we obtained new results for finite-dimensional spaces and proved that there exist approximate solutions of the
splitting problem for Lipschitz selections in the Hilbert space. We also wish to mention [13] and [15], where related ques-
tions were considered.

2. Uniformly convex sets and their properties

Note that if a set is uniformly convex then it is also strictly convex, i.e. its boundary contains no nondegenerate segments.

Lemma 2.1. Let A ⊂ E be a closed and uniformly convex set with modulus δA(·) and suppose that A �= E. Then for any λ ∈ (0,1),
ε ∈ (0,diam A) the following inequality holds

δA(λε) � λδA(ε).

Note that for any uniformly convex unit ball A, the inequality δA(λε) � λδA(ε), for all λ,ε ∈ (0,1), follows from
[12, Lemma 1.e.8].

Proof. Let’s fix ε ∈ (0,diam A), α > 0 and λ ∈ (0,1). Choose points x1, x2 ∈ ∂ A, such that ‖x1 − x2‖ = ε and δA(ε) + α > δ,
where δ = sup{r � 0 | Br(z) ⊂ A} and z = 1

2 (x1 + x2).
For any k we define a point ak ∈ ∂ A with ‖ak − z‖ � δ + 1

k . Let yk
i be the homothetic image of the point xi under the

homothety with center ak and coefficient λ, i = 1,2; let zk be the homothetic image of the point z under the homothety
with center ak and coefficient λ.

We have ‖yk
1 − yk

2‖ = λε and ‖zk − ak‖ � λδ + λ 1
k . It follows from the inclusions yk

i ∈ A, i = 1,2, that

δA(λε) � ‖zk − ak‖ � λδ + λ
1

k
� λδA(ε) + λα + λ

1

k
.

By taking limits α → +0, k → ∞ we get the following inequality:

δA(λε) � λδA(ε). �
The following corollary follows from Lemma 2.1.

Corollary 2.1. The modulus of convexity is a strictly monotone function and moreover, the function ε → δA(ε)
ε is also monotone.

Lemma 2.2. Let A ⊂ E be a closed and uniformly convex set with modulus δA(·). Let ε ∈ (0,diam A), p1, p2 ∈ ∂ B∗
1(0), xi =

arg maxx∈A〈pi, x〉, i = 1,2. If ‖p1 − p2‖ <
4δA(ε)

ε then ‖x1 − x2‖ < ε.

Proof. Suppose that ‖x1 − x2‖ � ε. Define δ = δA(‖x1 − x2‖). We have Bδ(
x1+x2

2 ) ⊂ A. By hypotheses of the lemma,

〈p1, x1〉 = max
x∈A

〈p1, x〉 � max
x∈B (

x1+x2 )

〈p1, x〉 = 1

2
〈p1, x1 + x2〉 + δ
δ 2
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and in the same way 〈p2, x2〉 � 1
2 〈p2, x1 + x2〉 + δ. Hence

〈p1, x1〉 − 〈p1, x2〉 � 2δ, 〈p2, x2〉 − 〈p2, x1〉 � 2δ.

Adding the last two inequalities

〈p1 − p2, x1 − x2〉 � 4δ

we obtain ‖p1 − p2‖ · ‖x1 − x2‖ � 4δ and

‖p1 − p2‖ � 4δA(‖x1 − x2‖)
‖x1 − x2‖ � 4δA(ε)

ε
,

where the last inequality follows by Corollary 2.1. �
Let us denote ϕ(ε) = 4δA(ε)

ε . We obtain the following corollary:

Corollary 2.2. Let A ⊂ E be a closed and uniformly convex set with modulus δA(·). Let p1, p2 ∈ ∂ B∗
1(0), xi = arg maxx∈A〈pi, x〉,

i = 1,2. Then

ϕ
(‖x1 − x2‖

)
� ‖p1 − p2‖.

Proof. Let ‖x1 − x2‖ = ε. By Lemma 2.2 we then obtain that ϕ(ε) = 4δA(ε)
ε � ‖p1 − p2‖. �

Remark 2.1. Suppose that the convex closed bounded subset A of a Banach space E has uniformly continuous supporting
elements, i.e. that there exists a continuous function ϕ : [0,diam A) → [0,+∞), ϕ(0) = 0, such that for any unit vectors
p1, p2 ∈ E∗ and xi = arg maxx∈A〈pi, x〉, i = 1,2:

ϕ
(‖x1 − x2‖

)
� ‖p1 − p2‖.

Then there exists C > 0 such that

δA(ε) � C ·
ε
2∫

0

ϕ(t)dt, ∀ε ∈ (0,diam A).

The proof of this fact has not been published yet, however, it is too long to be included in this paper.

The supporting function of the set A ⊂ E is defined by s(p, A) = supx∈A〈p, x〉, p ∈ E∗ . This is a positively uniform convex
closed function (see [2,18]). For the set A we define the barrier cone by b(A) = {p ∈ E∗ | s(p, A) < +∞}, i.e. b(A) is the
domain of the supporting function.

The fact that every uniformly convex set which does not coincide with the entire space is bounded was stated in [11].
We shall prove a more precise result.

Theorem 2.1. Let E be a Banach space and let A ⊂ E a closed and uniformly convex subset with modulus δA(·). Then for any ε ∈
(0,diam A)

diam A �
([

ε

δA(ε)

]
+ 1

)
· ε,

where [x] is the largest integer � x.

Proof. For any unit vector p ∈ b(A) and any t > 0 we define a convex closed set:

Ap(t) = A ∩ {
x ∈ E

∣∣ 〈p, x〉 � s(p, A) − t
}
.

We obtain from the definition of the supporting function that A p(t) �= ∅ for any t > 0, p ∈ b(A), ‖p‖ = 1, and if 0 < t1 < t2
then A p(t1) ⊂ A p(t2).

We shall show that for any unit p ∈ b(A) the following holds

lim
t→+0

diam Ap(t) = 0.

Suppose that for some unit p ∈ b(A) there exist d > 0 and tk → +0 with diam A p(tk) � d. The latter means that there exist
points x1

k , x2
k from A p(tk) with ‖x1

k − x2
k‖ > d/2, for all k. It follows from uniform convexity of the set A that

B
δA( d

2 )

(
x1

k + x2
k
)

⊂ A.

2
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However, by taking the supporting functions of the sets from this inclusion we obtain the following:

s

(
p, B

δA( d
2 )

(
x1

k + x2
k

2

))
= 1

2

(〈
p, x1

k

〉 + 〈
p, x2

k

〉) + δA

(
d

2

)
� s(p, A) − tk + δA

(
d

2

)
> s(p, A).

The last inequality holds for sufficiently large k (when δA( d
2 ) > tk). This contradiction shows that diam A p(t) → 0, t → +0.

By the completeness of A we conclude that⋂
t>0

Ap(t) = {
a(p)

}
.

We have thus proved that for any unit vector p ∈ b(A) there exists a(p) = arg maxx∈A〈p, x〉.
Let’s fix arbitrary points x, y ∈ ∂ A. By the separation theorem there exist unit vectors q1,q2 ∈ E∗ such that 〈q1, x〉 =

s(q1, A), 〈q2, y〉 = s(q2, A). If q1 �= −q2 then let D = ∂ B∗
1(0) ∩ cone{q1,q2}. If q1 = −q2 then choose any q3 ∈ ∂ B∗

1(0) with
s(q3, A) < +∞ and define D = ∂ B∗

1(0) ∩ cone{q1,q2,q3}. Note that for any q ∈ D , s(q, A) < +∞.
By [10, Theorem 11.9] for any 2-dimensional subspace L ⊂ E∗ the length of the curve L ∩ ∂ B∗

1(0) is less than 8 (in the
‖ · ‖∗-norm). Thus the length of D is less than 4. Choose N = [ ε

δA(ε)
]+ 1 and points {pi}N

i=0 ∈ D which decompose the length

of D into N equal parts; p0 = q1, pN = q2 and ‖pi−1 − pi‖ < 4
N � ϕ(ε), i = 1, . . . , N .

By the previous considerations we obtain that for all 1 � i � N − 1 there exists xi ∈ ∂ A with 〈pi, xi〉 = s(pi, A). By
Lemma 2.2 we have ‖xi−1 − xi‖ < ε and

‖x − y‖ �
N∑

i=1

‖xi−1 − xi‖ � ε · N.

The points x, y are arbitrary boundary points of A, hence diam A � ε · N . �
Corollary 2.3. By Theorem 2.1 we have

δA(ε) � ε2

diam A − ε
, ∀ε ∈ (0,diam A).

This means that δA(ε) � C · ε2 for any convex closed bonded set A.

For balls this statement follows from the well-known Day–Nordlendar theorem [8] which asserts that if E is a Banach
space then the modulus of convexity for E , i.e. the modulus of convexity for the unit ball, satisfies the estimate δE (ε) �
1 −

√
1 − ε2

4 , ∀ε ∈ (0,2).
Next we shall prove a result which is very close to the Day–Nordlendar theorem.

Theorem 2.2. Let E be a Banach space and A ⊂ E a closed and uniformly convex set with modulus δA(·), diam A = 1. Let r0 > 0 and
a ∈ E be such that Br0(a) ⊂ A. Then for all ε ∈ (0,1):

δA(2r0ε) � 1

2

(
1 −

√
1 − ε2

)
. (2.1)

In (2.1) the equality takes place when A is the Euclidean ball of diameter 1 in the Euclidean space (with r0 = 1
2 ).

Proof. Without loss of generality we can assume that a = 0. Let B = A ∩ (−A). Note that the set B is bounded, has a
nonempty interior (Br0(0) ⊂ B) and its center of symmetry in zero. Hence we can consider the set B as the ball of radius 1

2
and we have:

Br0(0) ⊂ B ⊂ B 1
2
(0). (2.2)

Let’s say a few words about the second inclusion in (2.2). If x ∈ B , then −x ∈ B , and 2‖x‖ = ‖x − (−x)‖ � diam B = 1.
Therefore B ⊂ B 1

2
(0). By ‖ · ‖B we denote the new norm with the unit ball 2B .

For any convex closed bounded set C ⊂ E we shall consider the modulus of convexity:

δB
C (ε) = sup

{
δ � 0

∣∣∣ δ · 2B + x1 + x2

2
⊂ C, ∀x1, x2 ∈ ∂C : ‖x1 − x2‖B = ε

}
.

Let x1, x2 ∈ B and ‖x1 − x2‖B = ε ∈ (0,1). From δB
A = δB−A we have

x1 + x2 + 2BδB
A(ε) ⊂ A,

x1 + x2 + 2BδB−A(ε) = x1 + x2 + 2BδB
A(ε) ⊂ −A.
2 2 2
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By definition, B = A ∩ (−A), so we obtain that x1+x2
2 + δB

A(ε) · 2B ⊂ B and thus δB
A(ε) � δB

B (ε) for all ε ∈ (0,1). From the
equality δB

B (ε) = 1
2 δB

2B(2ε), using Day–Nordlendar theorem [8, Theorem 3.3.1] for the unit ball 2B , we obtain for all ε ∈ (0,1)

δB
B (ε) = 1

2
δB

2B(2ε) � 1

2

(
1 −

√
1 − (2ε)2

4

)
,

and δB
A(ε) � 1

2 (1 − √
1 − ε2 ) for all ε ∈ (0,1).

We conclude from inclusions (2.2), that for any x1, x2 ∈ E the inequalities 2r0‖x1 − x2‖B � ‖x1 − x2‖ � ‖x1 − x2‖B hold. If
x1, x2 ∈ ∂ A, ‖x1 −x2‖B = ε and ε ∈ (0,1), then δA(2r0ε) � δA(‖x1 −x2‖). Since for any δ � 0 the condition x1+x2

2 +δB1(0) ⊂ A

implies the condition x1+x2
2 + δ · 2B ⊂ A, it follows that δA(‖x1 − x2‖) � δB

A(ε). Therefore we get the formula (2.1).
An easy calculation shows that in the case when the set A is a Euclidean ball of diameter 1 in the Euclidean space with

r0 = 1
2 we get the equality in the formula (2.1). �

Theorem 2.3. In every Banach space E there exists a closed uniformly convex set A if and only if the space E admits an equivalent
uniformly convex norm.

Proof. Due to Theorem 2.1 we must consider only bounded sets. If the space E admits an equivalent uniformly convex
norm then the unit ball of this norm is a uniformly convex set. Let us prove the converse statement.

Let A ⊂ E be closed and uniformly convex set with modulus δA . Suppose that 0 ∈ int A. As we can see from the proof of
Theorem 2.2, the set B = A ∩ (−A) is a uniformly convex ball of equivalent norm. �

Note that a Banach space which is equivalent to a uniformly convex space, is reflexive [8]. Thus we can further use
reflexivity without loss of generality. The reflexivity of the Banach space with bounded nonsingleton uniformly convex set
was mentioned in [19]. We also note that nonreflexive spaces (e.g., the spaces C([0,1]), L1([0,1]), L∞([0,1]), l1, l∞) do not
contain uniformly convex sets.

Recall that in any finite-dimensional Banach space the class of strictly convex compacta coincides with the class of
uniformly convex sets. This fact easily follows from compactness of sets from two classes. It is well known [8] that in
infinite-dimensional spaces there exist strictly but nonuniformly convex balls.

We wish to mention an important class of uniformly convex sets. Let E be a uniformly convex Banach space. The set
A ⊂ E is strongly convex with radius R > 0 [18, Chapters 3, 4] (or R-convex [9]) if A = ⋂

x∈X B R(x) �= ∅, where X ⊂ E an
arbitrary subset. It is easy to see that the modulus of convexity for A is δA(ε) � RδE ( ε

R ) for all ε ∈ (0,diam A). Here δE is
the modulus of convexity for the space E .

3. Applications to the set-valued analysis and the splitting problem for selections

Let {F (t)}t∈T be any collection of convex closed sets and let diam F (t) � r0 > 0 for all t . Suppose that each set F (t)
is uniformly convex with modulus δt(ε). Then under the assumption that δ(ε) = inft∈T δt(ε) > 0 for all ε ∈ (0, r0), the set
F = ⋂

t∈T F (t) is uniformly convex with modulus δF (ε) � δ(ε) for all ε ∈ (0, r0) (this set can also be empty or a singleton).
Note that Lemmata 2.1, 2.2 and Theorem 2.1 are valid for the function δ(ε) and the set F .

Consider as an example the set A, which can be represented as the intersection of closed balls of radius 1 in Hilbert

space H. The modulus of convexity for the unit ball from H is δH(ε) = 1 −
√

1 − ε2

4 � ε2

8 for all ε ∈ (0,2) and δA(ε) �
δH(ε). By Corollary 2.2 we have that ϕ(ε) � ε/2 and ‖x1 − x2‖ � 2‖p1 − p2‖. So we conclude that the gradient ∇s(p, A) =
arg maxx∈A〈p, x〉 of supporting function for the set A is a Lipschitz function with respect to p. This result was proved in [18]
by different methods.

Next we shall consider set-valued mappings F : T → 2E\∅ from a metric space (T ,ρ) to a Banach space E . Suppose that
there exists r0 > 0 such that for any t ∈ T we can find a point a(t) ∈ E with Br0(a(t)) ⊂ F (t). Suppose that any set F (t) is
closed and uniformly convex with modulus δt(ε), ε ∈ (0,diam F (t)). If δ(ε) = inft∈T δt(ε) > 0 for all ε ∈ (0,2r0] then we say
that the images F (t), t ∈ T , are uniformly convex with modulus δ(ε), ε ∈ (0,2r0]. It’s easy to see that Lemmata 2.1, 2.2 and
Theorem 2.1 are valid for any set F (t) when instead of the modulus δF (t) we take the modulus δ.

For an increasing function δ : [0,d] → [0,	] we define the inverse function δ−1 as follows: for x0 ∈ [0,	] let δ−1(x0) =
y0 ∈ [0,d]. Here δ(y0 − 0) � x0 � δ(y0 + 0); δ(y0 ± 0) = limy→y0±0 δ(y). Note that the function δ−1 is continuous on the
segment [0,	].

We shall use conv A to denote the convex hull of the set A. The Hausdorff distance h(A, B) between sets A and B in a
Banach space E is defined as follows:

h(A, B) = inf
{

r > 0
∣∣ A ⊂ B + Br(0), B ⊂ A + Br(0)

}
.
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Theorem 3.1. Let (T ,ρ) be a metric space and E a reflexive Banach space. Suppose that the set-valued mappings Fi : T → 2E\∅,
i = 1,2, have convex closed images. Let Fi , i = 1,2, be uniformly continuous in the Hausdorff metric, i.e. there exist nonnegative
infinitely small at zero numerical functions ωi , such that for all t1, t2 ∈ T we have the following:

h
(

Fi(t1), Fi(t2)
)
� ωi

(
ρ(t1, t2)

)
.

Let the images F1(t) be uniformly convex with modulus δ(ε), ε ∈ (0,2r0]. Let 	0 = δ(2r0) and H(t) = F1(t) ∩ F2(t) �= ∅ for all
t ∈ T .

Then

h
(

H(t1), H(t2)
)
� ω1

(
ρ(t1, t2)

) + 2ω2
(
ρ(t1, t2)

) + f
(
ω1

(
ρ(t1, t2)

) + ω2
(
ρ(t1, t2)

))
, (3.3)

where

f (x) =
{

δ−1( x
2 ), x < 2	0,

Mx
2	0

, x � 2	0,
(3.4)

and M = supt∈T diam F1(t) � r0([ r0
δ(r0)

] + 1).

Proof. We define ω1 = ω1(ρ(t1, t2)), ω2 = ω2(ρ(t1, t2)). Let b1 ∈ H(t1). Let’s fix k > 1. We shall prove that there exists
point a(t2) ∈ H(t2) such that∥∥a(t2) − b1

∥∥ � f (ω1 + kω2) + ω1 + 2kω2. (3.5)

We obtain from formula (3.5) the following:

h
(

H(t1), H(t2)
)
� f (ω1 + kω2) + ω1 + 2kω2,

and keeping in mind that the function f is continuous from the right (see (3.4)), we take the limit k → 1 + 0 and obtain
formula (3.3).

Let b(t2) ∈ F2(t2): ‖b(t2) − b1‖ � kh(F2(t2), F2(t1)) � kω2. If b(t2) ∈ F1(t2) then we can take a(t2) = b(t2) and we con-
clude that formula (3.5) is valid. Further we shall assume that b(t2) /∈ F1(t2).

Let c(t2) ∈ H(t2) ⊂ F1(t2). Let bπ (t2) be the metric projection of the point b(t2) onto F1(t2). The point bπ (t2) ex-
ists because the space E is reflexive. Consider the point a(t2) which is the nearest to the point b(t2) of the set
F1(t2) ∩ conv{b(t2), c(t2)}. By definition, a(t2) ∈ F1(t2) and a(t2) ∈ conv{b(t2), c(t2)} ⊂ F2(t2). This implies that a(t2) ∈ H(t2).

Let z(t2) = a(t2)+b(t2)
2 , z̃(t2) = a(t2)+bπ (t2)

2 . Since

∥∥z(t2) − z̃(t2)
∥∥ = 1

2

∥∥b(t2) − bπ (t2)
∥∥, Bδ(‖a(t2)−bπ (t2)‖)

(
z̃(t2)

) ⊂ F1(t2),

it follows from the condition z(t2) /∈ F1(t2) that

δ
(∥∥a(t2) − bπ (t2)

∥∥)
�

∥∥z(t2) − z̃(t2)
∥∥ = 1

2

∥∥b(t2) − bπ (t2)
∥∥. (3.6)

So we have following estimate:∥∥b(t2) − bπ (t2)
∥∥ = ρ

(
b(t2), F1(t2)

)
� ρ

(
b1, F1(t2)

) + ∥∥b(t2) − b1
∥∥

� h
(

F1(t1), F1(t2)
) + kω2 � ω1 + kω2.

By the last formula and by (3.6) we have that δ(‖a(t2) − bπ (t2)‖) � 1
2 (ω1 + kω2).

If ω1 + kω2 < 2	0 then∥∥a(t2) − bπ (t2)
∥∥ � δ−1

(
1

2
(ω1 + kω2)

)
.

If ω1 + kω2 � 2	0 then∥∥a(t2) − bπ (t2)
∥∥ � ω1 + kω2

2	0
M.

Thus in both cases we have ‖a(t2) − bπ (t2)‖ � f (ω1 + kω2). Finally,∥∥a(t2) − b1
∥∥ �

∥∥a(t2) − bπ (t2)
∥∥ + ∥∥bπ (t2) − b(t2)

∥∥ + ∥∥b(t2) − b1
∥∥ � f (ω1 + kω2) + ω1 + 2kω2. �

Theorem 3.1 has important consequences. It follows from Corollary 2.3 that the modulus of convexity δ(ε) of sets F1(t)
in Theorem 3.1 does not exceed C · ε2. Hence the Hölder condition with the power no greater than 1

2 with respect to the
Hausdorff metric is typical for the product of intersections of two Lipschitz set-valued mappings. We need to invoke good
mutual geometric properties of F1 and F2 if we want to obtain power greater than 1

2 (see for example [18, Theorem 2.2.1]).
Under the conditions of Theorem 3.1 the result is the best possible.
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Example 3.1. In the Euclidean plane R
2 with the standard basis x1 O x2 we consider (for t � 0)

F1(t) = F1 = {
(x1, x2)

∣∣ x2 � |x1|p} ∩ B1(0), p � 2, F2(t) = {
(x1, t)

∣∣ x1 ∈ R
}
.

It is easy to see that if ε > 0 is sufficiently small then the modulus of convexity F1 equals δ1(ε) = εp

2p (and it realized on

the segment [(− ε
2 , εp

2p ), ( ε
2 , εp

2p )]). The intersection of F1(t) and F2(t) is H(t) = [−t1/p, t1/p] × {t}. Let t1 > 0, t2 = 2t1. Then

h
(

H(t1), H(t2)
)
� (2t1)

1/p − t1/p
1 = (

21/p − 1
) · |t2 − t1|1/p = 21/p − 1

2
δ−1

1

(|t2 − t1|
)
.

Example 3.2. Consider the following extremal problem

min
x∈A

g(x). (3.7)

Suppose that the function g has closed and uniformly convex level sets L g(β) = {x ∈ E | g(x) � β}. The function g itself
cannot be convex. We shall consider two problems (3.7) with the same function and convex closed sets Ai , i = 1,2. Suppose
that the point ui is the solution of the problem (3.7) with the set A = Ai , i.e. {ui} = Ai ∩ L g(minx∈Ai g(x)). We shall estimate
the value ‖u1 − u2‖ through the distance h = h(A1, A2).

Note that for convex functions and sets such problems were considered e.g., in [5,14]. Let g(u1) � g(u2). Then

u1 = A1 ∩ L g
(

g(u1)
) ⊂ A1 ∩ L g

(
g(u2)

)
.

Let the set L g(g(u2)) be uniformly convex with modulus δ. Let F1(A) = L g(g(u2)) be a constant mapping with the modulus
of continuity ω1 = 0, and let F2(A) = A be a mapping with the modulus of continuity ω2(t) = t . By Theorem 3.1 we have

h
(

F1(A1) ∩ F2(A1), F1(A2) ∩ F2(A2)
)
� 2h + f (h),

where function f is defined in (3.4) and M = diam L g(g(u2)), 	0 = limε→diam L g (g(u2))−0 δ(ε). Therefore for all t > 1

A1 ∩ L g
(

g(u2)
) ⊂ A2 ∩ L g

(
g(u2)

) + t
(
2h + f (h)

)
B1(0) = u2 + t

(
2h + f (h)

)
B1(0),

i.e.

‖u1 − u2‖ � 2h(A1, A2) + f
(
h(A1, A2)

)
. (3.8)

We now consider applications of the above results to the splitting problem for selections.

Example 3.3. (See [20, Question 4.6].) Do there exist for every closed convex sets A, B and C = A + B continuous functions
a : C → A and b : C → B with the property that a(c) + b(c) = c for all c ∈ C? Similar questions were also considered in
previous papers, see [13] for details.

Lemma 3.1. Let the space E be uniformly convex with modulus δE . Let A ⊂ E be a closed and uniformly convex set with modulus δA ,
and B ⊂ E a convex and closed set. Then there exist uniformly continuous functions a : C → A and b : C → B such that a(c)+b(c) = c,
for all points c ∈ C.

Proof. Suppose that 0 /∈ A. For any c ∈ C we define sets F1(c) = A, F2(c) = c − B . Then (in terms of Theorem 3.1) ω1 = 0,
ω2(t) = t , F1 has uniformly convex images with modulus δA . Note that H(c) = (c − B) ∩ A is nonempty for all c ∈ C .

Let’s define M = diam A, 	0 = limε→diam A−0 δA(ε). By Theorem 3.1

h
(

H(c1), H(c2)
)
� 2‖c1 − c2‖ + f

(‖c1 − c2‖
)
, (3.9)

where f is from (3.4).
Let r = infa∈A ‖a‖ > 0, R = supa∈A ‖a‖. All balls Bt(0), t ∈ [r, R], are uniformly convex with modulus δ(ε) = RδE ( ε

R ),
ε ∈ (0,2r]. Let a(c) = arg minx∈H(c) ‖x‖. Let’s define 	E = δ(2r),

f E(t) =
{

δ−1( t
2 ), t < 2	E ,

Rt
	E

, t � 2	E .

Using (3.8) from Example 3.2 and (3.9) we have∥∥a(c1) − a(c2)
∥∥ � 2h

(
H(c1), H(c2)

) + f E
(
h
(

H(c1), H(c2)
))

� 4‖c1 − c2‖ + 2 f
(‖c1 − c2‖

) + f E
(
2‖c1 − c2‖ + f

(‖c1 − c2‖
))

.

So we have built uniformly continuous selections a(c) ∈ H(c) ⊂ A and b(c) = c − a(c) ∈ B . �
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Remark 3.1. Note that in the case E = R
n we can define a(c) as a(c) = s(H(c)), where s(H(c)) is the Steiner point of the

set H(c). The Steiner point is a Lipschitz selection of convex compacta from R
n with the Lipschitz constant Ln = 2√

π

Γ ( n
2 +1)

Γ ( n+1
2 )

[3,18]. From this and by formula (3.9) we get∥∥a(c1) − a(c2)
∥∥ � Ln · (2‖c1 − c2‖ + f

(‖c1 − c2‖
))

.

Remark 3.2. Let A and B be closed convex subsets of the reflexive Banach space E and let the set A be strictly convex and
bound. Let 0 ∈ int A.

Let c ∈ A + B , �A(c, B) = inf{t > 0 | c ∈ B + t A}, and

b(c) = (
c − �A(c, B)A

) ∩ B.

The set b(c) is a point. This follows from the reflexivity of the space E (the set B + t A is closed for all t � 0) and strictly
convexity of the set A. The point b(c) is projection of the point c in the sense of the set A on the set B . Note that in above
situation �A(c, B) ∈ [0,1].

If this projection b(c) uniformly continuously depends on c, then b(c) ∈ B is a uniformly continuous selection of B and
a(c) = c − b(c) ∈ �A(c, B)A ⊂ A is a uniformly continuous selection of A.

In particular, if the spaces E and E∗ have moduli of convexity of the second order and A = B1(0) then by the results
from [1] we obtain that the projection b(c) satisfies the Lipschitz condition with respect to c. In particular, this takes
place in the Hilbert space. It would be very interesting to describe all spaces and pairs of sets (A and B) for which the
projection b(c) of the point c in the sense of the set A on the set B satisfies the Lipschitz condition.

Example 3.4. Hereafter, the sum of Banach spaces E1 ⊕ E2 will be defined as follows: w = (u, v) ∈ E1 ⊕ E2, ‖w‖ =
max{‖u‖E1 ,‖v‖E2 }.

Lemma 3.2. Let T be a metric space, Ei a reflexive Banach spaces, and Fi : T → 2Ei uniformly continuous set-valued mappings with
modulus of continuity ω, i.e.

h
((

F1(t1), F2(t2)
)
,
(

F1(t1), F2(t2)
))

� ω
(
ρ(t1, t2)

)
, ∀t1, t2 ∈ T , i = 1,2.

Suppose that the images Fi(t) are uniformly convex sets with modulus δ(ε), i = 1,2 and ε ∈ (0,2r0]; 	0 = δ(2r0). Let L ⊂ E1 ⊕ E2 be
a closed subspace and suppose that there exists C > 0 such that for any w1 = (u1, v1) ∈ L, w2 = (u2, v2) ∈ L we have ‖u1 −u2‖E1 �
C‖w1 − w2‖ and ‖v1 − v2‖E2 � C‖w1 − w2‖ (i.e. L is not “parallel” to E1 and E2).

Let M = supt∈T diam(F1(t), F2(t)) < +∞. Define the set-valued map H(t) = (F1(t), F2(t)) ∩ L �= ∅ for all t ∈ T . Then

h
(

H(t1), H(t2)
)
� ω

(
ρ(t1, t2)

) + 1

C
f
(
ω

(
ρ(t1, t2)

))
, ∀t1, t2 ∈ T , (3.10)

where the function f is from formula (3.4).

Proof. Let w0 ∈ H(t0). Let’s fix k > 1. We shall prove that there exists a point a w1 ∈ H(t) with the following property:

‖w0 − w1‖ � kω
(
ρ(t0, t)

) + 1

C
f
(
kω

(
ρ(t0, t)

))
.

Thus

h
(

H(t1), H(t2)
)
� kω

(
ρ(t0, t)

) + 1

C
f
(
kω

(
ρ(t0, t)

))
and we obtain (3.10) by taking the limit k → 1 + 0.

Let w ∈ (F1(t), F2(t)) be a point such that ‖w0 − w‖ � kω(ρ(t0, t)). Define w1 ∈ H(t) to be the point from the set H(t)
which is the nearest to the point w0 (w1 exists by the reflexivity of Ei , i = 1,2).

Let w2 = 1
2 (w + w1). If z ∈ L is the middle point of the segment [w1, w0] then

‖w2 − z‖ = 1

2
‖w − w0‖ � k

1

2
ω

(
ρ(t0, t)

)
.

Thus we must require δ(C‖w − w1‖) � k 1
2 ω(ρ(t0, t)). Otherwise we would have, since L is “parallel” neither to E1 nor

to E2, the following contradiction:

z ∈ B E1⊕E2
δ(C‖w−w1‖)(w2) ∩ L ⊂ (

F1(t), F2(t)
) ∩ L = H(t),

with the inequality ‖w1 − w0‖ � ‖z − w0‖.
If kω(ρ(t0, t)) < 2	0 then

‖w − w1‖ � 1
δ−1

(
k

1
ω

(
ρ(t0, t)

))
.

C 2
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If kω(ρ(t0, t)) � 2	0 then

‖w − w1‖ � 1

C

kω(ρ(t0, t))

2	0
M.

In both cases ‖w − w1‖ � 1
C f (kω(ρ(t0, t))). Finally,

‖w0 − w1‖ � ‖w0 − w‖ + ‖w − w1‖ � kω
(
ρ(t0, t)

) + 1

C
f
(
kω

(
ρ(t0, t)

))
. �

Remark 3.3. The result (3.10) of Lemma 3.2 is exact. Let T be the space of convex closed bounded subsets of the Hilbert
space H with the Hausdorff distance, E = H. Define set-valued mappings Fi : T → 2H , i = 1,2, as follows:

∀A ∈ T F1(A) = A, F2(A) = B�(0,A)(0),

where �(0, A) = infa∈A ‖a‖. Note that δF2 (ε) = C · ε2 (the modulus of convexity for the Hilbert space). Obviously, T � A →
Fi(A), i = 1,2, are Lipschitz functions in the Hausdorff metric.

Let L : H ⊕ H → H, L(y1, y2) = y1 − y2, L = ker L = {(y1, y2) ∈ H ⊕ H | y1 − y2 = 0}. Then(
F1(A), F2(A)

) ∩ L = {(
p(A), p(A)

)}
,

where p(A) is the metric projection of the zero on the set A. It follows by well-known results of Daniel [7], that T � A →
p(A) is a Hölder function with power 1

2 in the Hausdorff metric.

Theorem 3.2. Let T be a metric space, Ei uniformly convex Banach spaces, and Fi : T → 2Ei uniformly continuous set-valued mappings
with modulus of continuity ω, i.e.

h
((

F1(t1), F2(t2)
)
,
(

F1(t1), F2(t2)
))

� ω
(
ρ(t1, t2)

)
, ∀t1, t2 ∈ T , i = 1,2.

Suppose that images Fi(t) are uniformly convex sets with modulus δ(ε), i = 1,2 and ε ∈ (0,2r0]; 	0 = δ(2r0). Let L : E1 ⊕ E2 → E
be a continuous linear surjection and let ker L = L.

Suppose that there exists C > 0 such that for any w1 = (u1, v1) ∈ L, w2 = (u2, v2) ∈ L we have ‖u1 − u2‖E1 � C‖w1 − w2‖
and ‖v1 − v2‖E2 � C‖w1 − w2‖.

Let f (t) ∈ L(F1(t), F2(t)) be a uniformly continuous selection. Then there exist uniformly continuous selections f i(t) ∈ Fi(t),
i = 1,2, with f (t) = L( f1(t), f2(t)).

Proof. The space E1 ⊕ E2 is uniformly convex with the norm [22]:

‖ · ‖uc =
√

‖ · ‖2
E1

+ ‖ · ‖2
E2

.

By the inequalities

max
{‖u‖E1 ,‖v‖E2

}
�

∥∥(u, v)
∥∥

uc �
√

2 max
{‖u‖E1 ,‖v‖E2

}
, ∀u ∈ E1, ∀v ∈ E2

the norms ‖ · ‖uc and max{‖u‖E1 ,‖v‖E2 } are equivalent. Let w(t) be the metric projection of zero onto L−1( f (t)) in the
space E1 ⊕ E2 with the norm ‖ · ‖uc .

By [2, Corollary 3.3.6] the set-valued mapping t → L−1( f (t)) is uniformly continuous with respect to the Hausdorff
distance. By Example 3.2, w(t) = (u(t), v(t)) is uniformly continuous and L−1( f (t)) = w(t) + L. Now,

H(t) = w(t) + (
F1(t) − u(t), F2(t) − v(t)

) ∩ L

is uniformly continuous by Lemma 3.2.
We define ( f1(t), f2(t)) as the metric projection of the zero onto H(t) in the sense of the norm ‖ · ‖uc . This projection is

uniformly continuous by Example 3.2. �
Remark 3.4. Note that in the case E = R

n we can define ( f1(t), f2(t)) as ( f1(t), f2(t)) = s(H(t)), where s(H(t)) is the Steiner
point of the set H(t).

Consider set-valued mappings Fi , i = 1,2, and the surjection L from Remark 3.3, assuming that H = R
n . Let f (A) = 0 ∈

L(F1(A), F2(A)). The only solution of this splitting problem is the point:

f1(A) = f2(A) = p(A) = F1(A) ∩ F2(A),

which is the metric projection of zero on the set A in the space R
n . It follows by Remark 3.3 that in R

n the order of
modulus of continuity for f1(A) = p(A) and f2(A) = p(A) is exact.
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