Amalgamated products and properly 3-realizable groups

M. Cardenas ${ }^{\text {a }}$, F.F. Lasheras ${ }^{\text {a,* }}$, A. Quintero ${ }^{\text {a }}$, D. Repovš ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Geometría y Topología, Universidad de Sevilla, Apdo 1160, 41080-Sevilla, Spain
${ }^{\mathrm{b}}$ Institute of Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana 1001, Slovenia

Received 12 April 2005; received in revised form 3 November 2005
Available online 18 January 2006
Communicated by C.A. Weibel

Abstract

In this paper, we show that the class of all properly 3-realizable groups is closed under amalgamated free products (and HNNextensions) over finite groups. We recall that G is said to be properly 3 -realizable if there exists a compact 2 -polyhedron K with $\pi_{1}(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3-manifold (with boundary). (C) 2005 Elsevier B.V. All rights reserved.

MSC: primary 57 M 07 ; secondary: $57 \mathrm{M} 10,57 \mathrm{M} 20$

1. Introduction

We are concerned with the behavior of the property of being properly 3 -realizable (for finitely presented groups) with respect to the basic constructions in Combinatorial Group Theory; namely, amalgamated free products and HNN-extensions. Recall that a finitely presented group G is said to be properly 3-realizable if there exists a compact 2-polyhedron K with $\pi_{1}(K) \cong G$ and whose universal cover \tilde{K} has the proper homotopy type of a 3-manifold. It is worth mentioning that the property of being properly 3 -realizable has implications in the theory of cohomology of groups, in the sense that if G is properly 3-realizable then for some (equivalently any) compact 2-polyhedron K with $\pi_{1}(K) \cong G$ we have $H_{c}^{2}(\tilde{K} ; \mathbb{Z})$ free abelian (by manifold duality arguments), and hence so is $H^{2}(G ; \mathbb{Z} G)$ (see [9]). It is a long standing conjecture that $H^{2}(G ; \mathbb{Z} G)$ be free abelian for every finitely presented group G. In [1] it was shown that the property of being properly 3-realizable is preserved under amalgamated free products (HNN-extensions) over finite cyclic groups. See also [3,4,7] to learn more about properly 3-realizable groups and related topics. In this paper, we continue along the lines of [1]. Our main result is :

Theorem 1.1. The class of all properly 3-realizable groups is closed under amalgamated free products (and HNNextensions) over finite groups.

[^0]This generalizes to show that the fundamental group of a finite graph of groups with properly 3-realizable vertex groups and finite edge groups is properly 3 -realizable, since such a group can be expressed as a combination of amalgamated free products and HNN-extensions of the vertex groups over the edge groups.

Recall that, given a finitely presented group G and a compact 2-polyhedron K with $\pi_{1}(K) \cong G$ and \tilde{K} as universal cover, the number of ends of G is the number of ends of \tilde{K} which equals $0,1,2$ or ∞ [6 (see also [8,13]). The 0 -ended groups are the finite groups and the 2 -ended groups are those having an infinite cyclic subgroup of finite index, and they are all known to be properly 3-realizable (see [1]). Note that Stallings' Structure Theorem [12] characterizes those groups G with more than one end as those which split as an amalgamated free product (or an HNN-extension) over a finite group (see also [13,8]). In addition, Dunwoody [5] showed that this process of further splitting G must terminate after finitely many steps.

Corollary 1.2. In order to show whether or not all finitely presented groups are properly 3-realizable it suffices to look among those groups which are 1-ended.

2. Main result

The purpose of this section is to prove Theorem 1.1. We will make use of the following result:
Proposition 2.1 ([1, Proposition 3.1]). Let M be a manifold of the same proper homotopy type of a locally compact polyhedron K with $\operatorname{dim}(K)<\operatorname{dim}(M)$. Then, any Freudenthal end $\epsilon \in \mathcal{F}(M)$ can be represented by a sequence of points in ∂M.

Proof of Theorem 1.1. Let G_{0}, G_{1} be properly 3 -realizable groups and F be a finite group with presentation $\left\langle a_{1}, \ldots, a_{N} ; r_{1}, \ldots, r_{M}\right\rangle$. Consider monomorphisms $\varphi_{i}: F \longrightarrow G_{i}(i=0,1)$, and denote by $G_{0} *_{F} G_{1}=$ $\left\langle G_{0}, G_{1} ; \varphi_{0}\left(a_{i}\right)=\varphi_{1}\left(a_{i}\right), 1 \leq i \leq N\right\rangle$ the corresponding amalgamated free product. Let X_{0}, X_{1} be compact 2-polyhedra with $\pi_{1}\left(X_{i}\right) \cong G_{i}$ and such that their universal covers have the proper homotopy type of 3-manifolds M_{0}, M_{1} respectively. Let $L=\vee_{i=1}^{N} S^{1}$ and $f_{i}: L \longrightarrow X_{i}(i=0,1)$ be cellular maps such that $\operatorname{Im} f_{i_{*}} \subseteq \pi_{1}\left(X_{i}\right)$ corresponds to the subgroup $\operatorname{Im} \varphi_{i} \subseteq G_{i}$. We take the standard 2-dimensional CW-complex Y^{\prime} associated with the above presentation of F, i.e., Y^{\prime} has one 1-cell e_{i} for each generator $a_{i}(1 \leq i \leq N)$, all of them sharing the only vertex in Y^{\prime}, and one 2-cell d_{j} for each relation $r_{j}(1 \leq j \leq M)$ attached via a map $S^{1} \longrightarrow \vee_{i=1}^{N} e_{i}$ which 'spells' the relation r_{j}. Consider the adjunction spaces $Y=\left(\vee_{i=1}^{N} e_{i}\right) \times I \cup_{\left(\vee_{i=1}^{N} e_{i}\right) \times\left\{\frac{1}{2}\right\}} Y^{\prime}$ (homotopy equivalent to Y^{\prime}) and $Z=Y \cup_{f_{0} \times\{0\} \cup f_{1} \times\{1\}}\left(X_{0} \sqcup X_{1}\right)$. By van Kampen's Theorem, Z is a compact 2-polyhedron with $\pi_{1}(Z) \cong G_{0} *_{F} G_{1}$. Let \tilde{Z} be the universal cover of Z with covering map $p: \tilde{Z} \longrightarrow Z$. Then, $p^{-1}\left(X_{i}\right)$ consists of a disjoint union of copies of the universal cover \tilde{X}_{i} of X_{i}, since the inclusion $X_{i} \hookrightarrow Z$ induces a monomorphism $G_{i} \hookrightarrow G_{0} *_{F} G_{1}$ between the fundamental groups, $i=0,1$ (see [10]). On the other hand, let Γ be a connected component of $p^{-1}\left(\vee_{i=1}^{N} e_{i}\right) \subset p^{-1}\left(Y^{\prime}\right)$ and \tilde{Y}^{\prime} be the connected component of $p^{-1}\left(Y^{\prime}\right)$ containing Γ. Observe that \tilde{Y}^{\prime} is a copy of the universal cover of Y^{\prime} (which is compact), as the inclusion $Y^{\prime} \hookrightarrow Z$ induces a monomorphism $F \hookrightarrow G_{0} *_{F} G_{1}$. Then, it is easy to see that $p^{-1}(Y)$ consists of a disjoint union of copies of the compact CW-complex $K=(\Gamma \times I) \cup_{\Gamma \times\left\{\frac{1}{2}\right\}} \tilde{Y}^{\prime}$. Thus, \tilde{Z} comes together with the following data (see [13]):
(a) the disjoint unions $\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}$ and $\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ of copies of \tilde{X}_{0} and \tilde{X}_{1} respectively;
(b) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} K_{p, q}$ of copies of K; and
(c) a bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$ (given by the group action of $G_{0} *_{F} G_{1}$ on \tilde{Z}), so that for each $p, q \in \mathbb{N}, \Gamma \times\{0\} \subset K_{p, q}$ is being glued to $\tilde{X}_{0, p}$ via a lift $\tilde{f}_{p, q}^{0}: \Gamma \times\{0\} \longrightarrow \tilde{X}_{0, p}$ of the map f_{0}, and $\Gamma \times\{1\} \subset K_{p, q}$ is being glued to $\tilde{X}_{1, r}$ via a lift $\tilde{f}_{r, s}^{1}: \Gamma \times\{1\} \longrightarrow \tilde{X}_{1, r}$ of the map f_{1}.
Next, for each copy of $\tilde{X}_{i}, i=0,1$, in \tilde{Z} (written as $\tilde{X}_{0, p}$ or $\tilde{X}_{1, r}$), we take one of the maps $\tilde{f}_{\lambda, \mu}^{i}: \Gamma \times\{i\} \longrightarrow \tilde{X}_{i}$ and observe that this map is nullhomotopic so we can replace it (up to homotopy) with a constant map $g_{\lambda, \mu}^{i}$: $\Gamma \times\{i\} \longrightarrow \tilde{X}_{i}$ with $\operatorname{Im} g_{\lambda, \mu}^{i} \subset \operatorname{Im} \tilde{f}_{\lambda, \mu}^{i}$, and we do this equivariantly using the group action of G_{i} on \tilde{X}_{i}. Since this action is properly discontinuous, the collection of all these homotopies gives rise to a proper homotopy equivalence between \tilde{Z} and a new 2-dimensional CW-complex W obtained from a collection of copies of K and a collection of
copies of \tilde{X}_{0} and \tilde{X}_{1} by gluing each copy of $\Gamma \times\{i\}$ to the corresponding copy of \tilde{X}_{i} via the bijection φ and the new maps $g_{\lambda, \mu}^{i}, i=0,1$.

We will now manipulate the CW-complex K as follows. First, let K^{\prime} be the CW-complex obtained from K by shrinking to a point $v \times\{i\}$ each copy $T \times\{i\}(i \in I)$ of a maximal tree $T \subset \tilde{Y}^{\prime} \subset K$. Next, we take $K^{\prime \prime}$ to be the CW-complex obtained from K^{\prime} by identifying the subcomplexes $\Gamma \times\{i\} / T \times\{i\}, i=0,1$, to a (different) point which we will denote by $[v \times\{0\}]$ and $[v \times\{1\}]$. Note that $K^{\prime \prime}$ has a copy of \tilde{Y}^{\prime} / T as a subcomplex. Since \tilde{Y}^{\prime} / T is compact and simply connected, it follows from [14, Proposition 3.3] that \tilde{Y}^{\prime} / T is homotopy equivalent to a finite bouquet of 2 -spheres $\vee_{\alpha \in \mathcal{A}} S^{2}$ (which we may regard as a connected 2-dimensional CW-complex with no 1-cells). Moreover, we may assume that this homotopy equivalence is given by a cellular map $\tilde{Y}^{\prime} / T \longrightarrow \vee_{\alpha \in \mathcal{A}} S^{2}$ so that the 1 -skeleton Γ / T of \tilde{Y}^{\prime} / T is mapped to the wedge point. Finally, taking into account this homotopy equivalence, it is not difficult to see that $K^{\prime \prime}$ is homotopy equivalent to the CW-complex \widehat{K} obtained from the disjoint union of a finite bouquet $\vee_{\alpha \in \mathcal{A} \cup \mathcal{B}} S^{2}\left(\widehat{w h e r e} \operatorname{Card}(\mathcal{B})=2 \operatorname{rank}\left(\pi_{1}(\Gamma)\right)\right.$ and the unit interval I by identifying $\frac{1}{2} \in I$ with the wedge point, so that $I \subset \widehat{K}$ would correspond to the subcomplex $v \times I \subset K^{\prime}$ and $0,1 \in I$ would correspond to $[v \times\{0\}],[v \times\{1\}] \in K^{\prime \prime}$. Notice that \widehat{K} thickens to a 3-manifold $P \searrow \widehat{K}$ containing 3-dimensional 1-handles H and H^{\prime} (with a free end face for each of them) corresponding to the edges $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right] \subset I \subset \widehat{K}$ respectively.

According to the above, one can see that the CW-complex W (proper homotopy equivalent to \tilde{Z}) is in turn proper homotopy equivalent to the quotient space obtained from the following data:
(a) a disjoint union $\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}$ of copies of \tilde{X}_{0} together with a locally finite sequence of points $\left\{x_{q}^{p}\right\}_{q \in \mathbb{N}} \subset \tilde{X}_{0, p}$, for each $p \in \mathbb{N}$, corresponding to the images of the constant maps $g_{p, q}^{0}: \Gamma \times\{0\} \longrightarrow \tilde{X}_{0, p}$ considered above in the construction of W;
(b) a disjoint union $\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ of copies of \tilde{X}_{1} together with a locally finite sequence of points $\left\{y_{s}^{r}\right\}_{s \in \mathbb{N}} \subset \tilde{X}_{1, r}$, for each $r \in \mathbb{N}$, corresponding to the images of the constant maps $g_{r, s}^{1}: \Gamma \times\{1\} \longrightarrow \tilde{X}_{1, r}$ from the construction of W;
(c) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} \widehat{K}_{p, q}$ of copies of \widehat{K}; and
(d) the bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$, so that $0 \in I \subset \widehat{K}_{p, q}$ is being identified with $x_{q}^{p} \in \tilde{X}_{0, p}$ and $1 \in I \subset \widehat{K}_{p, q}$ is being identified with $y_{s}^{r} \in \tilde{X}_{1, r}((r, s)=\varphi(p, q))$, for each $p, q \in \mathbb{N}$.
We now follow an argument similar to the proof of ([1, Lemma 3.2]). Fix proper homotopy equivalences $h: \tilde{X}_{0} \longrightarrow M$ and $h^{\prime}: \tilde{X}_{1} \longrightarrow N$, where we now denote M_{0} by M and M_{1} by N. Given the above data, we set $A=\mathbb{N} \times \mathbb{N}$ and consider maps $i: A \longrightarrow \bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}, i^{\prime}: A \longrightarrow \bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}$ given by $i(p, q)=x_{q}^{p}$ and $i^{\prime}(p, q)=y_{s}^{r}$, where $(r, s)=\varphi(p, q)$. It is easy to check that i and i^{\prime} are proper cofibrations, as the corresponding sequences of points are locally finite. Next, we take exhaustive sequences $\left\{A_{m}^{p}\right\}_{m \in \mathbb{N}}$ and $\left\{B_{n}^{r}\right\}_{n \in \mathbb{N}}$ of copies M_{p} and N_{r} of the 3-manifolds M and N respectively by compact submanifolds, and define proper cofibrations $j: A \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p}, j^{\prime}: A \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}$ as follows. Given $(p, q) \in A$ and the proper homotopy equivalences $h_{p}=h: \tilde{X}_{0, p} \longrightarrow M_{p}, h_{r}^{\prime}=h^{\prime}: \tilde{X}_{1, r} \longrightarrow N_{r}($ with $(r, s)=\varphi(p, q))$, we take $m(q), n(s) \in \mathbb{N}$ to be the least natural numbers such that $h_{p} \circ i(p, q) \notin A_{m(q)}^{p} \subset M_{p}$ and $h_{r}^{\prime} \circ i^{\prime}(p, q) \notin B_{n(s)}^{r} \subset N_{r}$. Then, using Proposition 2.1, we define $j(p, q)$ and $j^{\prime}(p, q)$ to be points $j(p, q)=a_{p, q} \in \partial M_{p}-A_{m(q)}^{p}$ and $j^{\prime}(p, q)=b_{r, s} \in \partial N_{r}-B_{n(s)}^{r}$ so that (i) j, j^{\prime} are one-to-one maps (note that h, h^{\prime} need not be one-to-one); and (ii) $a_{p, q}$ and $h_{p} \circ i(p, q)$ (resp. $b_{r, s}$ and $\left.h_{r}^{\prime} \circ i^{\prime}(p, q)\right)$ are in the same path component of $M_{p}-A_{m(q)}^{p}\left(\right.$ resp. $\left.N_{r}-B_{n(s)}^{r}\right)$. Notice that j and j^{\prime} are proper maps by construction. Consider now maps

$$
\begin{aligned}
& G:\left(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times\{0\} \cup(i(A) \times I) \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p} \\
& H:\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times\{0\} \cup\left(i^{\prime}(A) \times I\right) \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}
\end{aligned}
$$

with $\left.G\right|_{\tilde{X}_{0, p} \times\{0\}}=h_{p}=h$ and $\left.H\right|_{\tilde{X}_{1, r} \times\{0\}}=h_{r}^{\prime}=h^{\prime}\left(p, r \in \mathbb{N}\right.$), and so that $\alpha_{p, q}=\left.G\right|_{i(p, q) \times I}$ (resp. $\left.\beta_{r, s}=\left.H\right|_{i^{\prime}(p, q) \times I}\right)$ is a path in $M_{p}-A_{m(q)}^{p,}$ from $h_{p} \circ i(p, q)$ to $a_{p, q}$ (resp. a path in $N_{r}-B_{n(s)}^{r}$ from $h_{r}^{\prime} \circ i^{\prime}(p, q)$ to $b_{r, s}$). Observe that G and H are proper maps, since h, h^{\prime}, j and j^{\prime} are proper. By the Homotopy Extension Property,
the maps G, H extend to proper maps

$$
\widehat{G}:\left(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times I \longrightarrow \bigsqcup_{p \in \mathbb{N}} M_{p}, \quad \widehat{H}:\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times I \longrightarrow \bigsqcup_{r \in \mathbb{N}} N_{r}
$$

which yield commutative diagrams

where $\hat{h}=\left.\widehat{G}\right|_{\left(\bigsqcup_{p \in \mathbb{N}} \tilde{X}_{0, p}\right) \times\{1\}}$ and $\hat{h^{\prime}}=\left.\widehat{H}\right|_{\left(\bigsqcup_{r \in \mathbb{N}} \tilde{X}_{1, r}\right) \times\{1\}}$ are proper homotopy equivalences. Moreover, \hat{h} and \hat{h}^{\prime} are proper homotopy equivalences under A, by ([2, Proposition 4.16]) (compare with [11], Chapter 6, section 5). Hence, they induce a proper homotopy equivalence between the quotient space described above (proper homotopy equivalent to W) and the following 3-manifold obtained as the quotient space given by the data:
(a) the disjoint unions $\bigsqcup_{p \in \mathbb{N}} M_{p}$ and $\bigsqcup_{r \in \mathbb{N}} N_{r}$ of copies of the 3-manifolds M and N respectively;
(b) a disjoint union $\bigsqcup_{p, q \in \mathbb{N}} P_{p, q}$ of copies of the compact 3-manifold $P \searrow \widehat{K}$; and
(c) the bijective function $\varphi: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N},(p, q) \mapsto(r, s)$, so that for each $p, q \in \mathbb{N}$, the free ends of the corresponding 3-dimensional 1-handles $H_{p, q}, H_{p, q}^{\prime} \subset P_{p, q}$ considered above are being identified homeomorphically with small disks $D_{p, q} \subset \partial M_{p}$ and $D_{r, s}^{\prime} \subset \partial N_{r}$ about the points $a_{p, q}$ and $b_{r, s}$ respectively.
In the case of an HNN-extension $G *_{F}=\left\langle G, t ; t^{-1} \psi_{0}\left(a_{i}\right) t=\psi_{1}\left(a_{i}\right), 1 \leq i \leq N\right\rangle$ (with monomorphisms $\left.\psi_{i}: F \longrightarrow G, i=0,1\right)$, let X be a compact 2-polyhedron with $\pi_{1}(X) \cong G$ and whose universal cover has the proper homotopy type of a 3-manifold, and let $f_{i}: \vee_{i=1}^{N} S^{1} \longrightarrow X(i=0,1)$ be cellular maps so that $\operatorname{Im} f_{i_{*}} \subseteq \pi_{1}(X)$ corresponds to the subgroup $\operatorname{Im} \psi_{i} \subseteq G$. Let Y be the 2-dimensional CW-complex constructed as above and consider the adjunction space $Z=Y \cup_{f_{0} \times\{0\} \cup f_{1} \times\{1\}} X$, with $\pi_{1}(Z) \cong G *_{F}$. Then, the proof goes just as the one given above for the amalgamated free product.

Acknowledgements

The first three authors were supported by the project MTM 2004-01865. This research was also supported by Slovenian-Spanish research grant BI-ES/04-05-014.

References

[1] R. Ayala, M. Cárdenas, F.F. Lasheras, A. Quintero, Properly 3-realizable groups, Proc. Amer. Math. Soc. 133 (2005) $1527-1535$.
[2] H.-J. Baues, A. Quintero, Infinite Homotopy Theory, in: K-Monographs in Mathematics, Kluwer Academic Publishers, 2001.
[3] M. Cárdenas, F.F. Lasheras, Properly 3-realizable groups: a survey, in: Proceedings of the Conference on Geometric Group Theory and Geometric Methods in Group Theory, Boston, Seville, 2003, Contemp. Math. 372 (2005) 1-9.
[4] M. Cárdenas, F.F. Lasheras, R. Roy, Direct products and properly 3-realizable groups, Bull. Austral. Math. Soc. 70 (2004) $199-206$.
[5] M.J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449-457.
[6] H. Freudenthal, Über die Enden topologischer Raume und Gruppen, Math. Z. 33 (1931) 692-713.
[7] D.J. Garity, F.F. Lasheras, D. Repovš, Topology of 2-dimensional complexes, Topology Proc. (in press).
[8] R. Geoghegan, Topological Methods in Group Theory (in preparation).
[9] R. Geoghegan, M. Mihalik, Free abelian cohomology of groups and ends of universal covers, J. Pure Appl. Algebra 36 (1985) $123-137$.
[10] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.
[11] P.J. May, A Concise Course in Algebraic Topology, in: Chicago Lectures in Mathematics, University of Chicago Press, 1999.
[12] J. Stallings, Group theory and three dimensional manifolds, in: Yale Math. Monographs, vol. 4, Yale Univ. Press, New Haven, Conn., 1971.
[13] P. Scott, C.T.C. Wall, Topological methods in group theory, in: Homological Group Theory, London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge, 1979, pp. 137-204.
[14] C.T.C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81 (1965) 56-69.

[^0]: * Corresponding author.

 E-mail addresses: mcard@us.es (M. Cardenas), lasheras@us.es (F.F. Lasheras), quintero@us.es (A. Quintero), dusan.repovs@fmf.uni-lj.si (D. Repovš).

