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where X is metrizable and separable, is productively M -separable, i.e., Cp(X) × Y
is M -separable for every countable M -separable Y .
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1. Introduction

This paper is devoted to products of M -separable spaces. A topological space X is said to be M -separable, 
if for every sequence 〈Dn : n ∈ ω〉 of dense subsets of X, one can pick finite subsets Fn ⊂ Dn so that ⋃

n∈ω Fn is dense, see [3]. This notion was introduced in [21] where M -separable spaces of the form Cp(X)
were characterized. Here Cp(X) is the set of all continuous functions f : X → R with the topology inherited 
from the Tychonoff product RX . It is obvious that second-countable spaces (even spaces with a countable 
π-base) are M -separable. Our main result is the following
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Theorem 1.1. In the Miller model, the product of any two M -separable spaces is M -separable, provided 
that all dense subspaces of this product are separable and one of the spaces is of the form Cp(Z) for some 
Tychonoff space Z.

In particular, if Y is a countable M -separable space and X = Cp(Z) is M -separable for some second-
countable Z, then X × Y is M -separable.

By the Miller model we standardly mean a forcing extension of a model of GCH by adding a generic 
filter for an iteration with countable supports of length ω2 of the poset introduced by Miller in [15]. We give 
more details about this poset in the next section. One of the key properties of this poset is the inequality 
u < g proved in [6,9], see [5] for more information on cardinal characteristics of the reals. In particular, an 
equivalent form of this inequality established in [12] will be crucial for our proof of Lemma 2.4.

Let us recall that a topological space X is said to have the Menger property (or, alternatively, is a Menger 
space) if for every sequence 〈Un : n ∈ ω〉 of open covers of X there exists a sequence 〈Vn : n ∈ ω〉 such that 
each Vn is a finite subfamily of Un and the collection {∪Vn : n ∈ ω} is a cover of X. This property was 
introduced by Hurewicz, and the current name (the Menger property) is used because Hurewicz proved in 
[11] that for metrizable spaces his property is equivalent to a certain property of a base considered earlier 
by Menger in [14]. The Menger property is central to the study of the M -separability of function spaces: 
For a Tychonoff space X, Cp(X) is M -separable if and only if all finite powers of X are Menger and X
admits a weaker separable metrizable topology, see [4, Theorem 2.9] or [21, Theorem 35]. Let us also note 
that by the main result of [24], all finite powers of Cp(X) are hereditarily separable if all finite powers of X
are hereditarily Lindelöf. In particular, Cp(Z) is hereditarily separable for second countable spaces Z.

Our paper is a further development of the ideas in [18,19,23]. However, the proof of Theorem 1.1 is 
conceptually different from those in these three papers, since here we have to analyze the local structure 
of spaces of functions in the Miller model. Also, unlike in [23], we were unable to achieve the optimal 
result (which would be the consistency of the preservation of M -separability by finite products of countable 
spaces), and affirmative answers to any of the last two items in Question 1.2 would fill in this gap by 
Lemma 2.5.

The main result of [23] states that in the Miller model, the product of any two second-countable spaces 
with the Menger property is Menger. Thus in this model the characterization mentioned above yields that for 
any two second-countable spaces Z0, Z1, if Cp(Z0) and Cp(Z1) are M -separable, then so is Cp(Z0) ×Cp(Z1). 
Thus it is worth mentioning here that there are countable M -separable spaces which cannot be embedded 
into M -separable spaces of the form Cp(Z), and hence Theorem 1.1 indeed covers more cases of M -separable 
spaces as the main result of [23] combined with the characterization in [4,21]. The easiest example of such 
a space is the Fréchet-Urysohn fan Sω, i.e., the factor space of the product ω× ({0} ∪ {1/n : n ∈ ω}) ⊂ R2

obtained by identifying all points in ω×{0}. It is obviously M -separable, and it fails to have the countable 
fan tightness introduced in [1], whereas every M -separable space of the form Cp(Z) has countable fan 
tightness by [4, Corollary 2.10] and the latter property is hereditary.

On the other hand, there are many consistent examples under CH and weakenings thereof of countable 
M -separable spaces with non-M -separable products, see, e.g., [2,17]. As it was demonstrated in [16, §6], in 
all cases when such a non-preservation result is known, one can obtain it by using spaces of the form Cp(Z), 
which is a yet another motivation behind Theorem 1.1.

Theorem 1.1 seems to be the best known approximation towards the answer to the first item of following 
question which is central in this area. It was first asked in [4] and then repeated in several other papers. We 
refer the reader to Definition 2.1 for the notions appearing in the last two items.

Question 1.2.

(1) Is it consistent that the product of two countable M -separable spaces is M -separable? Does this state-
ment hold in the Miller model? Does it follow from u < g?
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(2) In the Miller model, does every countable M -separable space X have a point x (equivalently, densely 
many points x) such that ζ(X, x) ≤ ω1?

(3) In the Miller model, does every countable M -separable space X have property (†)?

2. Proof of Theorem 1.1

We divide the proof of Theorem 1.1 into a sequence of auxiliary statements. More precisely, it will follow 
immediately from Lemmata 2.3, 2.5, 2.6, and 2.7.

Definition 2.1.

(1) A family U of open subsets of a space X is called centered, if ∩V 
= ∅ for any V ∈ [U ]<ω.
(2) A topological space 〈X, τ〉 is said to have property (†) if for every family R of size ω1 of functions R

assigning to each countable centered family U of open subsets of X a sequence R(U) ∈ ([X]<ω \ {∅})ω
such that

∀U ∈ U ∀∞n ∈ ω (R(U)(n) ⊂ U),

there1 exists U ∈ [[τ \ {∅}]ω]ω1 consisting of countable centered families such that for all O ∈ τ \ {∅}
there exists U ∈ U such that for every R ∈ R there exists n ∈ ω with the property R(U)(n) ⊂ O.

(3) For a topological space X and x ∈ X we denote by ζ(X, x) the minimal cardinality κ such that for 
every sequence 〈An : n ∈ ω〉 such that x ∈ Ān for all n, there exists a sequence 〈〈Kα

n : n ∈ ω〉 : α < κ〉
such that Kα

n ∈ [An]<ω for all n, α, and for every open U  x there exists α ∈ κ such that U ∩Kα
n 
= ∅

for all n ∈ ω.
(4) For a topological space X we denote by ζ(X) the cardinal sup{ζ(X, x) : x ∈ X}.

Spaces X with ζ(X) ≤ ω are exactly the spaces which are weakly Fréchet in the strict sense in the 
terminology of [3,20].

In order to prove Theorem 1.1 we need to recall some details related to the Miller forcing. By a Miller 
tree we understand a subtree T of ω<ω consisting of increasing finite sequences such that the following 
conditions are satisfied:

• Every t ∈ T has an extension s ∈ T which splits in T , i.e., there are more than one immediate successors 
of s in T ;

• If s is splitting in T , then it has infinitely many successors in T .

The Miller forcing is the collection M of all Miller trees ordered by inclusion, i.e., smaller trees carry 
more information about the generic. This poset was introduced in [15] and has since then found numerous 
applications see, e.g., [9]. We denote by Pα an iteration of length α of the Miller forcing with countable 
support. If G is Pβ-generic and α < β, then we denote the intersection G ∩ Pα by Gα.

For a Miller tree T we shall denote by Split(T ) the set of all splitting nodes of T . For a node t in a Miller 
tree T we denote by Tt the set {s ∈ T : s is compatible with t}. It is clear that Tt is also a Miller tree. 
The stem of a Miller tree T is the shortest t ∈ Split(T ). We denote the stem of T by T 〈0〉. If T1 ≤ T0 and 
T1〈0〉 = T0〈0〉, then we write T1 ≤0 T0.

The following lemma can be proved by an almost verbatim repetition of the proof of [13, Lemma 14], see 
also [23, §2] for a more general form. Here by a real we mean a subset of ω.

1 Here ∀∞ means “for all but finitely many”.
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Lemma 2.2. Let ẋ be a Pω2-name for a real and p ∈ Pω2 . Then there exist p′ ≤ p such that p′(0) ≤0 p(0), 
and a finite set of reals Us for each s ∈ Split(p′(0)), such that for each N ∈ ω, s ∈ Split(p′(0)), and for all 
but finitely many immediate successors t of s in p′(0) we have

(p′(0))t ˆp′ � [1, ω2) � ∃u ∈ Us (u ∩N = ẋ ∩N).

A subset C of ω2 is called an ω1-club if it is unbounded and for every α ∈ ω2 of cofinality ω1, if C ∩ α is 
cofinal in α then α ∈ C.

The following lemma will be the key part of the proof of Theorem 1.1.

Lemma 2.3. In the Miller model every countable space X such that {x ∈ X : ζ(X, x) ≤ ω1} is dense in X, 
has property (†).

Proof. We work in V [Gω2 ], where Gω2 is Pω2 -generic and Pω2 is the iteration of length ω2 with countable 
supports of the Miller forcing. Let us write X in the form 〈ω, τ〉 and let R = {Rα : α < ω1} be such as in the 
definition of (†). By a standard argument (see, e.g., the proof of [8, Lemma 5.10]) there exists an ω1-club 
C ⊂ ω2 such that for every α ∈ C the following conditions hold:

(i) τ ∩ V [Gα] ∈ V [Gα] and for every x ∈ ω and every sequence 〈An : n ∈ ω〉 ∈ V [Gα] of subsets of ω
containing x in their closure, there exists 〈〈Kα

n : n ∈ ω〉 : α < ω1〉 ∈ V [Gα] such as Definition 2.1(3);
(ii) {Rα(U) : α ∈ ω1, U ∈ [τ ∩ V [Gα]]ω ∩ V [Gα] is centered} ∈ V [Gα];
(iii) For every A ∈ P(ω) ∩ V [Gα] the interior Int(A) also belongs to V [Gα].

Standardly, there is no loss of generality in assuming that 0 ∈ C. We claim that

U := {U ∈ [τ \ {∅}]ω ∩ V : U is centered}

is a witness for 〈ω, τ〉 satisfying (†). Suppose, contrary to our claim, that there exists A ∈ τ \ {∅} such that 
for every U ∈ U there exists α ∈ ω1 such that Rα(U)(n) 
⊂ A for all n ∈ ω. Let Ȧ be a Pω2-name for A
and p ∈ Pω2 a condition forcing the above statement. Without loss of generality, we may assume that there 
exists N ∈ ω such that ζ(X, N) ≤ ω1 and p � N ∈ Ȧ.

Applying Lemma 2.2 to ẋ := Ȧ, we get a condition p′ ≤ p such that p′(0) ≤0 p(0), and a finite set 
Us ⊂ P(ω) for every s ∈ Split(p′(0)), such that for each n ∈ ω, s ∈ Split(p′(0)), and for all but finitely many 
immediate successors t of s in p′(0) we have

p′(0)tˆp′ � [1, ω2) � ∃U ∈ Us (Ȧ ∩ n = U ∩ n).

Of course, any p′′ ≤ p′ also has the above property with the same Us’s. However, the stronger p′′ is, the more 
elements of Us might play no role any more. Therefore throughout the rest of the proof we shall call U ∈ Us

void for p′′ ≤ p′ and s ∈ Split(p′′(0)), if there exists n ∈ ω such that for all but finitely many immediate 
successors t of s in p′′(0) there is no q ≤ p′′(0)tˆp′′ � [1, ω2) with the property q � Ȧ∩n = U ∩n. Note that 
for any p′′ ≤ p′ and s ∈ Split(p′′(0)) there exists U ∈ Us which is non-void for p′′, s. Two cases are possible.

Case a) For every p′′ ≤ p′ there exists s ∈ Split(p′′(0)) and a non-void U ∈ Us for p′′, s such that 
N ∈ Int(U). Let U be the collection of Int(U) for all U as above. It follows from the above that p′ forces 
that there exists α ∈ ω1 such that Rα(U)(n) 
⊂ Ȧ for all n ∈ ω. Passing to a stronger condition if necessary, 
we may additionally assume that p′ decides α.

Fix a non-void U for p′, s, where s ∈ Split(p′(0)), such that N ∈ Int(U) (and hence Int(U) ∈ U). It 
follows from the above that there exists m such that Rα(U)(k) ⊂ Int(U) for all k ≥ m. Let n ∈ ω be such 
that Rα(U)(m) ⊂ n. By the definition of being non-void, there are infinitely many immediate successors t
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of s in p′(0) for which there exists qt ≤ p′(0)tˆp′ � [1, ω2) with the property qt � Ȧ ∩ n = U ∩ n. Then for 
any qt as above we have that qt forces Rα(U)(m) ⊂ Ȧ because Rα(U)(m) ⊂ U ∩ n, which contradicts the 
fact that qt ≤ p′ and p′ � Rα(U)(m) 
⊂ Ȧ.

Case b) There exists p′′ ≤ p′ such that for all s ∈ Split(p′′(0)), every U ∈ Us with N ∈ Int(U) is void 
for p′′, s. Note that this implies that every U ∈ Us with N ∈ Int(U), U is void for q, s for all q ≤ p′′ and 
s ∈ Split(q(0)). Let 〈Dk : k ∈ ω〉 ∈ V be a sequence of subsets of ω such that

{
Dk : k ∈ ω

}
=

{
ω \ U : U ∈

⋃

s∈Split(p′′(0))

Us, N /∈ Int(U)
}
.

Item (i) above yields a sequence 〈〈Kα
k : k ∈ ω〉 : α < ω1〉 ∈ V such that Kα

k ∈ [Dk]<ω for all k, and for every 
neighborhood O ∈ τ of N there exists α ∈ ω1 such that Kα

k ∩O 
= ∅ for all k ∈ ω. Let p(3) ≤ p′′ decide α which 
has the property stated above for Ȧ. Fix U ∈ Up(3)(0)〈0〉 non-void for p(3), p(3)(0)〈0〉. Then N /∈ Int(U) by 
the choice of p′′ and hence there exists k such that ω\U = Dk. It follows that Kα

k ∩U = ∅ because Kα
k ⊂ Dk. 

On the other hand, since U is non-void for p(3), p(3)(0)〈0〉, for n = maxKα
k + 1 we can find infinitely many 

immediate successors t of p(3)(0)〈0〉 in p(3)(0) for which there exists qt ≤ p(3)(0)tˆp(3) � [1, ω2) forcing 
Ȧ ∩ n = U ∩ n. Then any such qt forces Kα

k ∩ Ȧ = ∅ (because Kα
k ⊂ n and Kα

k ∩ U = ∅), contradicting the 
fact that p(3) ≥ qt and p(3) � Kα

k ∩ Ȧ 
= ∅ for all k.
Contradictions obtained in cases a) and b) above imply that U is a witness for 〈ω, τ〉 having (†), which 

completes the proof of Lemma 2.3. �
It is well-known [9] that in the Miller model there exists an ultrafilter F generated by ω1-many sets, say 

{Fα : α ∈ ω1}. It plays an important role in the proof of the following

Lemma 2.4. In the Miller model, for every M -separable space X and every decreasing sequence 〈Dn : n ∈ ω〉
of countable dense subsets of X, there exists a sequence 〈〈Kα

n : n ∈ ω〉 : α ∈ ω1〉 such that

(1) Kα
n ∈ [Dn]<ω for all n ∈ ω and α ∈ ω1; and

(2) for every open non-empty O ⊂ X, there exists α ∈ ω1 such that O ∩Kα
n 
= ∅ for all n ∈ ω.

Proof. Let us write Dn in the form {dnk : k ∈ ω} and fix an increasing function f ∈ ωω such that for every 
open non-empty O ⊂ X there are infinitely many n ∈ ω such that O∩{dnk : k ≤ f(n)} 
= ∅. (This is possible 
due to the M -separability of X.) Let us denote by UO the set of all such n. By [12, Theorem 10] combined 
with [6, Theorems 1,2],2 for the family U = {UO : O is an open non-empty subset of X} there exists an 
increasing sequence 〈mi : i ∈ ω〉 ∈ ωω such that one of the following options takes place:

• For every O, the set 
⋃
{[mi, mi+1) : UO ∩ [mi, mi+1) 
= ∅} belongs to F ; or

• For every A ∈ [ω]ω, there exists O such that UO ⊂∗ ⋃
{[mi, mi+1) : i ∈ A}.

Suppose that the second option takes place and let A ⊂ [ω]ω be an infinite (and hence uncountable) 
maximal almost disjoint family. For every A ∈ A, fix an open non-empty subset O(A) of X such that 
UO(A) ⊂∗ ⋃

{[mi, mi+1) : i ∈ A} and note that this implies |UO(A) ∩UO(A′)| < ω for any distinct A, A′ ∈ A. 
On the other hand, since X is separable and A is uncountable, there are distinct A, A′ ∈ A such that 
O(A) ∩O(A′) 
= ∅, and hence UO(A)∩O(A′) is infinite, contradicting the fact that UO(A)∩O(A′) ⊂ UO(A)∩UO(A′)
and the latter intersection is finite.

2 As noted by the referee, these results from [6,12] only give certain finite-to-one function. However, it is rather standard and not 
too difficult to derive from this function an increasing sequence 〈mi : i ∈ ω〉 ∈ ωω with the properties we need in this proof.
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Thus the first option must take place. For every α ∈ ω1 and n ∈ ω let iα,n be the minimal number i such 
that mi ≥ n and [mi, mi+1) ∩ Fα 
= ∅. We claim that the sequences

〈
Kα

n = {dlk : l ∈ [miα,n
,miα,n+1), k ≤ f(l)} : n ∈ ω

〉

are as required. Indeed, given O, find α such that Fα ⊂
⋃
{[mi, mi+1) : UO ∩ [mi, mi+1) 
= ∅}. Now for every 

n ∈ ω we have

Kα
n ∩O = {dlk : l ∈ [miα,n

,miα,n+1), k ≤ f(l)} ∩O,

and the latter intersection is non-empty because [miα,n
, miα,n+1) ∩Fα 
= ∅, hence also [miα,n

, miα,n+1) ∩UO 
=
∅, and thus for every l ∈ [miα,n

, miα,n+1) ∩ UO we have O ∩ {dlk : k ≤ f(l)} 
= ∅. This completes the proof 
of Lemma 2.4. �

There is a natural linear preorder ≤F on ωω associated to F defined as follows: x ≤F y if and only if 
{n ∈ ω : x(n) ≤ y(n)} ∈ F . By [7, Theorem 3.1], in the Miller model, for every X ⊂ ωω of size ω1 there 
exists b ∈ ωω such that x ≤F b for all x ∈ X. As an easy consequence thereof we get the following fact: 
Suppose that 〈Dn : n ∈ ω〉 is a sequence of countable sets and Aα,n ∈ [Dn]<ω for all α ∈ ω1 and n ∈ ω. 
Then there exists a sequence 〈An : n ∈ ω〉 such that An ∈ [Dn]<ω for all n, and {n : Aα,n ⊂ An} ∈ F for 
all α ∈ ω1.

Lemma 2.5. In the Miller model, suppose that |X| = |Y | = ω, X satisfies (†), and Y is M -separable. Then 
X × Y is M -separable.

Proof. Let 〈Dn : n ∈ ω〉 be a sequence of dense subsets of X × Y . By [10, Lemma 2.1], there is no loss of 
generality in assuming that Dn+1 ⊂ Dn for all n. Given an open non-empty subset U of X, for every n ∈ ω

set DU
n = {y ∈ Y : ∃x ∈ U(〈x, y〉 ∈ Dn)} and note that DU

n is dense in Y . Given a countable centered 
family U of open subsets of X, fix a decreasing sequence 〈UU,n : n ∈ ω〉 of open subsets of X such that for 
every U ∈ U , there exists n ∈ ω such that UU,n ⊂ U . By Lemma 2.4 there exists a sequence

〈〈Lα,U
n : n ∈ ω〉 : α ∈ ω1〉

such that Lα,U
n ∈ [DUU,n

n ]<ω for all n, α, and for every open non-empty V ⊂ Y , there exists α such that 
Lα,U
n ∩ V 
= ∅ for all n. Let us find Kα,U

n ∈ [UU,n]<ω such that for every y ∈ Lα,U
n , there exists x ∈ Kα,U

n

such that 〈x, y〉 ∈ Dn. For every α, β ∈ ω1 and n ∈ ω, set Rα,β(U)(n) = Kα,U
min(Fβ\n). Note that R = {Rα,β :

α, β ∈ ω1} is such as in the definition of (†) because Kα,U
n ⊂ U for all U ∈ U and all but finitely many 

n ∈ ω. It follows that there exists a family U of countable centered families U of open subsets of X of size 
|U| = ω1, and such that for every open non-empty O ⊂ X, there exists U ∈ U such that for all α, β ∈ ω1, 
there exists n ∈ Fβ with the property Kα,U

n ⊂ O. Since F is an ultrafilter, it follows that for all α ∈ ω1, 
there exists ξ ∈ ω1 with the property Kα,U

n ⊂ O for all n ∈ Fξ.
Since |U| = ω1, there exists a sequence 〈Mn : n ∈ ω〉 such that Mn ∈ [Dn]<ω and for every U ∈ U and 

α, β ∈ ω1, we have

{
n ∈ ω : Mn ⊃ (Kα,U

n × Lα,U
n ) ∩Dn

}
∈ F .

We claim that 
⋃

n∈ω Mn is dense in X × Y . Indeed, let us fix an open non-empty subset of X × Y of the 
form O× V and find U ∈ U as above. Let α be such that Lα,U

n ∩ V 
= ∅ for all n ∈ ω. Pick β ∈ ω1 such that

Fβ ⊂
{
n ∈ ω : Mn ⊃ (Kα,U

n × Lα,U
n ) ∩Dn

}
.
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Let ξ ∈ ω1 be such that Kα,U
n ⊂ O for all n ∈ Fξ. Then for every n ∈ Fβ ∩ Fξ, we have

∅ 
= (O × V ) ∩ (Kα,U
n × Lα,U

n ) ⊂ (O × V ) ∩Mn,

which completes the proof of Lemma 2.5. �
Next lemma gives consistent examples of countable spaces X such that ζ(X) ≤ ω1.

Lemma 2.6. In the Miller model, suppose that X = 〈ω, τ〉 is a topological space and x ∈ ω is such that 
U = {U ∈ P(ω) : x ∈ Int(U)} is Menger. Then ζ(X, x) ≤ ω1.

Proof. For every n ∈ ω, fix An = {ank : k ∈ ω} ⊂ ω such that x ∈ Ān. For every U ∈ U , set

φ(U)(n) = min{k : ank ∈ U} and Φ(U) = {z ∈ ωω : ∀n (z(n) ≤ φ(U)(n))}

and note that Φ is a compact-valued map from U to ωω. We claim that it is upper semicontinuous, i.e., for 
every open W ⊂ ωω containing Φ(U) for some U ∈ U , there exists an open neighborhood O of U in U such 
that Φ(U ′) ⊂ W for all U ′ ∈ U ∩O. For U, W as above find m ∈ ω such that

Φ(U) =
∏

n∈ω

(φ(U)(n) + 1) ⊂
∏

n≤m

(φ(U)(n) + 1) ×
∏

n>m

ω ⊂ W.

Set O = {U ′ ∈ U : ∀n ≤ m(φ(U ′)(n) ≤ φ(U)(n))} and note that O is open in P(ω) and Φ(U ′) ⊂ W for all 
U ′ ∈ O ∩ U .

Since U is Menger and Φ is compact-valued and upper semicontinuous, Z :=
⋃

U∈U Φ(U) ⊂ ωω is Menger 
by [22, Lemma 1]. Applying [23, Lemma 2.3], we conclude that there exists Y ∈ [ωω]ω1 such that for every 
z ∈ Z (in particular, for every z of the form φ(U), where U ∈ U) there exists y ∈ Y such that z(n) ≤ y(n)
for all n ∈ ω. It follows from the above that Ky

n = {ank : k ≤ y(n)}, where y ∈ Y and n ∈ ω, are witnessing 
for ζ(X, x) ≤ ω1. �
Lemma 2.7. Suppose that X is a Tychonoff space such that Xn is Menger for all n ∈ ω, and 0 ∈ A ∈
[Cp(X)]ω is such that 0 is a limit point of A. Then U = {U ∈ P(A) : 0 ∈ Int(U)} is Menger as a subspace 
of P(A), where the interior is considered in the topology on A inherited from Cp(X).

Proof. By the definition of the topology of Cp(X) we have that

U =
⋃

n,m∈ω

⋃

�x=〈x0,...,xn−1〉∈Xn

↑ Un,m,�x,

where Un,m�x = {a ∈ A : ∀i < n (a(xi) < 1/m)} and ↑ B = {B′ ⊂ A : B ⊂ B′} for all B ⊂ A. In the same 
way as in Lemma 2.6, we can check that the map

Xn  �x �→↑ Un,m�x ⊂ P(A)

is compact-valued and upper semicontinuous for all n, m ∈ ω, and hence by [22, Lemma 1] U is Menger 
being a countable union of its Menger subspaces. �

Finally, we have all necessary ingredients for the proof of Theorem 1.1. It suffices to prove that in the 
Miller model the product of any two countable M -separable spaces X, Y is M -separable, provided that X
is a subspace of Cp(Z) and Cp(Z) is M -separable. By [21, Theorem 35], we have that Zn has the Menger 
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property for all n ∈ ω, and hence for every x ∈ X, the family U = {U ∈ P(X) : x ∈ Int(U)} is Menger as 
a subspace of P(X) by Lemma 2.7. Applying Lemma 2.6, we conclude that ζ(X) ≤ ω1, and hence X has 
property (†) by Lemma 2.3. It remains to apply Lemma 2.5. �
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