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1. Introduction

This paper is devoted to products of H-separable spaces. A topological space X is said [3] to be 
H-separable, if for every sequence 〈Dn : n ∈ ω〉 of dense subsets of X, one can pick finite subsets Fn ⊂ Dn

so that every nonempty open set O ⊂ X meets all but finitely many Fn’s. If we only demand that 
⋃

n∈ω Fn

is dense we get the definition of M -separable spaces introduced in [14]. It is obvious that second-countable 
spaces (even spaces with a countable π-base) are H-separable, and each H-separable space is M -separable. 
The main result of our paper is the following
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Theorem 1.1. In the Laver model for the consistency of the Borel’s conjecture, the product of any two 
countable H-separable spaces is M -separable.

Consequently, the product of any two H-separable spaces is M -separable provided that it is hereditarily 
separable.

It worth mentioning here that by [12, Theorem 1.2] the equality b = c which holds in the Laver model 
implies that the M -separability is not preserved by finite products of countable spaces in the strong sense.

Let us recall that a topological space X is said to have the Menger property (or, alternatively, is a Menger 
space) if for every sequence 〈Un : n ∈ ω〉 of open covers of X there exists a sequence 〈Vn : n ∈ ω〉 such that 
each Vn is a finite subfamily of Un and the collection {∪Vn : n ∈ ω} is a cover of X. This property was 
introduced by Hurewicz, and the current name (the Menger property) is used because Hurewicz proved in [7]
that for metrizable spaces his property is equivalent to a certain property of a base considered by Menger in 
[10]. If in the definition above we additionally require that {n ∈ ω : x /∈ ∪Vn} is finite for each x ∈ X, then 
we obtain the definition of the Hurewicz property introduced in [8]. The original idea behind the Menger’s 
property, as it is explicitly stated in the first paragraph of [10], was an application in dimension theory, one 
of the areas of interest of Mardešić. However, this paper concentrates on set-theoretic and combinatorial 
aspects of the property of Menger and its variations.

Theorem 1.1 is closely related to the main result of [13] asserting that in the Laver model the product 
of any two Hurewicz metrizable spaces has the Menger property. Let us note that our proof in [13] is 
conceptually different, even though both proofs are based on the same main technical lemma of [9]. Regarding 
the relation between Theorem 1.1 and the main result of [13], each of them implies a weak form of the other 
one via the following duality results: For a metrizable space X, Cp(X) is M -separable (resp. H-separable) 
if and only if all finite powers of X are Menger (resp. Hurewicz), see [14, Theorem 35] and [3, Theorem 40], 
respectively. Thus Theorem 1.1 (combined with the well-known fact that Cp(X) is hereditarily separable for 
metrizable separable spaces X) implies that in the Laver model, if all finite powers of metrizable separable 
spaces X0, X1 are Hurewicz, then X0 ×X1 is Menger. And vice versa: The main result of [13] implies that 
in the Laver model, the product of two H-separable spaces of the form Cp(X) for a metrizable separable X, 
is M -separable.

The proof of Theorem 1.1, which is based on the analysis of names for reals in the style of [9], unfortunately 
seems to be rather tailored for the H-separability and we were not able to prove any analogous results even 
for small variations thereof. Recall from [6] that a space X is said to be wH-separable if for any decreasing
sequence 〈Dn : n ∈ ω〉 of dense subsets of X, one can pick finite subsets Fn ⊂ Dn such that for any 
non-empty open U ⊂ X the set {n ∈ ω : U ∩ Fn �= ∅} is co-finite. It is clear that every H-separable 
space is wH-separable, and it seems to be unknown whether the converse is (at least consistently) true. 
Combining [6, Lemma 2.7(2) and Corollary 4.2] we obtain that every countable Fréchet–Urysohn space 
is wH-separable, and to our best knowledge it is open whether countable Fréchet–Urysohn spaces must 
be H-separable. The statement “finite products of countable Fréchet–Urysohn spaces are M -separable” is 
known to be independent from ZFC: It follows from the PFA by [2, Theorem 3.3], holds in the Cohen model 
by [2, Corollary 3.2], and fails under CH by [1, Theorem 2.24]. Moreover,1 CH implies the existence of 
two countable Fréchet–Urysohn H-separable topological groups whose product is not M -separable, see [11, 
Corollary 6.2]. These results motivate the following

Question 1.2.

(1) Is it consistent that the product of two countable wH-separable spaces is M -separable? Does this 
statement hold in the Laver model?

1 We do not know whether the spaces constructed in the proof of [1, Theorem 2.24] are H-separable.
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(2) Is the product of two countable Fréchet–Urysohn space M -separable in the Laver model?
(3) Is the product of three (finitely many) countable H-separable spaces M -separable in the Laver model?
(4) Is the product of finitely many countable H-separable spaces H-separable in the Laver model?

2. Proof of Theorem 1.1

We need the following

Definition 2.1. A topological space 〈X, τ〉 is called box-separable if for every function R assigning to each 
countable family U of non-empty open subsets of X a sequence R(U) = 〈Fn : n ∈ ω〉 of finite non-empty 
subsets of X such that {n : Fn ⊂ U} is infinite for every U ∈ U , there exists U ⊂ [τ \ {∅}]ω of size |U| = ω1
such that for all U ∈ τ \ {∅} there exists U ∈ U such that {n : R(U)(n) ⊂ U} is infinite.

Any countable space is obviously box-separable under CH, which makes the latter notion uninteresting 
when considered in arbitrary ZFC models. However, as we shall see in Lemma 2.3, the box-separability 
becomes useful under b > ω1. Here b denotes the minimal cardinality of a subspace X of ωω which is not 
eventually dominated by a single function, see [4] for more information on b and other cardinal characteristics 
of the reals.

The following lemma is the key part of the proof of Theorem 1.1. We will use the notation from [9] with 
the only difference being that smaller conditions in a forcing poset are supposed to carry more information 
about the generic filter, and the ground model is denoted by V .

A subset C of ω2 is called an ω1-club if it is unbounded and for every α ∈ ω2 of cofinality ω1, if C ∩ α is 
cofinal in α then α ∈ C.

Lemma 2.2. In the Laver model every countable H-separable space is box-separable.

Proof. We work in V [Gω2 ], where Gω2 is Pω2-generic and Pω2 is the iteration of length ω2 with countable 
supports of the Laver forcing, see [9] for details. Let us fix an H-separable space of the form 〈ω, τ〉 and a 
function R such as in the definition of box-separability. By a standard argument (see, e.g., the proof of [5, 
Lemma 5.10]) there exists an ω1-club C ⊂ ω2 such that for every α ∈ C the following conditions hold:

(i) τ ∩V [Gα] ∈ V [Gα] and for every sequence 〈Dn : n ∈ ω〉 ∈ V [Gα] of dense subsets of 〈ω, τ〉 there exists 
a sequence 〈Kn : n ∈ ω〉 ∈ V [Gα] such that Kn ∈ [Dn]<ω and for every U ∈ τ \ ∅ the intersection 
U ∩Kn is non-empty for all but finitely many n ∈ ω;

(ii) R(U) ∈ V [Gα] for any U ∈ [τ \ {∅}]ω ∩ V [Gα]; and
(iii) For every A ∈ P(ω) ∩ V [Gα] the interior Int(A) also belongs to V [Gα].

By [9, Lemma 11] there is no loss of generality in assuming that 0 ∈ C. We claim that U := [τ \ {∅}]ω ∩ V

is a witness for 〈ω, τ〉 being box-separable. Suppose, contrary to our claim, that there exists A ∈ τ \ {∅}
such that R(U)(n) �⊂ A for all but finitely many n ∈ ω and U ∈ U. Let Ȧ be a Pω2 -name for A and p ∈ Pω2

a condition forcing the above statement. Applying [9, Lemma 14] to the sequence 〈ȧi : i ∈ ω〉 such that 
ȧi = Ȧ for all i ∈ ω, we get a condition p′ ≤ p such that p′(0) ≤0 p(0), and a finite set Us ⊂ P(ω) for every 
s ∈ p′(0) with p′(0)〈0〉 ≤ s, such that for each n ∈ ω, s ∈ p′(0) with p′(0)〈0〉 ≤ s, and for all but finitely 
many immediate successors t of s in p′(0) we have

p′(0)tˆp′ � [1, ω2) � ∃U ∈ Us (Ȧ ∩ n = U ∩ n).

Of course, any p′′ ≤ p′ also has the property above with the same Us’s. However, the stronger p′′ is, the 
more elements of Us might play no role any more. Therefore throughout the rest of the proof we shall call 
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U ∈ Us void for p′′ ≤ p′ and s ∈ p′′(0), where p′′(0)〈0〉 ≤ s, if there exists n ∈ ω such that for all but 
finitely many immediate successors t of s in p′′(0) there is no q ≤ p′′(0)tˆp′′ � [1, ω2) with the property 
q � Ȧ ∩ n = U ∩ n. Note that for any p′′ ≤ p′ and s ∈ p′′(0), p′′(0)〈0〉 ≤ s, there exists U ∈ Us which is 
non-void for p′′, s. Two cases are possible.

a) For every p′′ ≤ p′ there exists s ∈ p′′(0), p′′(0)〈0〉 ≤ s, and a non-void U ∈ Us for p′′, s such that 
Int(U) �= ∅. In this case let U ∈ U be any countable family containing {Int(U) : U ∈

⋃
s∈p′(0),p′(0)〈0〉≤s Us} \

{∅}. It follows from the above that p forces R(U)(k) �⊂ Ȧ for all but finitely many k ∈ ω. Let p′′ ≤ p′ and 
m ∈ ω be such that p′′ forces R(U)(k) �⊂ Ȧ for all k ≥ m. Fix a non-void U for p′′, s, where s ∈ p′′(0) and 
p′′(0)〈0〉 ≤ s, such that Int(U) �= ∅ (and hence Int(U) ∈ U). It follows from the above that there exists k ≥ m

such that R(U)(k) ⊂ Int(U) ⊂ U . Let n ∈ ω be such that R(U)(k) ⊂ n. By the definition of being non-void 
there are infinitely many immediate successors t of s in p′′(0) for which there exists qt ≤ p′′(0)tˆp′′ � [1, ω2)
with the property qt � Ȧ∩n = U ∩n. Then for any qt as above we have that qt forces R(U)(k) ⊂ Ȧ because 
R(U)(k) ⊂ U ∩ n, which contradicts the fact that qt ≤ p′′ and p′′ � R(U)(k) �⊂ Ȧ.

b) There exists p′′ ≤ p′ such that for all s ∈ p′′(0), p′′(0)〈0〉 ≤ s, every U ∈ Us with Int(U) �= ∅ is void for 
p′′, s. Note that this implies that every U ∈ Us with Int(U) �= ∅ is void for q, s for all q ≤ p′′ and s ∈ q(0)
such that q(0)〈0〉 ≤ s.

Let 〈Dk : k ∈ ω〉 ∈ V be a sequence of dense subsets of 〈ω, τ〉 such that for every U ∈
⋃

s∈p′′(0),p′′(0)〈0〉≤s Us, if Int(U) = ∅, then ω \ U = Dk for infinitely many k ∈ ω. Let 〈Kk : k ∈ ω〉 ∈ V

be such as in item (i) above. Then p′′ forces that Kk ∩ Ȧ �= ∅ for all but finitely many k ∈ ω. Pass-
ing to a stronger condition, we may additionally assume if necessary, that there exists m ∈ ω such that 
p′′ � ∀k ≥ m (Kk ∩ Ȧ �= ∅).

Fix U ∈ Up′′(0)〈0〉 non-void for p′′, p′′(0)〈0〉. Then Int(U) = ∅ by the choice of p′′ and hence there exists 
k ≥ m such that ω \ U = Dk. It follows that Kk ∩ U = ∅ because Kk ⊂ Dk. On the other hand, since U is 
non-void for p′′, p′′(0)〈0〉, for n = maxKk +1 we can find infinitely many immediate successors t of p′′(0)〈0〉
in p′′(0) for which there exists qt ≤ p′′(0)tˆp′′ � [1, ω2) forcing Ȧ ∩ n = U ∩ n. Then any such qt forces 
Kk ∩ Ȧ = ∅ (because Kk ⊂ n and Kk ∩ U = ∅), contradicting the fact that p′′ ≥ qt and p′′ � Kk ∩ Ȧ �= ∅.

Contradictions obtained in cases a) and b) above imply that U := [τ \ {∅}]ω ∩ V is a witness for 〈ω, τ〉
being box-separable, which completes our proof. �

Theorem 1.1 is a direct consequence of Lemma 2.2 combined with the following

Lemma 2.3. Suppose that b > ω1, X is box-separable, and Y is H-separable. Then X × Y is M -separable 
provided that it is separable.

Proof. Let 〈Dn : n ∈ ω〉 be a sequence of countable dense subsets of X × Y . Let us fix a countable family 
U of open non-empty subsets of X and a partition ω = �U∈UΩU into infinite pieces. For every n ∈ ΩU set 
DU

n = {y ∈ Y : ∃x ∈ U(〈x, y〉 ∈ Dn)} and note that DU
n is dense in Y for all n ∈ ω. Therefore there exists a 

sequence 〈LU
n : n ∈ ω〉 such that LU

n ∈ [DU
n ]<ω and for every open non-empty V ⊂ Y we have LU

n ∩ V �= ∅
for all but finitely many n. For every n ∈ ΩU find KU

n ∈ [U ]<ω such that for every y ∈ LU
n there exists 

x ∈ KU
n such that 〈x, y〉 ∈ Dn, and set R(U) = 〈KU

n : n ∈ ω〉. Note that R is such as in the definition of 
box-separability because KU

n ⊂ U for all n ∈ ΩU and the latter set is infinite. Since X is box-separable there 
exists a family U of countable collections of open non-empty subsets of X of size |U| = ω1, and such that 
for every open non-empty U ⊂ X there exists U ∈ U with the property R(U)(n) ⊂ U for infinitely many n. 
Since each Dn is countable and |U| < b, there exists a sequence 〈Fn : n ∈ ω〉 such that Fn ∈ [Dn]<ω and 
for every U ∈ U we have Fn ⊃ (KU

n × LU
n ) ∩Dn for all but finitely many n ∈ ω.

We claim that 
⋃

n∈ω Fn is dense in X×Y . Indeed, let us fix open non-empty subset of X×Y of the form 
U ×V and find U ∈ U with the property R(U)(n) = KU

n ⊂ U for infinitely many n, say for all n ∈ I ∈ [ω]ω. 
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Passing to a co-finite subset of I, we may assume if necessary, that Fn ⊃ (KU
n × LU

n ) ∩ Dn for all n ∈ I. 
Finally, fix n ∈ I such that LU

n ∩ V �= ∅ and pick y ∈ LU
n ∩ V . By the definition of DU

n and LU
n ⊂ DU

n we 
can find x ∈ KU

n such that 〈x, y〉 ∈ Dn. Then 〈x, y〉 ∈ U × V and 〈x, y〉 ∈ Fn because 〈x, y〉 ∈ KU
n ×LU

n and 
〈x, y〉 ∈ Dn. This completes our proof. �
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