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1. Introduction

A topological space X is called productively Lindelöf if X×Y is Lindelöf for every Lindelöf space Y . This
terminology was introduced in [5], but the concept itself goes back at least to the classical work of Michael
[14] who proved that under CH the space of irrational numbers is not productively Lindelöf. The natural
question of whether an additional set-theoretic hypothesis is needed here has become known as Michael’s
problem and is still open. Thus we are at the moment far from a satisfactory understanding of productive
Lindelöfness, even for subspaces of the Baire space ωω.

In a stream of recent papers of Tall and collaborators it was proven that under certain equalities between
cardinal characteristics all metrizable productively Lindelöf spaces have strong covering properties close
to the σ-compactness. In modern terminology such covering properties are called selection principles and
constitute a rapidly growing area of general topology (see e.g., [21]).
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Trying to describe σ-compactness in terms of open covers, Hurewicz [10] introduced the following property,
nowadays called the Menger property, which was historically the first selection principle: a topological space
X is said to have this property if for every sequence 〈Un: n ∈ ω〉 of open covers of X there exists a sequence
〈Vn: n ∈ ω〉 such that each Vn is a finite subfamily of Un and the collection {

⋃
Vn: n ∈ ω} is a cover of X.

The current name (the Menger property) is used because Hurewicz proved in [10] that for metrizable spaces
his property is equivalent to one basis property considered by Menger in [13], see [4] for more information
on combinatorial properties of bases. If in the definition above we additionally require that {

⋃
Vn: n ∈ ω}

is a γ-cover of X (this means that the set {n ∈ ω: x /∈
⋃

Vn} is finite for each x ∈ X), then we obtain
the definition of the Hurewicz covering property introduced in [11]. Contrary to a conjecture of Hurewicz
the class of metrizable spaces having the Hurewicz property appeared to be much wider than the class of
σ-compact spaces [12, Theorem 5.1] (see also [6,21]).

By [3, Theorem 23] and [19, Theorem 18], every productively Lindelöf space has the Hurewicz property
if d = ω1 or add(M) = c. The following theorem implies both of these results.

Theorem 1.1. If add(M) = d, then every productively Lindelöf space has the Hurewicz property.

If b = ω1, then by [1, Corollary 4.5] every productively Lindelöf space has the Menger property. The
following result shows that with a help of an additional combinatorial assumption about filters on ω we can
actually infer the Hurewicz property.

Theorem 1.2. If b = ω1 and the Filter Dichotomy holds, then every productively Lindelöf space has the
Hurewicz property.

The Filter Dichotomy is the statement that for any non-meager filters F ,G on ω there exists a monotone
surjection φ :ω → ω such that φ(F) = φ(G). Here we consider filters on ω with the topology inherited from
P(ω), the latter being identified with the Cantor space 2ω via characteristic functions.

By [8, Theorems 1,2], the Filter Dichotomy (abbreviated as FD in the sequel) holds in the Miller model,
and hence the premises of Theorem 1.2 do not imply those of Theorem 1.1, for the values of cardinal
characteristics in some standard iteration models see [7, p. 480].

It has been noted in [20] that the three progressively weaker hypotheses: CH, d = ω1, and ωω is not
productively Lindelöf, imply the respectively weaker conclusions about metrizable productively Lindelöf
spaces: σ-compact, the Hurewicz property, and the Menger property. In [20, Problem 3.13] it is asked whether
the stronger hypotheses are necessary in order to obtain the stronger conclusions. Theorems 1.1 and 1.2
may be thought of as a tiny step towards the solution of this problem.

In these results we do not assume that X satisfies any separation axioms. This generality is achieved
with the help of set-valued maps, which by the methods developed in [23] lead to a reduction to subspaces
of the Baire space. For the definitions of cardinal characteristics used in this paper we refer the reader to
[7] or [22].

2. Proofs

Theorem 1.1 will be proved by adding “an ε” to the following deep result:

Theorem 2.1. Let X be a topological space which admits a compactification whose remainder is Lindelöf.
If there exists a cardinal κ of uncountable cofinality and an increasing sequence 〈Xα: α < κ〉 of principal
subsets of X such that

⋃
α<κ Xα = X, for every compact K ⊂ X there exists an ordinal α such that K ⊂ Xα,

and the minimal ordinal with this property has countable cofinality, then X is not productively Lindelöf.
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Theorem 2.1 can be proved by almost verbatim repetition of a part of the proof of [15, Theorem 1.2].

Proof of Theorem 1.1. Given a productively Lindelöf space X, we shall show that it has the Hurewicz
property.

Combining [23, Lemma 1 and Theorem 2] we conclude that X has the Hurewicz property if and only if all
images of X under compact-valued upper semicontinuous maps Φ :X ⇒ ωω have it. Since any such image
of X is productively Lindelöf, it is enough to show that productively Lindelöf subspaces of ωω have the
Hurewicz property. Therefore we shall assume that X ⊂ ωω. Suppose to the contrary that X does not have
the Hurewicz property. Using [12, Theorem 4.3] and passing to a homeomorphic copy of X, if necessary, we
may additionally assume that X is unbounded with respect to �∗. The proof will be completed as soon as
we derive a contradiction with add(M) = d.

Let D = {dα: α < d} be a dominating family. Since add(M) � b � d [22], we conclude that b = d. For
every α < b set Xα = {x ∈ X: x �∗ dξ for some ξ < α}. Since X is unbounded and D is dominating,
Xα �= X for all α and

⋃
α<d

Xα = X. Given a compact K ⊂ X we can find α < d such that all elements of
K are bounded by fα, and hence K ⊂ Xα. Observe that each Xα is a union of a family Vα of fewer than
cov(M) many closed subsets of X, where

Vα =
{{

x ∈ X: x(k) � dξ(k) for all k � n
}
: ξ < α, n ∈ ω

}
.

By the same argument as in the proof of [2, Lemma 2] we can show that there exists a countable subfamily
V ′ of Vα covering K. It follows from the above that the minimal ordinal β such that K ⊂ Xβ has countably
cofinality. Therefore the sequence 〈Xα: α < d〉 satisfies the premises of Theorem 2.1, and hence X is not
productively Lindelöf. �

Theorem 1.2 is a direct consequence of Theorem 2.6 below, where the FD is weakened to the following
assumption:

(∗) For every non-meager filter G there exists an unbounded tower T of cardinality b and a monotone
surjection φ :ω → ω such that φ(T ) ⊂ φ(G).

We recall that a tower of cardinality κ is a set T ⊂ [ω]ω which can be enumerated as {Tα: α < κ}, such
that for all α < β < κ, Tβ ⊂∗ Tα and Tα �⊂∗ Tβ , where A ⊂∗ B means |A \B| < ω. An unbounded tower of
cardinality κ is an unbounded with respect to �∗ set T ⊂ [ω]ω which is a tower of cardinality κ (here we
identify each element of [ω]ω with its increasing enumeration). It is an easy exercise to show that t = b if
and only if there is an unbounded tower of cardinality t.

We shall use the following fundamental result of Talagrand [18].

Theorem 2.2. A filter F is meager if and only if there exists an increasing sequence 〈nk: k ∈ ω〉 of natural
numbers such that each F ∈ F meets all but finitely many intervals [nk, nk+1).

The following lemma implies that Theorem 2.6 is indeed an improvement of Theorem 1.2.

Lemma 2.3. If b = t and the FD holds, then (∗) holds as well.

Proof. Let T be an unbounded tower of cardinality b and F be a non-meager filter. The FD yields a
monotone surjection φ :ω → ω such that φ(〈T 〉) = φ(F). Then φ(T ) ⊂ φ(F) and φ(T ) is an unbounded
tower of cardinality b. �

A set S = {fα: α < b} is called a b-scale if S ⊂ ωω, all elements of S are increasing, S is unbounded
with respect to �∗, and fα �∗ fβ for each α < β < b. It is easy to see that a b-scale always exists.
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Let χ : [ω]ω → ωω be the map assigning to each infinite subset A of ω its enumeration eA ∈ ωω (i.e.,
eA(n) is the nth element of A). Then χ is an embedding of [ω]ω into ωω which maps every unbounded tower
of cardinality b onto a b-scale. It is a direct consequence of [1, Corollary 2.5] that if b = ω1 and X is a
productively Lindelöf subspace of ωω, then B �⊂ X for any b-scale B. As a corollary we get the following

Lemma 2.4. If b = ω1 and X is a productively Lindelöf subspace of [ω]ω, then T �⊂ X for any unbounded
tower T .

In the proof of Theorem 2.6 we shall use set-valued maps, see [16]. By a set-valued map Φ from a set X

into a set Y we understand a map from X into the power-set P(Y ) of Y and write Φ :X ⇒ Y . For a subset
A of X we define Φ(A) =

⋃
x∈A Φ(x) ⊂ Y . A set-valued map Φ from a topological spaces X to a topological

space Y is said to be

• compact-valued, if Φ(x) is compact for every x ∈ X;
• upper semicontinuous, if for every open subset V of Y the set Φ−1

⊂ (V ) = {x ∈ X: Φ(x) ⊂ V } is open
in X.

A family F ⊂ [ω]ω is called centered, if
⋂
F1 ∈ [ω]ω for every F1 ∈ [F ]<ω. For a centered family F we shall

denote by 〈F〉 the smallest non-principal filter on ω containing F . In other words, 〈F〉 = {A ⊂ ω:
⋂
F1 ⊂∗ A

for some F1 ∈ [F ]<ω}.
The following easy lemma is a direct consequence of [17, Claim 3.2(2)].

Lemma 2.5. If a centered family F is an image of a topological space X under a compact-valued upper
semicontinuous map, then 〈F〉 is a countable union of images of finite powers of X under compact-valued
upper semicontinuous maps.

Let U be a family of subsets of a set X. A subset A of X is called U-bounded if A ⊂
⋃

V for some finite
V ⊂ U . U is called an ω-cover of X if X /∈ U and for every finite F ⊂ X there exists U ∈ U such that
F ⊂ U .

Theorem 2.6. If b = ω1 and the assumption (∗) from above holds, then every productively Lindelöf space has
the Hurewicz property.

Proof. Let X be a productively Lindelöf space and let 〈Un: n ∈ ω〉 be a sequence of open covers of X. Let us
write Un in the form {Un

k : k ∈ ω}. Observe that there is no loss of generality in assuming Un+1
k ⊂ Un

k ⊂ Un
k+1

for all n, k ∈ ω.
The equality b = ω1 implies that ωω is not productively Lindelöf [9, Remark 10.5], and hence by [17,

Proposition 3.1] all productively Lindelöf spaces have the Menger property. Since the class of productively
Lindelöf spaces is closed under finite products, we conclude that all finite powers of X have the Menger
property. By [12, Theorem 3.9] there exists a sequence 〈Vn: n ∈ ω〉 such that Vn ∈ [Un]<ω for all n and
V =

⋃
n∈ω Vn is an ω-cover of X. It follows from our assumptions on Un’s that we may assume |Vn| = 1 for

all n ∈ ω, i.e., Vn = {Un
kn
} for some kn ∈ ω.

For every x ∈ X we shall denote by IV(x) the set {n ∈ ω: x ∈ Un
kn
}. By [23, Lemma 2] the set

F =
{
A ⊂ ω: IV(x) ⊂∗ A for some x ∈ X

}

is a countable union of images of X under compact-valued upper semicontinuous maps. Therefore by
Lemma 2.5 G = 〈F〉 is a countable union of images of finite powers of X under compact-valued upper
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semicontinuous maps. Since V is an ω-cover of X, we conclude that G ⊂ [ω]ω. By the methods of [17, § 3]
it also follows that G is productively Lindelöf. Two cases are possible.

1. G is meager. Then by Theorem 2.2 there exists an increasing sequence 〈mn: n ∈ ω〉 of integers
such that every element of U meets all but finitely many intervals [mn,mn+1). It suffices to observe that
Un =

⋃
{Um

km
: m ∈ [mn,mn+1)} is Un-bounded for every n ∈ ω and the sequence 〈Un: n ∈ ω〉 is a γ-cover

of X.
2. G is non-meager. By the assumption (∗) from above we can find a monotone surjection φ :ω → ω and

an unbounded tower T ⊂ [ω]ω of cardinality b such that φ(U) ⊃ T , which contradicts Lemma 2.4 and thus
completes our proof. �
References

[1] O. Alas, L.F. Aurichi, L.R. Junqueira, F.D. Tall, Non-productively Lindelöf spaces and small cardinals, Houst. J. Math.
37 (2011) 1373–1381.

[2] K. Alster, The product of a Lindelöf space with the space of irrationals under Martin’s axiom, Proc. Am. Math. Soc. 110
(1990) 543–547.

[3] L.F. Aurichi, F.D. Tall, Lindelöf spaces which are indestructible, productive, or D, Topol. Appl. 159 (2012) 331–340.
[4] L. Babinkostova, M. Scheepers, Combinatorics of open covers. IV. Basis properties, Note Mat. 22 (2003/04) 167–178.
[5] M. Barr, J.F. Kennison, R. Raphael, On productively Lindelöf spaces, Sci. Math. Jpn. 65 (2007) 319–332.
[6] T. Bartoszyński, B. Tsaban, Hereditary topological diagonalizations and the Menger–Hurewicz conjectures, Proc. Am.

Math. Soc. 134 (2006) 605–615.
[7] A. Blass, Combinatorial cardinal characteristics of the continuum, in: M. Foreman, A. Kanamori, M. Magidor (Eds.),

Handbook of Set Theory, Springer, 2010, pp. 395–491.
[8] A. Blass, C. Laflamme, Consistency results about filters and the number of inequivalent growth types, J. Symb. Log. 54

(1989) 50–56.
[9] E.K. Van Douwen, The integers and Topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology,

North Holland, Amsterdam, 1984, pp. 111–167.
[10] W. Hurewicz, Über die Verallgemeinerung des Borellschen Theorems, Math. Z. 24 (1925) 401–421.
[11] W. Hurewicz, Über Folgen stetiger Funktionen, Fundam. Math. 9 (1927) 193–204.
[12] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers. II, Topol. Appl. 73 (1996) 241–266.
[13] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsber. Math. Astron. Phys. Meteorologie Mech.

(Wiener Akad.) 133 (1924) 421–444.
[14] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Am. Math. Soc. 69 (1963)

375–376.
[15] J.T. Moore, Some of the combinatorics related to Michael’s problem, Proc. Am. Math. Soc. 127 (1999) 2459–2467.
[16] D. Repovš, P. Semenov, Continuous Selections of Multivalued Mappings, Math. Appl., vol. 455, Kluwer Academic Pub-

lishers, Dordrecht, 1998.
[17] D. Repovš, L. Zdomskyy, On the Menger covering property and D-spaces, Proc. Am. Math. Soc. 140 (2012) 1069–1074.
[18] M. Talagrand, Filtres: Mesurabilité, rapidité, propriété de Baire forte, Stud. Math. 74 (1982) 283–291.
[19] F.D. Tall, Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D, Topol. Appl. 158 (2011) 2556–2563.
[20] F.D. Tall, Set-theoretic problems concerning Lindelöf spaces, Quest. Answ. Gen. Topol. 29 (2011) 91–103.
[21] B. Tsaban, Selection principles and special sets of reals, in: Elliott Pearl (Ed.), Open Problems in Topology II, Elsevier

Sci. Publ., 2007, pp. 91–108.
[22] J. Vaughan, Small uncountable cardinals and topology, in: J. van Mill, G.M. Reed (Eds.), Open Problems in Topology,

Elsevier Sci. Publ., 1990, pp. 195–218.
[23] L. Zdomskyy, A semifilter approach to selection principles, Comment. Math. Univ. Carol. 46 (2005) 525–539.

http://refhub.elsevier.com/S0166-8641(14)00088-1/bib416C614175724A756E54616C3131s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib416C614175724A756E54616C3131s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib416C733930s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib416C733930s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib41757254616C3132s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib42616253636830335F3034s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4261724B656E5261703037s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4261725473613036s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4261725473613036s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib426C613130s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib426C613130s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib426C614C61663839s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib426C614C61663839s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib76446F3834s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib76446F3834s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4875723235s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4875723237s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib434F4332s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4D656E3234s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4D656E3234s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4D69633633s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4D69633633s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib4D6F6F3939s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib52657053656D3938s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib52657053656D3938s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5265705A646F3132s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib54616C3832s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib54616C31315F746170706Cs1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib54616C31315F71616774s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5473613037s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5473613037s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5661753930s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5661753930s1
http://refhub.elsevier.com/S0166-8641(14)00088-1/bib5A646F3035s1

	Productively Lindelöf spaces and the covering property of Hurewicz
	1 Introduction
	2 Proofs
	References


