Codimension Growth of Solvable Lie Superalgebras

Dušan D. Repovš and Mikhail V. Zaicev *

Communicated by D. A. Timashev

Abstract

We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with non-nilpotent derived subalgebra L^{\prime} and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of $\exp (L)$. Mathematics Subject Classification: Primary 17B01, 16P90; secondary 15A30, 16R10. Key Words and Phrases: Polynomial identities, Lie superalgebras, graded identities, codimensions, exponential growth.

1. Introduction

Let A be an algebra over a field F of characteristic zero. One can define an infinite sequence $\left\{c_{n}(A)\right\}, n=1,2, \ldots$, of non-negative integers associated with A called codimension sequence. It measures the quantity of polynomial identities of A. For many classes of algebras the sequence $\left\{c_{n}(A)\right\}$ is exponentially bounded. In particular, this holds for associative PI-algebras [14], [15], for finite-dimensional algebras [1], [11], for Kac-Moody Lie algebras [20], [21], and many others. In this case the sequence $\left(c_{n}(A)\right)^{1 / n}$ has the lower and upper limits $\exp (A)$ and the $\overline{\exp }(A)$ called the lower and upper PI-exponents of A, respectively. If $\underline{\exp }(A)=\overline{\exp }(A)$ then there exists an ordinary limit called the PI-exponent $\exp (A)$ of A. At the end of 1980's Amitsur conjectured that $\exp (A)$ exists and is an integer for every associative PI-algebra A. Amitsur's conjecture was proved in [7], [8]. Later the existence and integrality of PI-exponent was proved for finite-dimensional Lie and Jordan algebras [4], [5], [6], [10], [11], [22]. On the other hand, there are infinitedimensional solvable Lie algebras with fractional PI-exponents [2], [18], [24].
None of these results can be generalized to Lie superalgebras. There is an infinite series of finite-dimensional superalgebras $P(t), t \geq 2$, where all $P(3), P(4), \ldots$ are simple whereas $P(2)$ is not. For $L=P(2)$ it was proved in [12] that $\exp (L)$ exists and is not an integer. Due to [12], there is a serious reason to expect that PI-exponent is fractional for any simple superalgebra $P(t), t \geq 3$.

[^0]For infinite-dimensional Lie superalgebras only some partial results are known [16], [25]. In particular, in [25] it was shown that PI-exponent of a Lie superalgebra L exists and is an integer, provided that its commutator subalgebra L^{2} is nilpotent. Note that by the Lie Theorem, the subalgebra L^{2} is nilpotent for any finite-dimensional solvable Lie algebra L. Unfortunately, finite-dimensional Lie superalgebras in general do not satisfy this condition. Hence the result of [25] cannot be applied to finite-dimensional solvable Lie superalgebras. Although there are examples of finite-dimensional Lie superalgebras with the fractional PI-exponent, the following conjecture looks natural: Is it true that any finite-dimensional solvable Lie superalgebra has an integer exponent?

In this paper we construct new series of finite-dimensional solvable Lie superalge$\operatorname{bras} S(t), t=2,3, \ldots$, with non-nilpotent derived subalgebras. For $S(2)$ we prove the existence and integrality of PI-exponent (Theorem 4.3). We also discuss the following related question concerning graded identities. Every Lie superalgebra $L=L_{0} \oplus L_{1}$ is endowed by the natural \mathbb{Z}_{2}-grading. Hence one can also study asymptotic behavior of graded codimension sequence $\left\{c_{n}^{\mathrm{gr}}(L)\right\}$. It was mentioned in [1] that $c_{n}(A) \leq c_{n}^{\mathrm{gr}}(A)$ for any algebra $A=\oplus_{g \in G} A_{g}$ graded by a finite group G. Hence $\exp (A) \leq \exp ^{\mathrm{gr}}(A)$. In the associative case there are examples where this inequality is strong. For instance, if $A=F[G]$ is the group algebra of a finite abelian group G then $\exp (A)=1$ whereas $\exp ^{\operatorname{gr}}(A)=|G|$. For Lie superalgebras similar examples are unknown. On the other hand, there are many examples of simple (associative and nonassociative) algebras with $\exp ^{\operatorname{gr}}(A)=\exp (A)$. In the present paper we give the first example in the class of solvable Lie superalgebras, namely, we prove that $\exp ^{\mathrm{gr}}(S(2))=\exp (S(2))$ (Theorem 5.3).

2. Generalities

Let A be an algebra over F and let $F\{X\}$ be the absolutely free algebra over F with an infinite set of generators X. A non-associative polynomial $f=$ $f\left(x_{1}, \ldots, x_{n}\right) \in F\{X\}$ is said to be an identity of A if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for any $a_{1}, \ldots, a_{n} \in A$. All identities of A form an ideal $\operatorname{Id}(A)$ of $F\{X\}$.

Denote by P_{n} the subspace in $F\{X\}$ of all multilinear polynomials on $x_{1}, \ldots, x_{n} \in$ X. Then $P_{n} \cap \operatorname{Id}(A)$ is the set of all multilinear identities of A of degree n. Since char $F=0$, the sequence of subspaces

$$
\left\{P_{n} \cap \operatorname{Id}(A)\right\}, \quad n=1,2, \ldots,
$$

completely defines the ideal $\operatorname{Id}(A)$. Denote

$$
P_{n}(A)=\frac{P_{n}}{P_{n} \cap \operatorname{Id}(A)} \quad \text { and } \quad c_{n}(A)=\operatorname{dim} P_{n}(A)
$$

The sequence of integers $\left\{c_{n}(A)\right\}, n=1,2, \ldots$, called the codimension sequence of A, is an important numerical characteristic of $\operatorname{Id}(A)$. The analysis of the asymptotic behavior of $\left\{c_{n}(A)\right\}$ is one of the main approaches of the study of identities of algebras.

As it was mentioned in the introduction, there is a wide class of algebras A such that $c_{n}(A) \leq a^{n}$ for some constant a. In this case one can define the lower and the upper PI-exponents of A as follows:

$$
\underline{\exp }(A)=\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}, \quad \overline{\exp }(A)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

respectively. If the ordinary limit exists we can define the (ordinary) PI-exponent

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

A powerful tool for computing codimensions is the representation theory of the symmetric group S_{n}. One can define an S_{n}-action on the subspace P_{n} of multilinear polynomials by setting

$$
\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

for $\sigma \in S_{n}$. Then P_{n} becomes an $F S_{n}$-module. Since $P_{n} \cap \operatorname{Id}(A)$ is stable under S_{n}-action, then $P_{n}(A)$ is also an $F S_{n}$-module and its S_{n}-character

$$
\chi_{n}(A)=\chi\left(P_{n}(A)\right)
$$

is called the n-th cocharacter of A. By Maschke's Theorem, $P_{n}(A)$ is completely reducible, so

$$
\begin{equation*}
\chi_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda} \tag{1}
\end{equation*}
$$

where χ_{λ} is the irreducible S_{n}-character corresponding to the partition λ of n. All details concerning S_{n}-representations can be found in [13]. The total sum of multiplicities in (1) is called the n-th colength of A,

Clearly,

$$
\begin{align*}
l_{n}(A) & =\sum_{\lambda \vdash n} m_{\lambda} . \\
c_{n}(A) & =\sum_{\lambda \vdash n} m_{\lambda} d_{\lambda} \tag{2}
\end{align*}
$$

where $d_{\lambda}=\operatorname{deg} \chi_{\lambda}$ is the dimension of the corresponding irreducible representation and the multiplicities m_{λ} are taken from (1). It is well-known that the colength sequence $\left\{l_{n}(A)\right\}$ is polynomially bounded for any finite-dimensional algebra A.

Proposition 2.1 ([3, Theorem 1]). Let $\operatorname{dim} A=d$. Then, for all $n \geq 1$,

$$
l_{n}(A) \leq d(n+1)^{d^{2}+d}
$$

Throughout the paper we will omit brackets in left-normed products in non-associative algebras, i.e., $a b c=(a b) c, a b c d=(a b c) d$, etc.

3. Lie superalgebras $S(t)$

In this section we introduce an infinite series of finite-dimensional solvable Lie superalgebras with non-nilpotent commutator subalgebra.
First, let R be an arbitrary associative algebra with involution $*: R \rightarrow R$. Consider an associative algebra Q consisting of (2×2)-matrices over R

$$
Q=\left\{\left.\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \right\rvert\, A, B, C, D \in R\right\} .
$$

The algebra Q can be naturally endowed by \mathbb{Z}_{2}-grading $Q=Q_{0} \oplus Q_{1}$, where

$$
Q_{0}=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & D
\end{array}\right)\right\}, \quad Q_{1}=\left\{\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right)\right\} .
$$

It is well-known that if we define a (super) commutator brackets by setting

$$
[x, y]=x y-(-1)^{|x \| y|} y x
$$

for homogeneous $x, y \in Q_{0} \cup Q_{1}$, where $|x|=0$ if $x \in Q_{0}$ and $|x|=1$ if $x \in Q_{1}$, then Q becomes a Lie superalgebra. For basic notions of super Lie theory we refer to [17]. Denote by

$$
R^{+}=\left\{x \in R \mid x^{*}=x\right\}, \quad R^{-}=\left\{y \in R \mid y^{*}=-y\right\}
$$

the subspaces of symmetric and skew elements of R, respectively. Then the subspace

$$
L=\left\{\left.\left(\begin{array}{cc}
x & y \tag{3}\\
z & -x^{*}
\end{array}\right) \right\rvert\, x \in R, y \in R^{+}, z \in R^{-}\right\}=L_{0} \oplus L_{1}
$$

of Q is a Lie superalgebra under the supercommutator product defined above, where even and odd components are

$$
L_{0}=\left\{\left(\begin{array}{cc}
x & 0 \\
0 & -x *
\end{array}\right)\right\}, \quad L_{1}=\left\{\left(\begin{array}{cc}
0 & y \\
z & 0
\end{array}\right)\right\} .
$$

Note that if $R=M_{t}(F)$ is a $(t \times t)$-matrix algebra, $t \geq 3$, then its subalgebra $\widetilde{L} \subset L$ consisting of the matrix

$$
\left\{\left(\begin{array}{cc}
x & y \\
z & -x^{*}
\end{array}\right)\right\}
$$

with traceless matrices x where $x \rightarrow x^{*}$ is the transpose involution is a well-known simple Lie superalgebra $P(t)$ (or $b(t)$ in the notations of [17]).
Now we clarify the structure of R in our case. Let $R=U T_{t}(F)$ be an algebra of $(t \times t)$-upper triangular matrices over F. It is well-known (see, for example, [19]) that the reflection across the secondary diagonal is the involution on R, hence L defined in (3) is a finite-dimensional Lie superalgebra. We denote this superalgebra by $S(t)$. Its even component $S_{0} \simeq U T_{t}(F)$ is solvable hence the entire L is also solvable (see, for example, [17]). It is not difficult to check that the derived subalgebra L^{2} is not nilpotent and we get the following conclusion.

Proposition 3.1. Let R be the upper triangular $(t \times t)$-matrix algebra with the involution $*: R \rightarrow R$, the reflection across the secondary diagonal. Then $S(t)=L=L_{0} \oplus L_{1}$ well-defined in (3) is a finite-dimensional solvable Lie superalgebra, $\operatorname{dim} L=t(t+1)$, with non-nilpotent commutator subalgebra.

Now we will have to deal with the Lie superalgebra $S(2)$. First, we compute supercommutators in the associative superalgebra $Q \simeq U T_{2}(F) \otimes M_{2}(F)$. If A, B, C and D are 2×2-matrices then

$$
\begin{align*}
{\left[\left(\begin{array}{cc}
A & 0 \\
0 & -A^{*}
\end{array}\right),\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right)\right] } & =\left(\begin{array}{cc}
0 & A B+B A^{*} \\
0 & 0
\end{array}\right), \tag{4}\\
{\left[\left(\begin{array}{cc}
A & 0 \\
0 & -A^{*}
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right)\right] } & =\left(\begin{array}{cc}
0 & 0 \\
-A^{*} C-C A & 0
\end{array}\right), \tag{5}\\
{\left[\left(\begin{array}{cc}
A & 0 \\
0 & -A^{*}
\end{array}\right),\left(\begin{array}{cc}
B & 0 \\
0 & -B^{*}
\end{array}\right)\right] } & =\left(\begin{array}{cc}
A B-B A & 0 \\
0 & -(A B-B A)^{*}
\end{array}\right), \tag{6}\\
{\left[\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
C & 0
\end{array}\right)\right] } & =\left(\begin{array}{cc}
B C & 0 \\
0 & C B
\end{array}\right) . \tag{7}
\end{align*}
$$

From now on, we will not use associative multiplication and will omit square brackets in the product of elements of Lie superalgebra $S(2)$. That is, $x y=[x, y]$, $x y z=[[x, y], z]$ and so on for $x, y, z \in S(2)$. Let e_{11}, e_{12} and e_{22} be (2×2)-matrix units. Then $e_{11}^{*}=e_{22}, e_{22}^{*}=e_{11}, e_{12}^{*}=e_{12}$ in R and the matrices

$$
\begin{gathered}
a=\left(\begin{array}{cc}
e_{11}-e_{22} & 0 \\
0 & e_{11}-e_{22}
\end{array}\right), \quad b=\left(\begin{array}{cc}
0 & e_{11}+e_{22} \\
0 & 0
\end{array}\right), \quad c=\left(\begin{array}{cc}
0 & 0 \\
e_{11}-e_{22} & 0
\end{array}\right), \\
d=\left(\begin{array}{cc}
e_{11}+e_{22} & 0 \\
0 & -e_{11}-e_{22}
\end{array}\right), \quad x=\left(\begin{array}{cc}
e_{12} & 0 \\
0 & -e_{12}
\end{array}\right), \quad y=\left(\begin{array}{cc}
0 & e_{12} \\
0 & 0
\end{array}\right)
\end{gathered}
$$

form a basis of $S(2)$. By definition a, d and x are even whereas b, c and y are odd. Using (4), (5), (6), (7) we can compute all nonzero products of basis elements,

$$
\begin{gathered}
b c=c b=a, \quad b d=-d b=-2 b, \quad c d=-d c=2 c, \quad x a=-a x=-2 x \\
x b=-b x=2 y, \quad y a=-a y=-2 y, \quad y c=c y=-x, \quad y d=-d y=-2 y .
\end{gathered}
$$

4. PI-exponent of $S(2)$

Since we will have to deal with multialternating sets of arguments in multilinear and multihomogeneous expressions, it is convenient to use the following agreement. If $f=f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)$ is a non-associative polynomial, multilinear on x_{1}, \ldots, x_{n}, then we denote the result of alternation of f on x_{1}, \ldots, x_{n} by marking all x_{1}, \ldots, x_{n} by one and the same symbol over x_{i} 's. For example,

$$
\begin{aligned}
& \bar{x}_{1} y \bar{x}_{2} \bar{x}_{3}=\sum_{\sigma \in S_{3}}(\operatorname{sgn} \sigma) x_{\sigma(1)} y x_{\sigma(2)} x_{\sigma(3)}, \quad \text { or } \\
& \left(y \bar{x}_{1} \widetilde{x}_{1}\right)\left(\bar{x}_{2} \widetilde{x}_{2}\right)\left(\bar{x}_{3} \widetilde{x}_{3}\right)= \\
& \quad=\sum_{\sigma \in S_{3}} \sum_{\tau \in S_{3}}(\operatorname{sgn} \sigma)(\operatorname{sgn} \tau)\left(y x_{\sigma(1)} x_{\tau(1)}\right)\left(x_{\sigma(2)} x_{\tau(2)}\right)\left(x_{\sigma(3)} x_{\tau(3)}\right)
\end{aligned}
$$

Our next goal is to prove the relation

$$
\begin{equation*}
y(\widetilde{b} \bar{c})(\widetilde{c} \bar{d})(\widetilde{d} \bar{b}) \widetilde{a} \bar{a}=384 y \tag{8}
\end{equation*}
$$

Since $a a=a b=b a=a c=c a=a d=d a=0$, the left hand side of (8) is equal to $y(\widetilde{b} \bar{c})(\widetilde{c} \bar{d})(\widetilde{d} \bar{b}) a a$. Hence it suffices to show that

$$
\begin{equation*}
y(\widetilde{b} \bar{c})(\widetilde{c} \bar{d})(\widetilde{d} \bar{b})=96 y \tag{9}
\end{equation*}
$$

The left hand side of (9) can be written as the sum

$$
\begin{aligned}
y(b \bar{c})(c \bar{d})(d \bar{b})+y(c \bar{c})(d \bar{d}) & (b \bar{b})+y(d \bar{c})(b \bar{d})(c \bar{b})- \\
& -y(c \bar{c})(b \bar{d})(d \bar{b})-y(d \bar{c})(c \bar{d})(b \bar{b})-y(b \bar{c})(d \bar{d})(c \bar{b}) .
\end{aligned}
$$

Direct computations show that

$$
\begin{aligned}
& y(b \bar{c})(c \bar{d})(d \bar{b})=y(b c)(c d)(d b)+y(b d)(c b)(d c)=4 y a c b+4 y b a c, \\
& y(c \bar{c})(d \bar{d})(b \bar{b})=y(c b)(d c)(b d)+y(c d)(d b)(b c)=4 y a c b+4 y c b a, \\
& y(d \bar{c})(b \bar{d})(c \bar{b})=y(d c)(b d)(c b)+y(d b)(b c)(c d)=4 y c b a+4 y b a c, \\
& -y(c \bar{c})(b \bar{d})(d \bar{b})=y(c d)(b c)(d b)+y(c b)(b d)(d c)=4 y c a b+4 y a b c, \\
& -y(d \bar{c})(c \bar{d})(b \bar{b})=y(d b)(c d)(b c)+y(d c)(c b)(b d)=4 y b c a+4 y c a b, \\
& -y(b \bar{c})(d \bar{d})(c \bar{b})=y(b d)(d c)(c b)+y(b c)(d b)(c d)=4 y b c a+4 y a b c .
\end{aligned}
$$

Since $y b=0$ and $y a b=-2 y b=0$, we obtain

$$
\begin{aligned}
y(\widetilde{b} \bar{c})(\widetilde{c} \bar{d})(\widetilde{d \bar{b}}) & =8 y a c b+8 y c a b+8 y c b a=-16 y c b-8 x a b-8 x b a \\
& =16 x b+16 x b-16 y a=96 y
\end{aligned}
$$

and therefore (9), (8) hold. Equality (8) implies the relation

$$
\begin{equation*}
y \underbrace{(\widetilde{b} \bar{c})(\widetilde{c} \bar{d})(\tilde{d} \bar{b}) \widetilde{a} \bar{a} \cdots(\widetilde{\widetilde{b}} \overline{\bar{c}})(\widetilde{\widetilde{c}} \overline{\bar{d}})(\widetilde{\widetilde{d}} \overline{\bar{b}}) \widetilde{\widetilde{a}} \overline{\bar{a}}}_{m} \neq 0 \tag{10}
\end{equation*}
$$

for any $m \geq 1$. Consider the multilinear polynomial

$$
\begin{aligned}
f_{m}=w\left(\widetilde{x}_{1}^{(1)} \bar{z}_{1}^{(1)}\right)\left(\widetilde{x}_{2}^{(1)} \bar{z}_{2}^{(1)}\right)\left(\widetilde{x}_{3}^{(1)} \bar{z}_{3}^{(1)}\right) & \widetilde{x}_{4}^{(1)} \bar{z}_{4}^{(1)} \ldots \\
& \cdots\left(\widetilde{\widetilde{x}}_{1}^{(m)} \overline{\bar{z}}_{1}^{(m)}\right)\left(\widetilde{\widetilde{x}}_{2}^{(m)} \overline{\bar{z}}_{2}^{(m)}\right)\left(\widetilde{\widetilde{x}}_{3}^{(m)} \overline{\bar{z}}_{3}^{(m)}\right) \widetilde{\widetilde{x}}_{4}^{(m)} \overline{\bar{z}}_{4}^{(m)}
\end{aligned}
$$

of degree $4 m+1$. The polynomial f_{m} depends on $2 m$ alternating sets of variables, each of order four. Moreover, f_{m} assumes a non-zero value under an evaluation $\varphi: X \rightarrow S(2)$ such that

$$
\begin{gathered}
\varphi(w)=y, \quad \varphi\left(x_{1}^{(i)}\right)=b, \quad \varphi\left(x_{2}^{(i)}\right)=c, \quad \varphi\left(x_{3}^{(i)}\right)=d, \quad \varphi\left(x_{4}^{(i)}\right)=a \\
\varphi\left(z_{1}^{(i)}\right)=c, \quad \varphi\left(z_{2}^{(i)}\right)=d, \quad \varphi\left(z_{3}^{(i)}\right)=b, \quad \varphi\left(z_{4}^{(i)}\right)=a, \quad i=1, \ldots, m .
\end{gathered}
$$

Denote $n=8 m$ and consider the S_{n}-action on variables

$$
\left\{x_{j}^{(i)}, z_{j}^{(i)} \mid 1 \leq j \leq 4,1 \leq i \leq m\right\} .
$$

Under this action the subspace

$$
P_{n+1}=P_{n+1}\left(w, x_{j}^{(i)}, z_{j}^{(i)}, 1 \leq j \leq 4,1 \leq i \leq m\right)
$$

becomes an $F S_{n}$-module. The structure of the polynomial f_{m} and the relation $\varphi\left(f_{m}\right) \neq 0$ show that $e_{T_{\lambda}} f_{m}$ is not an identity of $S(2)$, where $e_{T_{\lambda}}$ is the essential idempotent corresponding to some Young tableau T_{λ} with the Young diagram D_{λ} and $\lambda=(2 m, 2 m, 2 m, 2 m) \vdash n$. In particular,

$$
\begin{equation*}
c_{n+1}(S(2)) \geq \operatorname{deg} \chi_{\lambda} . \tag{11}
\end{equation*}
$$

From the hook formula for $\operatorname{deg} \chi_{\lambda}$ and the Stirling formula for factorials we get

$$
\begin{equation*}
\operatorname{deg} \chi_{\lambda} \geq n^{-5} 4^{n} \tag{12}
\end{equation*}
$$

provided that $n=8 m$ and $\lambda=(2 m)^{(4)}$.
The inequalities (11), (12) give us the lower bound for codimensions $c_{n}(S(2))$.
Lemma 4.1. The lower PI-exponent of $S(2)$ satisfies the inequality $\exp (S(2)) \geq 4$.
Proof. Let $n \equiv j(\bmod 8)$ where $0 \leq j \leq 7$. If $j=1$ then $n=8 m+1$ and

$$
c_{n}(S(2)) \geq \frac{4^{n-1}}{(n-1)^{5}} \geq \frac{1}{5 n^{5}} 4^{n}
$$

by (11), (12). If $j \neq 1$ then there exist m and $1 \leq i \leq 8$ such that $n=8 m+1+i$. In this case the polynomial $g=\left(e_{T_{\lambda}} f_{m}\right) u_{1} \cdots u_{i}$ of degree $8 m+1+i=n$ is not an identity of $S(2)$ since $\varphi\left(f_{m}\right)=(384)^{m} y$ for the above mentioned evaluation φ and $y a=-2 y$. Hence

$$
c_{n}(S(2)) \geq 4^{-8} n^{-5} 4^{n} .
$$

Therefore $\exp (S(2)) \geq 4$ and the proof is complete.
We need another lemma to prove the main result of the paper.
Lemma 4.2. Let $m_{\lambda} \neq 0$ in (2) for $A=S(2), \lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. Then either $k \leq 4$ or $k=5$ and $\lambda_{5}=1$.

Proof. Let $m_{\lambda} \neq 0$ and $k>4$. Then there exists a Young tableau T_{λ} such that $e_{T_{\lambda}} f \notin \operatorname{Id}(A)$ for some multilinear polynomial $f=f\left(x_{1}, \ldots, x_{n}\right)$. Recall that

$$
e_{T_{\lambda}}=\left(\sum_{\sigma \in R_{T_{\lambda}}} \sigma\right)\left(\sum_{\tau \in C_{T_{\lambda}}}(\operatorname{sgn} \tau) \tau\right)
$$

where $R_{T_{\lambda}}$ and $C_{T_{\lambda}}$ are the row stabilizer and the column stabilizer of T_{λ} in S_{n}, respectively. Note that the polynomial

$$
g=g\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{\tau \in C_{T_{\lambda}}}(\operatorname{sgn} \tau) \tau\right) e_{T_{\lambda}} f
$$

is also non-identity of A. If $k>5$ then g contains an alternating set of variables $\left\{x_{i_{1}}, \ldots, x_{i_{t}}\right\}$ of order $t \geq 6$. Consider an evaluation $\varphi: X \rightarrow B=\{a, b, c, d, x, y\}$. The linear subspace $J=\langle x, y\rangle \subset A$ is a nilpotent ideal of $A, J^{2}=0$. If at least two of $x_{i_{\alpha}}, 1 \leq \alpha \leq 6$, lie in J then $\varphi(g)=0$. But if $\varphi\left(x_{i_{1}}\right), \ldots, \varphi\left(x_{i_{t}}\right)$ take not more than five distinct values in B then also $\varphi(g)=0$, due to the skew symmetry of g. This contradiction shows that $k \leq 5$. Similar arguments imply the restriction $\lambda_{5} \leq 1$ and hence the proof is complete.

Theorem 4.3. The PI-exponent of the Lie superalgebra $S(2)$ exists and

$$
\exp (S(2))=4
$$

Proof. Because of Lemma 4.1 it suffices to prove the inequality

$$
\begin{equation*}
\overline{\exp }(S(2)) \leq 4 \tag{13}
\end{equation*}
$$

In light of Lemma 4.2, by Lemma 6.2.4 and Lemma 6.2.5 from [9], we have

$$
\operatorname{deg} \chi_{\lambda}<C n^{r} 4^{n}
$$

for some constants C, r if $m_{\lambda} \neq 0$ in (2). Finally, applying Proposition 2.1, we get the inequality (13) and the proof is complete.

5. Graded PI-exponent of $S(2)$

Recall the definition of the graded codimension of a \mathbb{Z}_{2}-graded algebra. Let $A=A_{0} \oplus A_{1}$ be an F-algebra with \mathbb{Z}_{2}-grading. Denote by $F\{X, Y\}$ the free algebra on two infinite sets of generators X and Y. Let all $x \in X$ be even and all $y \in Y$ odd. Then this parity on $X \cup Y$ induces \mathbb{Z}_{2}-grading on $F\{X, Y\}$. A polynomial $f=f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ with $x_{1}, \ldots, x_{m} \in X, y_{1}, \ldots, y_{n} \in Y$ is said to be a graded identity of A if $f=f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=0$ for all $a_{1}, \ldots, a_{m} \in A_{0}, b_{1}, \ldots, b_{n} \in A_{1}$.
Given $0 \leq k \leq n$, denote by $P_{k, n-k}$ the subspace of all multilinear polynomials on $x_{1}, \ldots, x_{k} \in X, y_{1}, \ldots, y_{n-k} \in Y$ and define the integer

$$
c_{k, n-k}(A)=\operatorname{dim} \frac{P_{k, n-k}}{P_{k, n-k} \cap \mathrm{Id}^{\mathrm{gr}}(A)}
$$

where $\mathrm{Id}^{\mathrm{gr}}(A)$ is the ideal of graded identities of A. Then the value

$$
c_{n}^{\mathrm{gr}}(A)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}(A)
$$

is called the graded n-th codimension of A. As in the non-graded case, the limits

$$
\begin{gathered}
\underline{\exp }^{\mathrm{gr}}(A)=\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\mathrm{gr}}(A)}, \quad \overline{\exp }^{\mathrm{gr}}(A)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\mathrm{gr}}(A)}, \\
\exp ^{\mathrm{gr}}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\mathrm{gr}}(A)}
\end{gathered}
$$

are called the lower, the upper and the ordinary graded PI-exponent of A.
The space $P_{k, n-k}$ has a natural $F\left[S_{k} \times S_{n-k}\right]$-module structure where the symmetric groups S_{k} and S_{n-k} act on $\left\{x_{1}, \ldots, x_{k}\right\}$ and on $\left\{y_{1}, \ldots, y_{n-k}\right\}$, respectively. Since $P_{k, n-k} \cap \operatorname{Id}^{\mathrm{gr}}(A)$ is stable under the ($S_{k} \times S_{n-k}$)-action, then the quotient space

$$
P_{k, n-k}(A)=\frac{P_{k, n-k}}{P_{k, n-k} \cap \operatorname{Id}^{\mathrm{gr}}(A)}
$$

is also an $F\left[S_{k} \times S_{n-k}\right]$-module and its $\left(S_{k} \times S_{n-k}\right)$-character has the form

$$
\begin{equation*}
\chi_{k, n-k}(A)=\chi\left(P_{k, n-k}(A)\right)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu} \chi_{\lambda, \mu} . \tag{14}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
c_{k, n-k}(A)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu} \operatorname{deg} \chi_{\lambda} \operatorname{deg} \chi_{\mu} . \tag{15}
\end{equation*}
$$

The sum of multiplicities

$$
l_{n}^{\mathrm{gr}}(A)=\sum_{k=0}^{n} \sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu}
$$

is called n-th graded colength of A and is polynomially bounded if $\operatorname{dim} A<\infty$ (see [23]) that is, there are constants C, r such that

$$
\begin{equation*}
l_{n}^{\mathrm{gr}}(A) \leq C n^{r} \tag{16}
\end{equation*}
$$

Recall that $A_{0}=\langle a, d, x\rangle, A_{1}=\langle b, d, y\rangle$ for our superalgebra $A=S(2)$ and x, y belong to nilpotent ideal $J, J^{2}=0$.
The same argument as in the proof of Lemma 4.2 gives us the following result.
Lemma 5.1. Let $A=S(2)$ and let $m_{\lambda, \mu} \neq 0$ in (14). Then $\lambda=\left(\lambda_{1}\right)$ or $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ or $\lambda=\left(\lambda_{1}, \lambda_{2}, 1\right)$ and $\mu=\left(\mu_{1}\right)$ or $\mu=\left(\mu_{1}, \mu_{2}\right)$ or $\mu=\left(\mu_{1}, \mu_{2}, 1\right)$.

As a consequence of Lemma 5.1 and Lemmas 6.2.4, 6.2.5 from [9] we get the following statement.

Lemma 5.2. There are constants c, r_{0}, c_{1}, r_{1} not depending on k such that

$$
\operatorname{deg} \chi_{\lambda} \leq c_{0} n^{r_{0}} 2^{k}, \quad \operatorname{deg} \chi_{\mu} \leq c_{1} n^{r_{1}} 2^{k}
$$

for all $\lambda \vdash k, \mu \vdash(n-k)$ if $m_{\lambda, \mu} \neq 0$ in (14).

Our final result says that $\exp (S(2))$ and $\exp ^{\mathrm{gr}}(S(2))$ coincide.
Theorem 5.3. $\quad \exp (S(2))=\exp ^{\mathrm{gr}}(S(2))=4$.
Proof. It is well-known (see [1]) that $c_{n}(A) \leq c_{n}^{\mathrm{gr}}(A)$ for any group graded algebra A. Hence, by Theorem 4.3,

$$
\begin{align*}
& \underline{\exp }^{\mathrm{gr}}(S(2)) \geq 4 . \tag{17}\\
& \overline{\exp }^{\mathrm{gr}}(S(2)) \leq 4 . \tag{18}
\end{align*}
$$

By (16), Lemma 5.1 and Lemma 5.2, we have

$$
c_{k, n-k}(S(2)) \leq c_{3} n^{r_{3}} 2^{k} 2^{n-k}=c_{3} n^{r_{3}} 2^{n}
$$

for some constants c_{3}, r_{3}. Then by definition of graded codimensions,

$$
c_{n}^{\mathrm{gr}}(S(2)) \leq c_{3} n^{r_{3}} 2^{n} \sum_{k}\binom{n}{k}=c_{3} n^{r_{3}} 4^{n}
$$

The latter relation proves (18), and the proof is complete.

References

[1] Y. Bahturin, V.Drensky: Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002) 15-34.
[2] O. A. Bogdanchuk, S.P. Mishchenko, A. B. Verëvkin: On Lie algebras with exponential growth of the codimensions, Serdica Math. J. 40 (2014) 209-240.
[3] A. Giambruno, S. Mishchenko, M. Zaicev: Algebras with intermediate growth of the codimensions, Adv. in Appl. Math. 37 (2006) 360-377.
[4] A. Giambruno, A.Regev, M. Zaicev: On the codimension growth of finitedimensional Lie algebras, J. Algebra 220 (1999) 466-474.
[5] A. Giambruno, A. Regev, M. Zaicev: Simple and semisimple Lie algebras and codimension growth, Trans. Amer. Math. Soc. 352 (2000) 1935-1946.
[6] A. Giambruno, I. Shestakov, M. Zaicev: Finite-dimensional non-associative algebras and codimension growth, Adv. in Appl. Math. 47 (2011) 125-139.
[7] A. Giambruno, M. Zaicev: On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145-155.
[8] A. Giambruno, M. Zaicev: Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999) 221-243.
[9] A. Giambruno, M. Zaicev: Polynomial Identities and Asymptotic Methods, American Mathematical Society, Providence (2005).
[10] A. Giambruno, M. Zaicev: Multialternating Jordan polynomials and codimension growth of matrix algebras, Linear Algebra Appl. 422 (2007) 372-379.
[11] A. Giambruno, M. Zaicev: Codimension growth of special simple Jordan algebras, Trans. Amer. Math. Soc. 362 (2010) 3107-3123.
[12] A. Giambruno, M. Zaicev: On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2) 85 (2012) 534-548.
[13] G. James, A. Kerber: The representation theory of the symmetric group, AddisonWesley, Reading (1981).
[14] V.Latysev: On Regev's theorem on identities in a tensor product of PI-algebras, Uspehi Mat. Nauk 27 (1972) 213-214.
[15] A. Regev: Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972) 131-152.
[16] D. Repovš, M. Zaicev: On identities of infinite dimensional Lie superalgebras, Proc. Amer. Math. Soc. 141 (2013) 4139-4153.
[17] M. Scheunert: The Theory of Lie Superalgebras. An Introduction, Springer, Berlin et al. (1979).
[18] A. B. Verevkin, M. V. Zaitsev, S. P. Mishchenko: A sufficient condition for the coincidence of lower and upper exponents of a variety of linear algebras, Moscow Univ. Math. Bull. 66 (2011) 86-89.
[19] O. M. Di Vincenzo, P. Koshlukov, A. Valenti: Gradings and graded identities for the upper triangular matrices over an infinite field, in: Groups, Rings and Group Rings, Lect. Notes Pure Appl. Math. 248, Chapman \& Hall, Boca Raton (2006) 91-103.
[20] M. V. Zaitsev: Identities of affine Kac-Moody algebras, Moscow Univ. Math. Bull. 51 (1996) 29-31.
[21] M. V. Zaitsev: Varieties of affine Kac-Moody algebras, Math. Notes 62 (1997) 8086.
[22] M. V. Zaitsev: Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Math. 66 (2002) 463-487.
[23] M. V. Zaicev: Graded identities in finite-dimensional algebras of codimensions of identities in associative algebras, Moscow Univ. Math. Bull. 70 (2015) 234-236.
[24] M. V. Zaicev, S. Mishchenko: An example of a variety of Lie algebras with a fractional exponent, J. Math. Sci. (New York) 93 (1999) 977-982.
[25] M. V.Zaitsev, S.P. Mishchenko: Identities of Lie superalgebras with a nilpotent commutator, Algebra Logic 47 (2008) 348-364.

Dušan D. Repovš
Faculty of Education and
Faculty of Mathematics \& Physics
University of Ljubljana
Ljubljana, 1000
Slovenia
dusan.repovs@guest.arnes.si

Mikhail V. Zaicev
Department of Algebra
Faculty of Mathematics \& Mechanics
Moscow State University
Moscow, 119992
Russia
zaicevmv@mail.ru

Received April 10, 2018
and in final form August 31, 2018

[^0]: *The first author was supported by the Slovenian Research Agency grants P1-0292, J1-7025, J1-8131, N1-0064 and BI-RU/16-18-002. The second author was supported by the Russian Science Foundation grant 16-11-10013. We thank the referee for valuable comments and suggestions.

