Codimension Growth of Solvable Lie Superalgebras

Dušan D. Repovš and Mikhail V. Zaicev *

Communicated by D. A. Timashev

Abstract. We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with non-nilpotent derived subalgebra L' and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of $\exp(L)$.

Mathematics Subject Classification: Primary 17B01, 16P90; secondary 15A30, 16R10.

Key Words and Phrases: Polynomial identities, Lie superalgebras, graded identities, codimensions, exponential growth.

1. Introduction

Let A be an algebra over a field F of characteristic zero. One can define an infinite sequence $\{c_n(A)\}, n = 1, 2, ..., of$ non-negative integers associated with A called codimension sequence. It measures the quantity of polynomial identities of A. For many classes of algebras the sequence $\{c_n(A)\}$ is exponentially bounded. In particular, this holds for associative PI-algebras [14], [15], for finite-dimensional algebras [1], [11], for Kac-Moody Lie algebras [20], [21], and many others. In this case the sequence $(c_n(A))^{1/n}$ has the lower and upper limits $\underline{\exp}(A)$ and the $\overline{\underline{\exp}}(A)$ called the lower and upper PI-exponents of A, respectively. If $\underline{\exp}(A) = \overline{\underline{\exp}}(A)$ then there exists an ordinary limit called the PI-exponent $\underline{\exp}(A)$ of A. At the end of 1980's Amitsur conjectured that $\underline{\exp}(A)$ exists and is an integer for every associative PI-algebra A. Amitsur's conjecture was proved in [7], [8]. Later the existence and integrality of PI-exponent was proved for finite-dimensional Lie and Jordan algebras [4], [5], [6], [10], [11], [22]. On the other hand, there are infinitedimensional solvable Lie algebras with fractional PI-exponents [2], [18], [24].

None of these results can be generalized to Lie superalgebras. There is an infinite series of finite-dimensional superalgebras P(t), $t \ge 2$, where all $P(3), P(4), \ldots$ are simple whereas P(2) is not. For L = P(2) it was proved in [12] that $\exp(L)$ exists and is not an integer. Due to [12], there is a serious reason to expect that PI-exponent is fractional for any simple superalgebra P(t), $t \ge 3$.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

^{*}The first author was supported by the Slovenian Research Agency grants P1-0292, J1-7025, J1-8131, N1-0064 and BI-RU/16-18-002. The second author was supported by the Russian Science Foundation grant 16-11-10013. We thank the referee for valuable comments and suggestions.

For infinite-dimensional Lie superalgebras only some partial results are known [16], [25]. In particular, in [25] it was shown that PI-exponent of a Lie superalgebra L exists and is an integer, provided that its commutator subalgebra L^2 is nilpotent. Note that by the Lie Theorem, the subalgebra L^2 is nilpotent for any finite-dimensional solvable Lie algebra L. Unfortunately, finite-dimensional Lie superalgebras in general do not satisfy this condition. Hence the result of [25] cannot be applied to finite-dimensional solvable Lie superalgebras. Although there are examples of finite-dimensional Lie superalgebras with the fractional PI-exponent, the following conjecture looks natural: Is it true that any finite-dimensional solvable Lie superalgebra has an integer exponent?

In this paper we construct new series of finite-dimensional solvable Lie superalgebras S(t), t = 2, 3, ..., with non-nilpotent derived subalgebras. For S(2) we prove the existence and integrality of PI-exponent (Theorem 4.3). We also discuss the following related question concerning graded identities. Every Lie superalgebra $L = L_0 \oplus L_1$ is endowed by the natural \mathbb{Z}_2 -grading. Hence one can also study asymptotic behavior of graded codimension sequence $\{c_n^{\rm gr}(L)\}$. It was mentioned in [1] that $c_n(A) \leq c_n^{\rm gr}(A)$ for any algebra $A = \bigoplus_{g \in G} A_g$ graded by a finite group G. Hence $\exp(A) \leq \exp^{\rm gr}(A)$. In the associative case there are examples where this inequality is strong. For instance, if A = F[G] is the group algebra of a finite abelian group G then $\exp(A) = 1$ whereas $\exp^{\rm gr}(A) = |G|$. For Lie superalgebras similar examples are unknown. On the other hand, there are many examples of simple (associative and nonassociative) algebras with $\exp^{\rm gr}(A) = \exp(A)$. In the present paper we give the first example in the class of solvable Lie superalgebras, namely, we prove that $\exp^{\rm gr}(S(2)) = \exp(S(2))$ (Theorem 5.3).

2. Generalities

Let A be an algebra over F and let $F\{X\}$ be the absolutely free algebra over F with an infinite set of generators X. A non-associative polynomial $f = f(x_1, \ldots, x_n) \in F\{X\}$ is said to be an *identity* of A if $f(a_1, \ldots, a_n) = 0$ for any $a_1, \ldots, a_n \in A$. All identities of A form an ideal Id(A) of $F\{X\}$.

Denote by P_n the subspace in $F\{X\}$ of all multilinear polynomials on $x_1, \ldots, x_n \in X$. Then $P_n \cap Id(A)$ is the set of all multilinear identities of A of degree n. Since char F = 0, the sequence of subspaces

$$\{P_n \cap \mathrm{Id}(A)\}, \qquad n = 1, 2, \dots,$$

completely defines the ideal Id(A). Denote

$$P_n(A) = \frac{P_n}{P_n \cap \mathrm{Id}(A)}$$
 and $c_n(A) = \dim P_n(A).$

The sequence of integers $\{c_n(A)\}$, n = 1, 2, ..., called the *codimension sequence* of A, is an important numerical characteristic of Id(A). The analysis of the asymptotic behavior of $\{c_n(A)\}$ is one of the main approaches of the study of identities of algebras.

As it was mentioned in the introduction, there is a wide class of algebras A such that $c_n(A) \leq a^n$ for some constant a. In this case one can define the *lower* and the *upper* PI-exponents of A as follows:

$$\underline{\exp}(A) = \liminf_{n \to \infty} \sqrt[n]{c_n(A)}, \qquad \overline{\exp}(A) = \limsup_{n \to \infty} \sqrt[n]{c_n(A)},$$

respectively. If the ordinary limit exists we can define the (ordinary) PI-exponent

$$\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}.$$

A powerful tool for computing codimensions is the representation theory of the symmetric group S_n . One can define an S_n -action on the subspace P_n of multi-linear polynomials by setting

$$\sigma f(x_1,\ldots,x_n) = f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

for $\sigma \in S_n$. Then P_n becomes an FS_n -module. Since $P_n \cap Id(A)$ is stable under S_n -action, then $P_n(A)$ is also an FS_n -module and its S_n -character

$$\chi_n(A) = \chi(P_n(A))$$

is called the *n*-th *cocharacter* of A. By Maschke's Theorem, $P_n(A)$ is completely reducible, so

$$\chi_n(A) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda \tag{1}$$

where χ_{λ} is the irreducible S_n -character corresponding to the partition λ of n. All details concerning S_n -representations can be found in [13]. The total sum of multiplicities in (1) is called the *n*-th *colength* of A,

$$l_n(A) = \sum_{\lambda \vdash n} m_{\lambda}.$$
$$c_n(A) = \sum_{\lambda \vdash n} m_{\lambda} d_{\lambda}$$
(2)

where $d_{\lambda} = \deg \chi_{\lambda}$ is the dimension of the corresponding irreducible representation and the multiplicities m_{λ} are taken from (1). It is well-known that the colength sequence $\{l_n(A)\}$ is polynomially bounded for any finite-dimensional algebra A.

Proposition 2.1 ([3, Theorem 1]). Let dim A = d. Then, for all $n \ge 1$,

Clearly,

$$l_n(A) \le d(n+1)^{d^2+d}.$$

Throughout the paper we will omit brackets in left-normed products in non-associative algebras, i.e., abc = (ab)c, abcd = (abc)d, etc.

3. Lie superalgebras S(t)

In this section we introduce an infinite series of finite-dimensional solvable Lie superalgebras with non-nilpotent commutator subalgebra.

First, let R be an arbitrary associative algebra with involution $*: R \to R$. Consider an associative algebra Q consisting of (2×2) -matrices over R

$$Q = \left\{ \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \middle| A, B, C, D \in R \right\}.$$

The algebra Q can be naturally endowed by \mathbb{Z}_2 -grading $Q = Q_0 \oplus Q_1$, where

$$Q_0 = \left\{ \left(\begin{array}{cc} A & 0 \\ 0 & D \end{array} \right) \right\}, \quad Q_1 = \left\{ \left(\begin{array}{cc} 0 & B \\ C & 0 \end{array} \right) \right\}.$$

It is well-known that if we define a (super) commutator brackets by setting

$$[x, y] = xy - (-1)^{|x||y|} yx$$

for homogeneous $x, y \in Q_0 \cup Q_1$, where |x| = 0 if $x \in Q_0$ and |x| = 1 if $x \in Q_1$, then Q becomes a Lie superalgebra. For basic notions of super Lie theory we refer to [17]. Denote by

$$R^{+} = \{ x \in R | x^{*} = x \}, \quad R^{-} = \{ y \in R | y^{*} = -y \},$$

the subspaces of symmetric and skew elements of R, respectively. Then the subspace

$$L = \left\{ \begin{pmatrix} x & y \\ z & -x^* \end{pmatrix} \middle| x \in R, y \in R^+, z \in R^- \right\} = L_0 \oplus L_1$$
(3)

of Q is a Lie superalgebra under the supercommutator product defined above, where even and odd components are

$$L_0 = \left\{ \left(\begin{array}{cc} x & 0 \\ 0 & -x* \end{array} \right) \right\}, \quad L_1 = \left\{ \left(\begin{array}{cc} 0 & y \\ z & 0 \end{array} \right) \right\}.$$

Note that if $R = M_t(F)$ is a $(t \times t)$ -matrix algebra, $t \ge 3$, then its subalgebra $\widetilde{L} \subset L$ consisting of the matrix

$$\left\{ \left(\begin{array}{cc} x & y \\ z & -x^* \end{array} \right) \right\}$$

with traceless matrices x where $x \to x^*$ is the transpose involution is a well-known simple Lie superalgebra P(t) (or b(t) in the notations of [17]).

Now we clarify the structure of R in our case. Let $R = UT_t(F)$ be an algebra of $(t \times t)$ -upper triangular matrices over F. It is well-known (see, for example, [19]) that the reflection across the secondary diagonal is the involution on R, hence L defined in (3) is a finite-dimensional Lie superalgebra. We denote this superalgebra by S(t). Its even component $S_0 \simeq UT_t(F)$ is solvable hence the entire L is also solvable (see, for example, [17]). It is not difficult to check that the derived subalgebra L^2 is not nilpotent and we get the following conclusion. **Proposition 3.1.** Let R be the upper triangular $(t \times t)$ -matrix algebra with the involution $*: R \to R$, the reflection across the secondary diagonal. Then $S(t) = L = L_0 \oplus L_1$ well-defined in (3) is a finite-dimensional solvable Lie superalgebra, dim L = t(t + 1), with non-nilpotent commutator subalgebra.

Now we will have to deal with the Lie superalgebra S(2). First, we compute supercommutators in the associative superalgebra $Q \simeq UT_2(F) \otimes M_2(F)$. If A, B, C and D are 2×2 -matrices then

$$\left[\begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix}, \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \right] = \begin{pmatrix} 0 & AB + BA^* \\ 0 & 0 \end{pmatrix}, \tag{4}$$

$$\left[\begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \right] = \begin{pmatrix} 0 & 0 \\ -A^*C - CA & 0 \end{pmatrix},$$
(5)

$$\left[\begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix}, \begin{pmatrix} B & 0 \\ 0 & -B^* \end{pmatrix} \right] = \begin{pmatrix} AB - BA & 0 \\ 0 & -(AB - BA)^* \end{pmatrix}, \quad (6)$$

$$\left[\begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \right] = \begin{pmatrix} BC & 0 \\ 0 & CB \end{pmatrix}.$$
(7)

From now on, we will not use associative multiplication and will omit square brackets in the product of elements of Lie superalgebra S(2). That is, xy = [x, y], xyz = [[x, y], z] and so on for $x, y, z \in S(2)$. Let e_{11}, e_{12} and e_{22} be (2×2) -matrix units. Then $e_{11}^* = e_{22}, e_{22}^* = e_{11}, e_{12}^* = e_{12}$ in R and the matrices

$$a = \begin{pmatrix} e_{11} - e_{22} & 0\\ 0 & e_{11} - e_{22} \end{pmatrix}, \quad b = \begin{pmatrix} 0 & e_{11} + e_{22}\\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 0\\ e_{11} - e_{22} & 0 \end{pmatrix},$$
$$d = \begin{pmatrix} e_{11} + e_{22} & 0\\ 0 & -e_{11} - e_{22} \end{pmatrix}, \quad x = \begin{pmatrix} e_{12} & 0\\ 0 & -e_{12} \end{pmatrix}, \quad y = \begin{pmatrix} 0 & e_{12}\\ 0 & 0 \end{pmatrix}$$

form a basis of S(2). By definition a, d and x are even whereas b, c and y are odd. Using (4), (5), (6), (7) we can compute all nonzero products of basis elements,

$$bc = cb = a$$
, $bd = -db = -2b$, $cd = -dc = 2c$, $xa = -ax = -2x$,
 $xb = -bx = 2y$, $ya = -ay = -2y$, $yc = cy = -x$, $yd = -dy = -2y$.

4. PI-exponent of S(2)

Since we will have to deal with multialternating sets of arguments in multilinear and multihomogeneous expressions, it is convenient to use the following agreement. If $f = f(x_1, \ldots, x_n, y_1, \ldots, y_k)$ is a non-associative polynomial, multilinear on x_1, \ldots, x_n , then we denote the result of alternation of f on x_1, \ldots, x_n by marking all x_1, \ldots, x_n by one and the same symbol over x_i 's. For example,

$$\bar{x}_{1}y\bar{x}_{2}\bar{x}_{3} = \sum_{\sigma \in S_{3}} (\operatorname{sgn} \sigma)x_{\sigma(1)}yx_{\sigma(2)}x_{\sigma(3)}, \text{ or} (y\bar{x}_{1}\tilde{x}_{1})(\bar{x}_{2}\tilde{x}_{2})(\bar{x}_{3}\tilde{x}_{3}) = = \sum_{\sigma \in S_{3}} \sum_{\tau \in S_{3}} (\operatorname{sgn} \sigma)(\operatorname{sgn} \tau)(yx_{\sigma(1)}x_{\tau(1)})(x_{\sigma(2)}x_{\tau(2)})(x_{\sigma(3)}x_{\tau(3)}).$$

Our next goal is to prove the relation

$$y(\tilde{b}\bar{c})(\tilde{c}\bar{d})(\tilde{d}\ \bar{b})\tilde{a}\bar{a} = 384y.$$
(8)

Since aa = ab = ba = ac = ca = ad = da = 0, the left hand side of (8) is equal to $y(\tilde{b}\bar{c})(\tilde{c}\bar{d})(\tilde{d}|\bar{b})aa$. Hence it suffices to show that

$$y(\tilde{b}\bar{c})(\tilde{c}\bar{d})(\tilde{d}\ \bar{b}) = 96y.$$
(9)

The left hand side of (9) can be written as the sum

$$\begin{aligned} y(b\bar{c})(c\bar{d})(d\bar{b}) + y(c\bar{c})(d\bar{d})(b\bar{b}) + y(d\bar{c})(b\bar{d})(c\bar{b}) - \\ &- y(c\bar{c})(b\bar{d})(d\bar{b}) - y(d\bar{c})(c\bar{d})(b\bar{b}) - y(b\bar{c})(d\bar{d})(c\bar{b}). \end{aligned}$$

Direct computations show that

$$\begin{split} y(b\bar{c})(cd)(db) &= y(bc)(cd)(db) + y(bd)(cb)(dc) = 4yacb + 4ybac, \\ y(c\bar{c})(d\bar{d})(b\bar{b}) &= y(cb)(dc)(bd) + y(cd)(db)(bc) = 4yacb + 4ycba, \\ y(d\bar{c})(b\bar{d})(c\bar{b}) &= y(dc)(bd)(cb) + y(db)(bc)(cd) = 4ycba + 4ybac, \\ -y(c\bar{c})(b\bar{d})(d\bar{b}) &= y(cd)(bc)(db) + y(cb)(bd)(dc) = 4ycab + 4yabc, \\ -y(d\bar{c})(c\bar{d})(b\bar{b}) &= y(db)(cd)(bc) + y(dc)(cb)(bd) = 4ybca + 4ycab, \\ -y(b\bar{c})(d\bar{d})(c\bar{b}) &= y(bd)(dc)(cb) + y(bc)(db)(cd) = 4ybca + 4yabc. \end{split}$$

Since yb = 0 and yab = -2yb = 0, we obtain

$$y(\tilde{b}\bar{c})(\tilde{c}\bar{d})(\tilde{d}\bar{b}) = 8yacb + 8ycab + 8ycba = -16ycb - 8xab - 8xba$$
$$= 16xb + 16xb - 16ya = 96y$$

and therefore (9), (8) hold. Equality (8) implies the relation

$$y\underbrace{(\tilde{b}\bar{c})(\tilde{c}\bar{d})(\tilde{d}\ \bar{b})\tilde{a}\bar{a}\cdots(\tilde{\tilde{b}}\bar{\bar{c}})(\tilde{\tilde{c}}\bar{\bar{d}})(\tilde{\tilde{d}}\ \bar{\bar{b}})\tilde{\tilde{a}}\bar{\bar{a}}}_{m} \neq 0$$
(10)

for any $m \ge 1$. Consider the multilinear polynomial

$$f_m = w(\widetilde{x}_1^{(1)} \overline{z}_1^{(1)})(\widetilde{x}_2^{(1)} \overline{z}_2^{(1)})(\widetilde{x}_3^{(1)} \overline{z}_3^{(1)})\widetilde{x}_4^{(1)} \overline{z}_4^{(1)} \cdots \\ \cdots (\widetilde{\widetilde{x}}_1^{(m)} \overline{\overline{z}}_1^{(m)})(\widetilde{\widetilde{x}}_2^{(m)} \overline{\overline{z}}_2^{(m)})(\widetilde{\widetilde{x}}_3^{(m)} \overline{\overline{z}}_3^{(m)})\widetilde{\widetilde{x}}_4^{(m)} \overline{\overline{z}}_4^{(m)}$$

of degree 4m+1. The polynomial f_m depends on 2m alternating sets of variables, each of order four. Moreover, f_m assumes a non-zero value under an evaluation $\varphi \colon X \to S(2)$ such that

$$\varphi(w) = y, \quad \varphi(x_1^{(i)}) = b, \quad \varphi(x_2^{(i)}) = c, \quad \varphi(x_3^{(i)}) = d, \quad \varphi(x_4^{(i)}) = a,$$
$$\varphi(z_1^{(i)}) = c, \quad \varphi(z_2^{(i)}) = d, \quad \varphi(z_3^{(i)}) = b, \quad \varphi(z_4^{(i)}) = a, \qquad i = 1, \dots, m.$$

Denote n = 8m and consider the S_n -action on variables

$$\{x_j^{(i)}, z_j^{(i)} \mid 1 \le j \le 4, \ 1 \le i \le m\}.$$

Under this action the subspace

$$P_{n+1} = P_{n+1}(w, x_j^{(i)}, z_j^{(i)}, \ 1 \le j \le 4, \ 1 \le i \le m)$$

becomes an FS_n -module. The structure of the polynomial f_m and the relation $\varphi(f_m) \neq 0$ show that $e_{T_\lambda} f_m$ is not an identity of S(2), where e_{T_λ} is the essential idempotent corresponding to some Young tableau T_λ with the Young diagram D_λ and $\lambda = (2m, 2m, 2m, 2m) \vdash n$. In particular,

$$c_{n+1}(S(2)) \ge \deg \chi_{\lambda}.$$
(11)

From the hook formula for deg χ_{λ} and the Stirling formula for factorials we get

$$\deg \chi_{\lambda} \ge n^{-5} 4^n, \tag{12}$$

provided that n = 8m and $\lambda = (2m)^{(4)}$.

The inequalities (11), (12) give us the lower bound for codimensions $c_n(S(2))$.

Lemma 4.1. The lower PI-exponent of S(2) satisfies the inequality $\underline{\exp}(S(2)) \ge 4$.

Proof. Let $n \equiv j \pmod{8}$ where $0 \le j \le 7$. If j = 1 then n = 8m + 1 and

$$c_n(S(2)) \ge \frac{4^{n-1}}{(n-1)^5} \ge \frac{1}{5n^5} 4^n$$

by (11), (12). If $j \neq 1$ then there exist m and $1 \leq i \leq 8$ such that n = 8m + 1 + i. In this case the polynomial $g = (e_{T_{\lambda}}f_m)u_1 \cdots u_i$ of degree 8m + 1 + i = n is not an identity of S(2) since $\varphi(f_m) = (384)^m y$ for the above mentioned evaluation φ and ya = -2y. Hence

$$c_n(S(2)) \ge 4^{-8}n^{-5}4^n.$$

Therefore $\underline{\exp}(S(2)) \ge 4$ and the proof is complete.

We need another lemma to prove the main result of the paper.

Lemma 4.2. Let $m_{\lambda} \neq 0$ in (2) for A = S(2), $\lambda = (\lambda_1, \ldots, \lambda_k)$. Then either $k \leq 4$ or k = 5 and $\lambda_5 = 1$.

Proof. Let $m_{\lambda} \neq 0$ and k > 4. Then there exists a Young tableau T_{λ} such that $e_{T_{\lambda}}f \notin \mathrm{Id}(A)$ for some multilinear polynomial $f = f(x_1, \ldots, x_n)$. Recall that

$$e_{T_{\lambda}} = \left(\sum_{\sigma \in R_{T_{\lambda}}} \sigma\right) \left(\sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau) \tau\right)$$

where $R_{T_{\lambda}}$ and $C_{T_{\lambda}}$ are the row stabilizer and the column stabilizer of T_{λ} in S_n , respectively. Note that the polynomial

$$g = g(x_1, \dots, x_n) = \left(\sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau) \tau\right) e_{T_{\lambda}} f$$

is also non-identity of A. If k > 5 then g contains an alternating set of variables $\{x_{i_1}, \ldots, x_{i_t}\}$ of order $t \ge 6$. Consider an evaluation $\varphi \colon X \to B = \{a, b, c, d, x, y\}$. The linear subspace $J = \langle x, y \rangle \subset A$ is a nilpotent ideal of A, $J^2 = 0$. If at least two of x_{i_α} , $1 \le \alpha \le 6$, lie in J then $\varphi(g) = 0$. But if $\varphi(x_{i_1}), \ldots, \varphi(x_{i_t})$ take not more than five distinct values in B then also $\varphi(g) = 0$, due to the skew symmetry of g. This contradiction shows that $k \le 5$. Similar arguments imply the restriction $\lambda_5 \le 1$ and hence the proof is complete.

Theorem 4.3. The PI-exponent of the Lie superalgebra S(2) exists and

$$\exp(S(2)) = 4$$

Proof. Because of Lemma 4.1 it suffices to prove the inequality

$$\overline{\exp}(S(2)) \le 4. \tag{13}$$

In light of Lemma 4.2, by Lemma 6.2.4 and Lemma 6.2.5 from [9], we have

$$\deg \chi_{\lambda} < Cn^r 4^r$$

for some constants C, r if $m_{\lambda} \neq 0$ in (2). Finally, applying Proposition 2.1, we get the inequality (13) and the proof is complete.

5. Graded PI-exponent of S(2)

Recall the definition of the graded codimension of a \mathbb{Z}_2 -graded algebra. Let $A = A_0 \oplus A_1$ be an F-algebra with \mathbb{Z}_2 -grading. Denote by $F\{X, Y\}$ the free algebra on two infinite sets of generators X and Y. Let all $x \in X$ be even and all $y \in Y$ odd. Then this parity on $X \cup Y$ induces \mathbb{Z}_2 -grading on $F\{X, Y\}$. A polynomial $f = f(x_1, \ldots, x_m, y_1, \ldots, y_n)$ with $x_1, \ldots, x_m \in X, y_1, \ldots, y_n \in Y$ is said to be a graded identity of A if $f = f(a_1, \ldots, a_m, b_1, \ldots, b_n) = 0$ for all $a_1, \ldots, a_m \in A_0, b_1, \ldots, b_n \in A_1$.

Given $0 \le k \le n$, denote by $P_{k,n-k}$ the subspace of all multilinear polynomials on $x_1, \ldots, x_k \in X, y_1, \ldots, y_{n-k} \in Y$ and define the integer

$$c_{k,n-k}(A) = \dim \frac{P_{k,n-k}}{P_{k,n-k} \cap \mathrm{Id}^{\mathrm{gr}}(A)}$$

where $\mathrm{Id}^{\mathrm{gr}}(A)$ is the ideal of graded identities of A. Then the value

$$c_n^{\rm gr}(A) = \sum_{k=0}^n \binom{n}{k} c_{k,n-k}(A)$$

is called the graded n-th codimension of A. As in the non-graded case, the limits

$$\underline{\exp}^{\mathrm{gr}}(A) = \liminf_{n \to \infty} \sqrt[n]{c_n^{\mathrm{gr}}(A)}, \qquad \overline{\exp}^{\mathrm{gr}}(A) = \limsup_{n \to \infty} \sqrt[n]{c_n^{\mathrm{gr}}(A)},$$
$$\exp^{\mathrm{gr}}(A) = \lim_{n \to \infty} \sqrt[n]{c_n^{\mathrm{gr}}(A)}$$

are called the *lower*, the *upper* and the *ordinary graded* PI-*exponent* of A.

The space $P_{k,n-k}$ has a natural $F[S_k \times S_{n-k}]$ -module structure where the symmetric groups S_k and S_{n-k} act on $\{x_1, \ldots, x_k\}$ and on $\{y_1, \ldots, y_{n-k}\}$, respectively. Since $P_{k,n-k} \cap \operatorname{Id}^{\operatorname{gr}}(A)$ is stable under the $(S_k \times S_{n-k})$ -action, then the quotient space

$$P_{k,n-k}(A) = \frac{P_{k,n-k}}{P_{k,n-k} \cap \operatorname{Id}^{\operatorname{gr}}(A)}$$

is also an $F[S_k \times S_{n-k}]$ -module and its $(S_k \times S_{n-k})$ -character has the form

$$\chi_{k,n-k}(A) = \chi(P_{k,n-k}(A)) = \sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda,\mu} \chi_{\lambda,\mu}.$$
 (14)

In particular,

$$c_{k,n-k}(A) = \sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda,\mu} \deg \chi_{\lambda} \deg \chi_{\mu}.$$
 (15)

The sum of multiplicities

$$l_n^{\rm gr}(A) = \sum_{k=0}^n \sum_{\lambda \vdash k \atop \mu \vdash n-k} m_{\lambda,\mu}$$

is called *n*-th graded colength of A and is polynomially bounded if dim $A < \infty$ (see [23]) that is, there are constants C, r such that

$$l_n^{\rm gr}(A) \le C n^r. \tag{16}$$

Recall that $A_0 = \langle a, d, x \rangle$, $A_1 = \langle b, d, y \rangle$ for our superalgebra A = S(2) and x, y belong to nilpotent ideal J, $J^2 = 0$.

The same argument as in the proof of Lemma 4.2 gives us the following result.

Lemma 5.1. Let A = S(2) and let $m_{\lambda,\mu} \neq 0$ in (14). Then $\lambda = (\lambda_1)$ or $\lambda = (\lambda_1, \lambda_2)$ or $\lambda = (\lambda_1, \lambda_2, 1)$ and $\mu = (\mu_1)$ or $\mu = (\mu_1, \mu_2)$ or $\mu = (\mu_1, \mu_2, 1)$.

As a consequence of Lemma 5.1 and Lemmas 6.2.4, 6.2.5 from [9] we get the following statement.

Lemma 5.2. There are constants c_1r_0, c_1, r_1 not depending on k such that

$$\deg \chi_{\lambda} \le c_0 n^{r_0} 2^k, \qquad \deg \chi_{\mu} \le c_1 n^{r_1} 2^k$$

for all $\lambda \vdash k$, $\mu \vdash (n-k)$ if $m_{\lambda,\mu} \neq 0$ in (14).

Our final result says that $\exp(S(2))$ and $\exp^{\operatorname{gr}}(S(2))$ coincide.

Theorem 5.3. $\exp(S(2)) = \exp^{\operatorname{gr}}(S(2)) = 4.$

Proof. It is well-known (see [1]) that $c_n(A) \leq c_n^{\text{gr}}(A)$ for any group graded algebra A. Hence, by Theorem 4.3,

$$\underline{\exp}^{\mathrm{gr}}(S(2)) \ge 4. \tag{17}$$

Let us prove that

$$\overline{\exp}^{\mathrm{gr}}(S(2)) \le 4. \tag{18}$$

By (16), Lemma 5.1 and Lemma 5.2, we have

$$c_{k,n-k}(S(2)) \le c_3 n^{r_3} 2^k 2^{n-k} = c_3 n^{r_3} 2^n$$

for some constants c_3, r_3 . Then by definition of graded codimensions,

$$c_n^{\rm gr}(S(2)) \le c_3 n^{r_3} 2^n \sum_k \binom{n}{k} = c_3 n^{r_3} 4^n.$$

The latter relation proves (18), and the proof is complete.

References

- Y. Bahturin, V. Drensky: Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002) 15–34.
- [2] O. A. Bogdanchuk, S. P. Mishchenko, A. B. Verëvkin: On Lie algebras with exponential growth of the codimensions, Serdica Math. J. 40 (2014) 209–240.
- [3] A. Giambruno, S. Mishchenko, M. Zaicev: Algebras with intermediate growth of the codimensions, Adv. in Appl. Math. 37 (2006) 360–377.
- [4] A. Giambruno, A. Regev, M. Zaicev: On the codimension growth of finitedimensional Lie algebras, J. Algebra 220 (1999) 466–474.
- [5] A. Giambruno, A. Regev, M. Zaicev: Simple and semisimple Lie algebras and codimension growth, Trans. Amer. Math. Soc. 352 (2000) 1935–1946.
- [6] A. Giambruno, I. Shestakov, M. Zaicev: Finite-dimensional non-associative algebras and codimension growth, Adv. in Appl. Math. 47 (2011) 125–139.
- [7] A. Giambruno, M. Zaicev: On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998) 145–155.
- [8] A. Giambruno, M. Zaicev: Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999) 221–243.
- [9] A. Giambruno, M. Zaicev: *Polynomial Identities and Asymptotic Methods*, American Mathematical Society, Providence (2005).
- [10] A. Giambruno, M. Zaicev: Multialternating Jordan polynomials and codimension growth of matrix algebras, Linear Algebra Appl. 422 (2007) 372–379.
- [11] A. Giambruno, M. Zaicev: Codimension growth of special simple Jordan algebras, Trans. Amer. Math. Soc. 362 (2010) 3107–3123.

- [12] A. Giambruno, M. Zaicev: On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2) 85 (2012) 534–548.
- [13] G. James, A. Kerber: The representation theory of the symmetric group, Addison-Wesley, Reading (1981).
- [14] V. Latysev: On Regev's theorem on identities in a tensor product of PI-algebras, Uspehi Mat. Nauk 27 (1972) 213–214.
- [15] A. Regev: Existence of identities in $A \otimes B$, Israel J. Math. **11** (1972) 131–152.
- [16] D. Repovš, M. Zaicev: On identities of infinite dimensional Lie superalgebras, Proc. Amer. Math. Soc. 141 (2013) 4139–4153.
- [17] M. Scheunert: The Theory of Lie Superalgebras. An Introduction, Springer, Berlin et al. (1979).
- [18] A. B. Verevkin, M. V. Zaitsev, S. P. Mishchenko: A sufficient condition for the coincidence of lower and upper exponents of a variety of linear algebras, Moscow Univ. Math. Bull. 66 (2011) 86–89.
- [19] O. M. Di Vincenzo, P. Koshlukov, A. Valenti: Gradings and graded identities for the upper triangular matrices over an infinite field, in: Groups, Rings and Group Rings, Lect. Notes Pure Appl. Math. 248, Chapman & Hall, Boca Raton (2006) 91–103.
- [20] M. V. Zaitsev: Identities of affine Kac-Moody algebras, Moscow Univ. Math. Bull. 51 (1996) 29–31.
- [21] M. V. Zaitsev: Varieties of affine Kac-Moody algebras, Math. Notes 62 (1997) 80– 86.
- [22] M. V. Zaitsev: Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Math. 66 (2002) 463–487.
- [23] M. V. Zaicev: Graded identities in finite-dimensional algebras of codimensions of identities in associative algebras, Moscow Univ. Math. Bull. 70 (2015) 234–236.
- [24] M. V. Zaicev, S. Mishchenko: An example of a variety of Lie algebras with a fractional exponent, J. Math. Sci. (New York) 93 (1999) 977–982.
- [25] M. V. Zaitsev, S. P. Mishchenko: Identities of Lie superalgebras with a nilpotent commutator, Algebra Logic 47 (2008) 348–364.

Dušan D. Repovš Faculty of Education and Faculty of Mathematics & Physics University of Ljubljana Ljubljana, 1000 Slovenia dusan.repovs@guest.arnes.si Mikhail V. Zaicev Department of Algebra Faculty of Mathematics & Mechanics Moscow State University Moscow, 119992 Russia zaicevmv@mail.ru

Received April 10, 2018 and in final form August 31, 2018