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We study polynomial identities of nonassociative algebras constructed by using infi-
nite binary words and their combinatorial properties. Infinite periodic and Sturmian
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PI-exponent greater than one. Later, we used these algebras for a confirmation of the
conjecture that PI-exponent increases precisely by one after adjoining an external unit
to a given algebra. Here, we prove the same result for these algebras for graded identities
and graded PI-exponent, provided that the grading group is cyclic of order two.
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1. Introduction

We study numerical invariants of polynomial identities of algebras over a field of
characteristic zero. One of the most important characteristics of identities of an
algebra A is its codimension sequence {cn(A)}. In many cases, this sequence is
exponentially bounded and one can ask whether the limit

exp(A) = lim
n→∞

n
√

cn(A) (1.1)

exists. The answer is in general negative [22]. Nevertheless, there is a wide class of
algebras where exp(A) exists, for example, associative PI-algebras [11, 12], finite
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dimensional Lie algebras [9, 8, 20], finite dimensional Jordan and alternative alge-
bras [10], and many others. Given an algebra A, one can consider an extension A#

of A, obtained from A by adjoining the external unit element. Then some natural
questions arise: is the codimension sequence cn(A#) exponentially bounded, does
exp(A#) exist, does there exist a relationship between exp(A) and exp(A#)?

It was first mentioned in [14] that exp(A#) exists and is equal to either exp(A)
or exp(A) + 1 for any associative PI-algebra A. One of the first examples of a
non-associative algebra A with exp(A#) = exp(A) + 1 was found in [21]. In the
same paper, it was conjectured that for any algebra A either exp(A#) = exp(A) or
exp(A#) = exp(A) + 1. In [19], this conjecture was confirmed for a wide class of
algebras associated with infinite Sturmian words. Similar results for certain kinds
of Poisson algebras were found in [18]. Note also that exp(A#) = exp(A), whenever
A is a unital algebra [2].

If A is equipped with a group grading then one can also consider its graded
identities and graded codimensions {cgr

n (A)}. In the present paper, we begin to
study connections between asymptotics of {cn(A)} and {cgr

n (A)}. We prove that for
the class of algebras introduced in [6] and associated with Sturmian words, graded
PI-exponents exist, expgr(A) = exp(A), and expgr(A#) = expgr(A)+1 for the most
natural Z2-grading. For all details concerning the polynomial identities and their
numerical invariants, we refer to [3, 13].

2. Preliminaries and Main Constructions

Let A be an algebra over a field F of characteristic zero and let F{X} be the
absolutely free algebra over F with an infinite set of generators X . A polynomial
f = f(x1, . . . , xn), x1, . . . , xn ∈ X , is called an identity of A if f(a1, . . . , am) = 0,
whenever a1, . . . , an ∈ A. The set Id(A) of all identities of A forms an ideal of
F{X}. Denote by Pn the subspace of all multilinear polynomials on x1, . . . , xn.
Then Pn ∩ Id(A) is the set of all multilinear identities of A of degree n. It is well
known that all identities of A are completely defined by the family of subspaces
{Pn ∩ Id(A)}, n = 1, 2, . . .. An important numerical invariant of identical relations
of the algebra A is the sequence of codimensions

cn(A) = dim
Pn

Pn ∩ Id(A)
. (2.1)

In the case of exponentially bounded growth of {cn(A)}, one can define the lower
and the upper PI-exponents by setting

exp(A) = lim inf
n→∞

n
√

cn(A), exp(A) = lim sup
n→∞

n
√

cn(A) (2.2)

and the ordinary PI-exponent

exp(A) = lim
n→∞

n
√

cn(A), (2.3)

provided that exp(A) = exp(A). A powerful tool for studying asymptotics of codi-
mensions is the representation theory of the symmetric group Sn. The group Sn
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acts naturally on the space Pn of multilinear polynomials

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). (2.4)

Under this action, the subspaces Pn, Pn ∩ Id(A) and the quotient

Pn(A) =
Pn

Pn ∩ Id(A)
(2.5)

become Sn-modules. Consider the nth cocharacter of A, that is, the character of
Pn(A), χn(A) = χ(Pn(A)), and its decomposition into irreducible components

χn(A) =
∑
λ�n

mλχλ, (2.6)

where χλ denotes the irreducible Sn-character, corresponding to the partition λ of
n, and the integer mλ denotes its multiplicity in χn(A).

Denote by dλ = deg χλ the dimension of the irreducible Sn-module with the
character χλ. It follows from (2.6) that

cn(A) =
∑
λ�n

mλdλ. (2.7)

Another important numerical characteristic of Id(A) is its nth colength

ln(A) =
∑
λ�n

mλ. (2.8)

In many cases the sequence ln(A) is polynomially bounded while dλ’s in (2.7) are
exponentially large. This means that the asymptotics of cn(A) is actually defined
by the maximal value of dλ with mλ �= 0.

For group graded algebras, identical relations and corresponding numerical
invariants can also be considered. We restrict ourselves to the case of Z2-gradings.
Consider the free algebra F{X, Y } with two independent sets of generators X and
Y . We can endow F{X, Y } with a Z2-grading, by setting deg x = 0, deg y = 1, for all
x ∈ X, y ∈ Y , and extending this grading to all monomials on X∪Y . If A = A0⊕A1

is a Z2-graded algebra over F then a polynomial f(x1, . . . , xk, y1, . . . , ym) ∈
F{X, Y, } is a graded identity of A if f(a1, . . . , ak, b1, . . . , bm) = 0, for all
a1, . . . , ak ∈ A0, b1, . . . , bm ∈ A1.

The set of all graded identities of A forms a homogeneous in Z2-grading ideal
Idgr of F{X, Y }. The intersection Pk,m ∩ Idgr(A) consists of all multilinear graded
identities of degree k on even variables and of degree m on odd variables, where
Pk,m is the subspace of all polynomials multilinear on x1, . . . , xk, y1, . . . , ym. As
before, the symmetric groups Sk, Sm act independently on even and odd variables
and both Pk,m and Pk,m ∩ Idgr(A), and also

Pk,m(A) =
Pk,m

Pk,m ∩ Idgr(A)
(2.9)
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are Sk×Sm-modules. One can decompose Pk,m(A) into irreducible components and
write

χ(Pk,m(A)) =
∑
λ�k
µ�m

mλ,µχλ,µ, (2.10)

where χλ,µ is the irreducible Sk × Sm-character and mλ,µ is its multiplicity. It is
well known that χλ,µ = χλ ⊗ χµ and that

deg χλ,µ = deg χλ deg χµ = dλdµ. (2.11)

Partial codimensions and colengths are defined as follows:

ck,m(A) = deg χ(Pk,m(A)) = dimPk,m(A),

lk,m(A) =
∑
λ�k
µ�m

mλ,µ. (2.12)

Finally, the graded nth codimension and the colength of A are equal to

cgr
n (A) =

n∑
k=0

(
n

k

)
ck,n−k(A) (2.13)

and

lgrn (A) =
n∑

k=0

lk,n−k(A), (2.14)

respectively.
Graded PI-exponents are defined similarly,

expgr(A) = lim inf
n→∞

n

√
cgr
n (A),

expgr(A) = lim sup
n→∞

n

√
cgr
n (A),

exp(A)gr = lim
n→∞

n

√
cgr
n (A). (2.15)

Generalizing (2.7), we get

ck,n−k(A) =
∑
λ�k

µ�n−k

mλ,µdλdµ. (2.16)

Graded and ordinary codimensions satisfy the relation

cn(A) ≤ cgr
n (A) (2.17)

(see [7] or [1]).



April 25, 2018 17:13 WSPC/S0218-1967 132-IJAC 1850022

Z2-graded codimensions of unital algebras 487

We will use the following auxiliary function for computing codimensions. Let
x1, . . . , xd be non-negative real numbers such that x1 + · · · + xd = 1, d ≤ 2. Then

Φ(x1, . . . , xd) =
1

xx1
1 · · ·xxd

d

. (2.18)

If d = 2, then we write

Φ(x1, x2) = Φ(x) =
1

xx(1 − x)1−x
(2.19)

instead of Φ(x1, x2), where 0 ≤ x ≤ 1.

3. Sturmian Words and Sturmian Algebras

In this section, we recall the construction of algebras based on infinite binary words
and their combinatorial properties. First, let K = k1k2 . . . be an infinite word with
integers ki ≥ 2, i = 1, 2, . . . . Denote by A(K) a non-associative algebra with the
basis

{a, b, z
(i)
j | 1 ≤ j ≤ ki, i ≥ 1} (3.1)

and with the multiplication table given by

z
(i)
1 a = z

(i)
2 , . . . , z

(i)
ki−1a = z

(i)
ki

, z
(i)
ki

b = z
(i+1)
1 , i = 1, 2, . . . . (3.2)

All other products are zero. Note that A(K) is 2-step left nilpotent, that is,
x1(x2x3) ≡ 0 is an identity of A(K). It allows us to omit brackets in all prod-
ucts and write x1x2x3 · · ·xn instead of (· · · ((x1x2)x3) · · ·)xn, keeping in mind that
all nonleft normed products are zero. Algebras of this type are used intensively in
the study of numerical invariants of polynomial identities. For instance, in [6], the
first examples of algebras with an arbitrary exponential growth αn, 1 ≤ α ∈ R,
were presented. Examples of algebras with an intermediate growth nnβ

, 0 < β < 1,
were constructed in [5]. Recently, examples of commutative algebras with polyno-
mial codimension growth nα, 3 < α < 4, were presented in [4]. Other important
examples of abnormal codimension growth were constructed in [16, 22].

In the present paper, we study identities on algebras A(K) of special kind. Let
m ≥ 2 be an integer and let w = w1w2 . . . be an infinite word in the alphabet {0; 1}.
We denote by A(m, w) the algebra A(K), where K is constructed as follows:

ki = m + wi, i = 1, 2, . . . . (3.3)

Earlier, the algebras A(m, w) have already been used for constructing a continuous
family of unitary algebras with non-integer PI-exponents and for confirmation of
the conjecture that exp(A#) = exp(A) + 1 (see [19]).

We recall some well-known facts from the combinatorial theory of infinite words
(see, for example, [17]). Given a binary word w = w1w2 . . ., the complexity Compw

of w is the function Compw : N → N, where Compw(n) is the number of distinct
subwords of w of length n. It is easy to see that for a periodic word w with period
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T , the complexity function is bounded, Compw(n) ≤ T . Moreover, it is well known
that Compw(n) ≥ n + 1 for any aperiodic w. An infinite word w is called Sturmian
if Compw(n) = n + 1 for all n ≥ 1.

For a finite word x = x1 . . . xn in the alphabet {0; 1}, the height h(x) and the
length |x| are defined as h(x) = x1 + · · · + xn and |x| = n, respectively. Then the
slope π(x) is defined by

π(x) =
h(x)
|x| . (3.4)

One can extend this notion to certain infinite binary words. Namely, if the limit

π(w) = lim
n→∞

h(w1 . . . wn)
n

(3.5)

exists then π(w) is called the slope of w. Clearly, the limit does not exist in general.
Nevertheless, for periodic and Sturmian words, the slope is well defined. In the next
proposition, we recall the basic properties which we will need in the sequel.

Proposition 3.1 ([17, Sec. 2.2]). Let w be a Sturmian or periodic word. Then
there exists a constant C such that

(1) |h(x) − h(y)| ≤ C, for any finite subwords x, y of w with |x| = |y|;
(2) the slope π(w) of w exists;
(3) for any nonempty finite subword u of w,

|π(u) − π(w)| ≤ C

|u| ; and (3.6)

(4) for any real α ∈ (0; 1), there exists a word w with π(w) = α and w is Sturmian
or periodic, according to whether α is irrational or rational, respectively.

We will use the following results.

Theorem 3.2 ([6, Theorem 5.1]). Let w be a Sturmian or periodic word with
the slope 0 < α < 1. If m ≤ 2, then for the algebra A = A(m, w) the PI-exponent
exists and exp(A) = Φ(β), where β = 1

m+α .

Theorem 3.3 ([24, Theorem 1]). Let A = A(m, w), where w is an infinite Stur-
mian or periodic word, and m ≥ 2. Let A# be the algebra obtained from A by adjoin-
ing an external unit. Then PI-exponent of A# exists and exp(A#) = exp(A)+ 1.

4. Gradings on Sturmian Algebras

The algebra A = A(m, w) can be equipped with a Z2-grading in different ways. We
begin our study with the most natural case when generators of A are homogeneous.
The algebra A is generated by the three elements z

(1)
1 , a, b. Each generator can be

even or odd, so we have eight options. Clearly, if deg z
(1)
1 = deg a = deg b = 0,

then the grading is trivial and all identities and codimensions are the same as in
the non-graded case. In the present paper, we consider one of the nontrivial cases
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when z
(1)
1 and a are even, whereas b is odd. At the end, we will discuss the difference

between distinct gradings.
Throughout this section, let A = A(m, w) be the algebra defined in the previous

section, where m ≥ 2 is an integer and w is an infinite periodic or Sturmian word.
Then a Z2-grading A = A0 ⊕ A1 on A is uniquely defined by setting deg z

(1)
1 =

deg a = 0, deg b = 1. First, we will give an upper bound for the graded codimension
cgr
n (A).

Lemma 4.1. Let ck,n−k(A) be the partial graded codimension of A. Then
ck,n−k(A) ≤ 2n2 for all large enough n.

Proof. Consider a left-normed monomial M = M(x1, . . . , xk, y1, . . . , yn−k) on even
x1, . . . , xk and odd y1, . . . , yn−k. Then M = xiu1 · · ·un−1 or M = yiu1 · · ·un−1,
where u1, . . . , un−1 are some xj ’s, yj ’s. Let for example,

M = xk · · ·xi1 · · ·xik−1 · · · , {i1, . . . , ik−1} = {1, . . . , k − 1}. (4.1)

Then M ≡ M0 modulo the graded ideal Idgr(A), where M0 = xk · · ·x1 · · ·xk−1 · · ·,
since any nonzero evaluation ϕ of M and M0 in A can be obtained only if ϕ(xk) =
z
(i)
j , ϕ(x1) = · · · = ϕ(xk−1) = a. Moreover, ϕ(M) �= 0 if and only if the positions

of xi1 , . . . , xik−1 in M are in 1-1 correspondence with the positions of the symbol
0 in the subword w̄ = wt+1 · · ·wt+n−1 of length n − 1, where the integer t can
be computed from the condition z

(i)
j = z

(1)
1 u1 · · ·ut for proper u1, . . . , ut ∈ {a, b}.

Similarly, y1, . . . , yn−k in M can be ordered naturally. Since Compw(n− 1) = n for
a Sturmian word and Compw is bounded in the periodic case, we conclude that the
number of subwords w̄ corresponding to monomials that do not vanish on A does
not exceed kn ≤ n2 for sufficiently large n. The same upper bound takes place for
monomials of the type yiu1 · · ·un−1, and we have completed the proof.

Lemma 4.2. For any real number ε > 0, there exists an integer n0 such that
conditions n ≥ n0, Pk,n−k(A) �= 0 imply the inequalities

β − ε ≤ n − k

n
≤ β + ε, (4.2)

where β = 1
m+α and α = π(w) is the slope of the infinite word w defining A =

A(m, w).

Proof. Any nonzero product of n basis elements of A has the form

z
(i)
j a · · ·a︸ ︷︷ ︸

s0

b a · · ·a︸ ︷︷ ︸
s1

b · · · b a · · ·a︸ ︷︷ ︸
sr

b a · · ·a︸ ︷︷ ︸
sr+1

= z
(i+r+1)
1+sr+1

, (4.3)

where 0 ≤ s0, sr+1 ≤ m,

s1 = m + wi+1 − 1, . . . , sr = m + wi+r − 1, (4.4)

n = s0 + sr+1 +2+mr+wi+1 + · · ·+wi+r. The number of factors b in this product
is equal to r + 1. Moreover, the right-hand side of (4.3) is the value of monomials
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from Pk,n−k with n − k = r + 1. Hence

n − k

n
=

r + 1
s0 + sr+1 + 2 + mr + wi+1 + · · · + wi+r

=
1 + 1

r

m + s0+sr+2+2
r + wi+1+···+wi+r

r

. (4.5)

Since s0 + sr+1 + 2 ≤ 2m + 2 and wi+1 + · · · + wi+r ≤ r, it follows that

r ≥ n

m + 1
− 2. (4.6)

In particular, r → ∞ as n → ∞. Moreover, the limit of 1
r (wi+1 + · · · + wi+r), as

r → ∞, is equal to α, by Proposition 3.1. It follows that the right-hand side of (4.5)
goes to β = 1

m+α as n → ∞ and hence (4.2) holds.

Lemmas 4.1 and 4.2 give an upper bound for graded codimensions of A.

Lemma 4.3. For any 0 < ε ≤ 1
2 − 1

m+α , there exists n0 such that

cgr
n (A) ≤ 2n3Φ(β + ε)n (4.7)

for all n ≥ n0, where β = 1
m+α . In particular, expgr(A) ≤ Φ(β).

Proof. By Lemmas 4.1 and 4.2, we have

cgr
n (A) ≤

∑
β−ε≤n−k

n ≤β+ε

(
n

k

)
ck,n−k(A) ≤ 2n2

∑
β−ε≤n−k

n ≤β+ε

(
n

k

)
. (4.8)

By Stirling’s formula for factorials, we have(
n

k

)
≤ n

nn

kk(n − k)n−k
= nΦ

(
n − k

n

)n

. (4.9)

Since m ≥ 2 and 0 < α < 1, we have β = 1
m+α < 1

2 and

max
β−ε≤n−k

n

Φ
(

n − k

n

)
≤ Φ(β + ε) (4.10)

as soon as β + ε < 1
2 and n is sufficiently large. Hence,

cgr
n (A) ≤ 2n3Φ(β + ε)n, (4.11)

and we are done.

Now we are ready to prove main result of this section.

Theorem 4.4. Let A = A(m, w) be the algebra defined by an integer m ≥ 2 and
by an infinite periodic or Sturmian word w with the slope π(w) = α. Suppose that



April 25, 2018 17:13 WSPC/S0218-1967 132-IJAC 1850022

Z2-graded codimensions of unital algebras 491

the decomposition A = A0 ⊕A1 is a Z2-grading of A such that a, z
(1)
1 ∈ A0, b ∈ A1.

Then the graded PI-exponent expgr(A) exists and

expgr(A) = exp(A) = Φ
(

1
m + α

)
. (4.12)

Proof. According to Lemma 4.3, it is enough to show that expgr(A) ≥ Φ(β), where
β = 1

m+α . Since A is not nilpotent, there exists for any n, a nonzero product of the
type (4.3). In particular, given n, there exists 0 ≤ k ≤ n such that Pk,n−k �= 0. Then
n−k

n ≥ β − ε asymptotically for any fixed ε > 0 by Lemma 4.2, and by Stirling’s
formula, we have

cgr
n (A) ≥

(
n

k

)
ck,n−k(A) ≥

(
n

k

)
≥ 1

n2

nn

kk(n − k)n−k
≥ 1

n2
Φ(β − ε)n. (4.13)

It follows that expgr(A) ≥ Φ(β), and thus the proof has been completed.

5. Algebras with Adjoint Unit

In this section, we study codimensions of algebras with an external unit. Given an
algebra B, we denote by B#, the algebra obtained by adjoining the external unit
to B. Note that if C = ⊕g∈GCg is a G-graded algebra with unit 1 then 1 is a
homogeneous element and 1 ∈ Ce, where e ∈ G is the identity element of the group
G. Therefore, in the case of a Z2-graded algebra B, its extension B# = B⊕1 has a
unique Z2-grading B# = B#

0 ⊕ B#
1 , where B is a homogeneous subalgebra of B#,

namely, B#
0 = B0 ⊕ 1, B#

1 = B1.
First, let A0 ⊕ A1 be an arbitrary Z2-graded algebra. Denote by R{X, Y } the

relatively free Z2-graded algebra of the variety vargr(A) of graded algebras generated
by A with two infinite sets X and Y of even and odd generators, respectively. That
is, R{X, Y } = F{X, Y }/Idgr(A). Consider a partial (k, n − k)-cocharacter of A,

χk,n−k(A) = χ(Pk,n−k(A)) =
∑
λ�k

µ�n−k

mλ,µχλ,µ. (5.1)

In order to bound the multiplicities mλ,µ in (5.1), we denote by Rk,n−k
d0,d1

(A) the
subspace of polynomials on Xd0 = {x1, . . . , xd0}, Yd1 = {y1, . . . , yd1} in R{X, Y }
of total degree k on Xd0 and total degree n − k on Yd1 . The same argument as in
[23] gives us the next lemma.

Recall that the height h(λ) of a partition λ = (λ1, . . . , λt) is the number t of its
parts.

Lemma 5.1. Let mλ,µ, λ � k, µ � n− k, be the multiplicity from (5.1) with h(λ) ≤
d0, h(µ) ≤ d1. Then

mλ,µ ≤ dimRk,n−k
d0,d1

(A). (5.2)
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Now, let A = A(m, w) be the algebra defined by an infinite binary word
w = w1w2 . . . . The following lemma holds for any w, not necessarily Sturmian
or periodic.

Lemma 5.2. Suppose that A is Z2-graded and that deg z
(1)
1 = deg a = 0, deg b = 1.

Then

dimRk,n−k
d0,d1

(A) ≤ d0m
2k Compw(n − k). (5.3)

Proof. Denote by W the span of all monomials

x0u1 · · ·un−1 (5.4)

in R{X, Y }, where u1, . . . , un−1 ∈ Xd0 ∪ Yd1 , ui1 , . . . , uik−1 ∈ Xd0 for some i1, . . . ,

ik−1 ∈ {1, . . . , n − 1}, while uj ∈ Yd1 , provided that j �= i1, . . . , ik−1. Clearly,
dim Rk,n−k

d0,d1
(A) ≤ d0 dim W .

Let f = f(x0, . . . , xd0 , y1, . . . , yd1) ∈ F{X, Y } be a linear combination of mono-
mials of the same type as (5.4). Then f ≡ 0 is an identity of A if and only if
σ(f) = 0 for any homomorphism σ : F{X, Y } → A such that

σ(x0) = z
(i)
j , σ(xs) = a, σ(ys) = b. (5.5)

Hence, dim W does not exceed the codimension of the intersection of all Ker σ in
F k,n−k

d0,d1
, where F k,n−k

d0,d1
is a subspace of F{X, Y } defined similarly as Rk,n−k

d0,d1
(A).

Consider the family of graded homomorphisms ϕij : F{X, Y } → A such that
ϕij(x0) = z

(i)
j , ϕij(xs) = a, ϕij(ys) = b, for all xs ∈ X, ys ∈ Y . Then either

ϕij(x0u1 · · ·un−1) = 0 or ϕij(x0u1 · · ·un−1) = z
(i+r+1)
1+sr+1

, the element from (4.3).
The latter equality takes place if and only if s0 = m − 1 − j + wi, 0 ≤ sr+1 ≤
m − 1 + wi+r+1, n = s0 + sr+1 + 2 + mr + wi+1 + · · · + wi+r , relations (4.4) hold
and all x1, . . . , xd0 stay on “correct” positions among u1, . . . , un−1, according to
the word w. In particular, codim Ker ϕij in F k,n−k

d0,d1
is less than or equal to one.

Moreover, Ker ϕij = Ker ϕi′j if the subwords wi+1 · · ·wi+r+1, wi′+1 · · ·wi′+r+1

coincide. It follows that the codimension of
⋂

Ker ϕij in F k,n−k
d0,d1

is at most
m2Compw(r + 1) = m2Compw(n − k). Since dim W is equal to codim

⋂
Ker ϕij ,

we have completed the proof of the lemma.

Next, we will find an upper bound for dimRk,n−k
d0,d1

(B#) in terms of
dim Rk,n−k

d0,d1
(B) if B is a Z2-graded algebra.

Lemma 5.3. Given a Z2-graded algebra B, suppose that dimRk,n−k
d0,d1

(B) ≤ θk(n−
k)T for all 0 ≤ k ≤ n and for some constant θ. Then

dim Rk,n−k
d0,d1

(B#) ≤ θ(k + 1)d0+2(n − k + 1)T+d1 . (5.6)

Proof. Note that a multihomogeneous polynomial f(x1, . . . , xd0 , y1, . . . , yd1) is a
graded identity of B# if and only if all multihomogeneous on x1, . . . , xd0 , y1, . . . , yd1

components of f(1+x1, . . . , 1+xd0, y1, . . . , yd1) ∈ F{X, Y }# are identities of B. The
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total number of such components does not exceed (k + 1)d0(n− k + 1)d1 , provided
that the degree on {x1, . . . , xd0} is at most k and the degree on {y1, . . . , yd1} is
equal to n − k.

Let f1, . . . , fN ∈ F k,n−k
d0,d1

. Consider the linear combination f = λ1f1 + · · · +
λNfN with unknown coefficients λ1, . . . , λN . Any multihomogeneous component
g = g(x1, . . . , xd0 , y1, . . . , yd1) of f(1 + x1, . . . , 1 + xd0 , y1, . . . , yd1) gives us at most

dimRj,n−k
d0,d1

(B) ≤ θj(n − k)T (5.7)

linear equations on λ1, . . . , λN , provided that g ≡ 0 is an identity of B and the
degree of g on x1, . . . , xd0 is equal to j. Hence, f ≡ 0 is an identity of B# if
λ1, . . . , λN satisfy no more than Ñ linear equations, where

Ñ = (k + 1)d0(n − k)d1θ(n − k)T
k∑

j=0

j. (5.8)

Note that

Ñ ≤ θ(k + 1)d0+2(n − k + 1)T+d1 . (5.9)

Therefore if N is greater than the right-hand side of (5.9) then f1, . . . , fN are
linearly dependent modulo Idgr(B#) and we have completed the proof.

Now we are ready to get an upper bound for graded colength of A#.

Lemma 5.4. Let A = A(m, w), where m ≥ 2 is an integer and w is an infinite
periodic or Sturmian word. Then

lk,n−k(A#) ≤ 3m2(k + 1)8(n − k + 1)6 (5.10)

and

lgrn (A#) ≤ 3m2(n + 1)15. (5.11)

Proof. Consider a partial cocharacter of A#

χk,n−k(A#) =
∑
λ�k

µ�n−k

mλ,µχλ,µ. (5.12)

The linear subspace I = Span{z(i)
j | i, j ≥ 1} forms a homogeneous ideal of A# with

zero multiplication and

dim(A#/I)0 = 2, dim(A#/I)1 = 1. (5.13)

Hence, any multilinear polynomial alternating on 4 even variables or on 3 odd
variables is an identity of A#. Standard argument implies that mλ,µ �= 0 in (5.12)
only if h(λ) ≤ 3, h(µ) ≤ 2. By Lemma 5.2, we have

dimRk,n−k
3,2 (A) ≤ 3m2k(n − k + 1) ≤ 3m2k(n − k)2. (5.14)
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Then by Lemmas 5.1 and 5.3,

mλ,µ ≤ dimRk,n−k
3,2 (A#) ≤ 3m2k(k + 1)5(n − k + 1)4. (5.15)

The number of summands on the right-hand side of (5.12) is not greater than
k3(n − k)2, hence,

lk,n−k(A#) ≤ 3m2k(k + 1)8(n − k + 1)6 (5.16)

and lgrn (A#) ≤ 3m2(n + 1)15.

Now we specify necessary conditions for the inequality mλ,µ �= 0 in (5.12).

Lemma 5.5. Let A = A(m, w) and suppose that w is a Sturmian or periodic word
with the slope α. Suppose that mλ,µ �= 0 in (5.12), where λ � k, µ � n − k. Then λ

and µ satisfy the following conditions:

(1) λ = (λ1, λ2, λ3) with λ3 ≤ 1;
(2) µ = (µ1, µ2) with µ2 ≤ 1;
(3) λ1 + λ2 + µ1 = n or n − 1; and
(4) for any 0 < ε < 1

2 − β, there exists an integer n0 such that

µ1 ≤ β + ε

1 − β − ε
λ1 (5.17)

for all n ≥ n0, where β = 1
m+α .

Proof. Any multilinear polynomial f containing an alternating set of order 4 on
even variables vanishes on A#. If A# contains two alternating sets of order 3 on
even variables then also f ∈ Idgr(A#). From the structure of essential idempotents
of group ring FSk, it follows that λ4 = 0, λ3 ≤ 1. This proves 1. Similar argument
gives us 2.

Let λ = (λ1, λ2, 1), µ = (µ1, 1). If M is an irreducible Sk × Sn−k-submodule
of Pk,n−k ⊂ F{X, Y } with the character χ(M) = χλ,µ, then M is generated by
a polynomial f(x1, . . . , xk, y1, . . . , yn−k) alternating on x1, x2, x3 and on y1, y2. If
we evaluate x1, x2, x3 on {1, a} and y1, y2 on {b}, then we get zero. Otherwise,
x1, x2, x3 should be equal to 1, a, z

(1)
j , and y1, y2 should be equal to b, z

(r)
s . In this

case, the value is also zero. Hence λ3 + µ2 ≤ 1, and we obtain 3.
Let us prove 4. If mλ,µ �= 0, then there exists a polynomial f =

f(x1, . . . , xk, y1, . . . yn−k) which generates an irreducible Sk × Sn−k-module with
the character χλ,µ and an evaluation ϕ : X ∪ Y → A# such that ϕ(f) �= 0. More-
over, f contains λ2 disjoint alternating sets of x′s of order 2. The set of values
{ϕ(x1), . . . , ϕ(xk)} contains λ1 ≥ p ≥ λ2 − 1 elements a, at most one element z

(i)
j

and k − p or k − p − 1 units. The set {ϕ(y1), . . . , ϕ(yn−k)} contains at most one
odd z

(i)
j and q = µ1 − 1 or µ1 elements b.

Furthermore, there exists a nonzero product

g = z
(i)
j a · · · aba · · ·ab · · · ba · · ·a (5.18)
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which is equal (up to a scalar factor) to ϕ(f). Denote by p = dega g, q = degb g the
numbers of entries of a and b in g, respectively. If the total degree N = deg g =
1 + p + q increases, then there exists a correlation between the growth of p and q

(provided that g �= 0). Namely,

lim
n→∞

q

q + p
= β =

1
m + α

, (5.19)

hence,

lim
n→∞

q

p
=

β

1 − β
. (5.20)

It follows that there exists r such that for any q ≥ r + 1 (and for corresponding p)
we have

q

p
≤ β + ε/2

1 − (β + ε/2)
and

1
p

+
β + ε/2

1 − (β + ε/2)
≤ β + ε

1 − (β + ε)
. (5.21)

Since µ1 − 1 ≤ q and p ≤ λ1, we get

µ1 − 1
µ1

≤ q

p
≤ β + ε/2

1 − (β + ε/2)
(5.22)

and

µ1

λ1
≤ q

p
+

1
λ1

≤ q

p
+

1
p
≤ β + ε

1 − (β + ε)
, (5.23)

provided that µ1 ≥ r.
On the other hand, if µ1 < r, then

n

µ1
>

n

r
and

λ1

µ1
>

n

2r
− 1 (5.24)

since 2λ1 + µ1 ≥ λ1 + λ2 + µ1 ≥ n − 1. Denote for short γ = β+ε
1−(β+ε) . Then for all

n ≥ 2(γ+1)
γ r, we have

n

2r
≥ 1

γ
+ 1,

λ1

µ1
>

1
γ

. (5.25)

This proves 4.

In order to get an upper bound for graded codimensions we need some proper-
ties of the function Φ(x1, . . . , xd) introduced in Sec. 2. Recall that Φ(x1, x2, x3) =
x−x1

1 x−x2
2 x−x3

3 , where 0 ≤ x1, x2, x3 ∈ R, x1 + x2 + x3 = 1.
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Lemma 5.6. Let x3 = γx2 for a fixed coefficient γ. Then

maxΦ(x1, x2, x3) =
1 + γ

γγ/(γ+1)
+ 1. (5.26)

Proof. Denote x = x1. Then the relations x1 + x2 + x3 = 1, x3 = γx2 imply

x2 =
1 − x

1 + γ
, x3 =

γ

1 + γ
(1 − x). (5.27)

Denote also Φ(x1, x2, x3) = f(x). Then

f−1(x) = xx

(
1 − x

1 + γ

) 1−x
1+γ

(
γ(1 − x)

1 + γ

) γ(1−x)
1+γ

(5.28)

and

g(x) = ln f−1(x) = x ln x +
1 − x

1 + γ
ln

1 − x

1 + γ
+

γ(1 − x)
1 + γ

ln
γ(1 − x)

1 + γ
. (5.29)

Hence

g′(x) = ln
x(

1−x
1+γ

) 1
1+γ

(
γ(1−x)

1+γ

) γ
1+γ

(5.30)

and g′(x̃) = 0 only if

x̃ =
(

1 − x̃

1 + γ

) 1
1+γ

(
γ(1 − x̃)

1 + γ

) γ
1+γ

γ
γ

1+γ = (1 − x̃)ρ, (5.31)

where

ρ =
γ

γ
1+γ

1 + γ
. (5.32)

That is,

x̃ =
ρ

1 + ρ
. (5.33)

Since

g′(x) = ln
x

1 − x
+ const (5.34)

on the interval (0; 1), we see that f−1(x) has a local minimum in x̃. Direct compu-
tations show that f−1(x̃) = x̃ and

max Φ = f(x̃) =
1
x̃

= 1 +
1
θ

=
1 + γ

γ
γ

1+γ

+ 1. (5.35)
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Now we are ready to compute the required upper bound for the upper PI-
exponent.

Remark 5.7. If we denote γ
γ+1 by θ then γ = θ

1−θ . In this case direct computations
give us

1 + γ

γ
γ

1+γ

=
1

θθ(1 − θ)1−θ
= Φ(θ). (5.36)

Moreover, if γ1 < γ2 ≤ 1 then θ1 < θ2 and Φ(θ1) < Φ(θ2).

Lemma 5.8.

expgr(A#) ≤ expgr(A) + 1. (5.37)

Proof. By (2.16)

cgr
n (A#) ≤ lgrn (A#)

∑
k

∑
λ�k,µ�n−k

mλ,µ�=0

(
n

k

)
dλdµ. (5.38)

First estimate a fixed summand
(
n
k

)
dλdµ provided that mλ,µ �= 0. By Lemma 5.5,

we have λ = (λ1, λ2, λ3), λ3 ≤ 1, µ = (µ1, µ2), µ2 ≤ 1. By the Hook formula for
degree of an irreducible representation,

dλ ≤ k!
λ1!λ2!

, dµ ≤ n − k − 1 ≤ n. (5.39)

Since n − k = µ1 or µ1 − 1, we have n − k + 1 ≥ µ1 and n(n − k)! ≥ µ1!. Also,
n − 2 ≤ λ1 + λ2 + µ1 ≤ n, that is, n! ≤ (λ1 + λ2 + µ1)!(n + 2)2. Therefore,(

n

k

)
dλdµ ≤ n!

k!(n − k)!
· k!
λ1!λ2!

· n ≤ (n + 2)4
(λ1 + λ2 + µ1)!

λ1!λ2!µ1!
. (5.40)

By the Stirling’s formula

(λ1 + λ2 + µ1)!
λ1!λ2!µ1!

≤ n
(λ1 + λ2 + µ1)λ1+λ2+µ1

λλ1
1 λλ2

2 µµ1
1

≤ nΦ(x1, x2, x3)n, (5.41)

where

x1 =
λ2

λ1 + λ2 + µ1
, x2 =

λ1

λ1 + λ2 + µ1
, x3 =

µ1

λ1 + λ2 + µ1
. (5.42)

Denote µ1/λ1 = γ. Then x3 = γx2, and by Lemma 5.6 and Remark 5.7,

Φ(x1, x2, x3) ≤ Φ(θ) + 1, (5.43)

where θ = γ
γ+1 . Fix an arbitrary small ε > 0. We can assume that

β + ε

1 − β − ε
< 1. (5.44)

Then by Lemma 5.5, we get that γ < 1, θ is an increasing function of γ on interval
(0; 1) and θ ≤ 1

2 . Hence, Φ(θ) is also an increasing function of γ and

Φ(x1, x2, x3) ≤ 1 + Φ(β + ε) (5.45)
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for all sufficiently large n. Applying (5.38), (5.40), (5.41) and Lemma 5.4 and taking
into account that the number of partitions λ � k with h(λ) ≤ 3, λ3 ≤ 1 is not greater
than n, we obtain

cgr
n (A#) ≤ 6m2(n + 2)22(1 + Φ(β + ε))n, (5.46)

from which it follows that

expgr(A#) ≤ 1 + Φ(β) = 1 + expgr(A). (5.47)

Theorem 5.9. Let A = A(m, w) = A0 ⊕ A1 be the algebra defined by an integer
m ≥ 2 and by Sturmian or periodic word w equipped with a Z2-grading, where
generators z

(1)
1 and a are even whereas b is odd. Let A# be obtained from A by

adjoining the external unit. Then its graded PI-exponent exists and

expgr(A#) = 1 + expgr(A). (5.48)

Proof. By [19, Theorem 1], exp(A#) = exp(A)+1. Hence expgr(A#) ≥ exp(A#) =
exp(A) + 1 = expgr(A) + 1 by (2.17) and Theorem 4.4. Now our statement follows
from Lemma 5.8.

In conclusion, we discuss other Z2-gradings on A = A(m, w). In the proof of
Theorems 4.4 and 5.9, we have never used the fact that deg z

(1)
1 = 0. Hence, the

same results hold for graded codimensions if deg z
(1)
1 = deg b = 1, deg a = 0. By

slightly modifying arguments, one can prove Theorems 4.4 and 5.9, provided that
deg a = 1, deg b = 0. Finally, if deg a = deg b = 1 then the argument is similar to
that of [6, 19]. Therefore, we can generalize Theorems 4.4 and 5.9 as follows.

Theorem 5.10. Let A = A(m, w) be the algebra defined by an integer m ≥ 2 and
by an infinite periodic or Sturmian word w with the slope π(w) = α. Suppose that
the decomposition A = A0 ⊕ A1 is a Z2-grading such that the generators a, b, z

(1)
1

are homogeneous. Then the graded PI-exponent expgr(A) exists and

expgr(A) = exp(A) = Φ
(

1
m + α

)
, (5.49)

where

Φ(x) =
1

xx(1 − x)(1−x)
. (5.50)

Moreover, if A# is obtained from A by adjoining an external unit with the induced
Z2-grading then expgr(A#) also exists and

expgr(A#) = expgr(A) + 1. (5.51)
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