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ABSTRACT

We study identities of finite dimensional algebras over a field of
characteristic zero, graded by an arbitrary groupoid �. First, we prove
that its graded colength has a polynomially bounded growth. For any
graded simple algebra A, we prove the existence of the graded PI-
exponent, provided that � is a commutative semigroup. If A is simple
in a non-graded sense, the existence of the graded PI-exponent is
proved without any restrictions on �.
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1. Introduction

We study numerical characteristics of identities of finite dimensional graded simple
algebras over a field of characteristic zero. The main object of our investigations is the
asymptotic behaviour of sequences of graded codimensions and graded colengths of such
algebras (all necessary definitions and notions will be given in the next section). Given
a graded algebra A, one can associate the sequence of so-called graded codimensions
{cgrn (A), n = 1, 2, . . .}. This sequence is an important numerical invariant of graded
identities ofA. It is known that this sequence is exponentially bounded, that is cgrn (A) ≤ an

for some real a, provided that dimA < ∞. In this case, the following natural question
arises: does the limit

expgr (A) = lim
n→∞

n
√
cgrn (A) (1)

exist and what are its possible values? If the limit (1) exists, then it is called the graded
PI-exponent of A.

In the non-graded case, codimension growth is well understood. Existence and integral-
ity of the (non-graded) PI-exponent were conjectured by Amitsur in 1980s for associative
PI-algebras. Amitsur’s conjecture was confirmed in [1,2]. Later, the same result was proved
for finite dimensional Lie algebras [3–5], Jordan and alternative algebras [6–8] and many
other algebraic systems. In the general non-associative case, for any real α > 1, examples of
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algebras with PI-exponent equal to α were constructed in [9]. Recently, the first example of
algebraA such that the PI-exponent ofA does not exist was constructed.[10] Nevertheless,
for any finite dimensional simple algebra, the PI-exponent does exist.[11]

For graded algebras, there are only partial results of this kind. For example, if A is
an associative graded PI-algebra, then its graded PI-exponent always exists and it is an
integer.[12] An existence of the Z2-graded PI-exponent for any finite dimensional simple
Lie superalgebra has recently been proved in [13]. Note that for finite dimensional Lie
superalgebras, both graded and ordinary PI-exponents can be fractional.[11,14,15] The
main purpose of this paper is to prove the existence of graded PI-exponents for any finite
dimensional graded simple algebra (see Theorem 2).

Another important numerical characteristic of identities of an algebra A is the so-
called colength sequence ln(A). Except for its independent interest, asymptotic behaviour
of {ln(A)} plays an important role in the studies of asymptotics of {cn(A)}. The polynomial
type of growth of {ln(A)} is very convenient for investigations of codimension growth.

Polynomial upper bounds of the colength for any associative PI-algebrawere established
in [16]. For an arbitrary (non-associative) finite dimensional algebra, the same restriction
was obtained in [17]. In the case of finite dimensional Lie superalgebras, polynomial growth
of Z2-graded colength has recently been confirmed in [18]. In order to get the main result
of the paper, we will find the polynomial upper bound for graded colength of a finite
dimensional graded algebra (see Theorem 1).

2. Preliminaries

Let � be a groupoid. An F-algebra A is said to be �-graded if there is a vector space
decomposition

A =
⊕
g∈�

Ag

and AgAh ⊆ Agh for all g , h ∈ �. An element a ∈ A is called homogeneous of degree g
if a ∈ Ag and in this case, we write deg� a = g . A subspace V ⊆ A is homogeneous
iff V = ⊕

g∈� (V ∩ Ag ). We call A graded simple, if it has no homogeneous ideals. For
instance, if � is a group and A = F[�] is its group algebra, then A is �-graded simple but
is not simple in the usual sense. On the other hand, any simple algebra with an arbitrary
grading is graded simple.

We recall some key notions from the theory of graded and ordinary identities and their
numerical invariants. We refer the reader to [19,20] for details. Consider an absolutely free
algebra F{X} with a free generating set

X =
⋃
g∈�

Xg , |Xg | = ∞ for any g ∈ �.

One can define a �-grading on F{X} by setting deg� x = g , when x ∈ Xg , and extend this
grading to the entire F{X} in the natural way. A polynomial f (x1, . . . , xn) in homogeneous
variables x1 ∈ Xg1 , . . . , xn ∈ Xgn is called a graded identity of a �-graded algebra A if
f (a1, . . . , an) = 0 for any a1 ∈ Ag1 , . . . , an ∈ Agn . The set Idgr(A) of all graded identities
of A forms an ideal of F{X} which is stable under graded homomorphisms F{X} → F{X}.
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First, let � be finite, � = {g1, . . . , gt} and X = Xg1
⋃

. . .
⋃

Xgt . Denote by Pn1,...,nt the
subspace of F{X} of multilinear polynomials of total degree n = n1 + · · · + nt in variables
x(1)
1 , . . . , x(1)

n1 ∈ Xg1 , . . . , x
(t)
1 , . . . , x(t)

nt ∈ Xgt . Then the value

cn1,...,nt (A) = dim
Pn1,...,nt

Pn1,...,nt ∩ Idgr(A)

is called a partial codimension of A while

cgrn (A) =
∑

n1+···+nt=n

(
n

n1, . . . , nt

)
cn1,...,nt (A) (2)

is called a graded codimension of A. Recall that the support of the grading is the set

Supp A = {g ∈ �|Ag �= 0}.

Note that if Supp A �= �, say, Supp A = {g1, . . . , gk}, k < t, then the value

∑
n1+···+nk=n

(
n

n1, . . . , nk

)
dim

Pn1,...,nk
Pn1,...,nk ∩ Idgr(A)

(3)

coincideswith (2). This allowsus to consider (3) as thedefinitionof the graded codimension
of A even if � is infinite, provided that Supp A = {g1, . . . , gk}.

For convenience, denote

Pn1,...,nk(A) = Pn1,...,nk
Pn1,...,nk ∩ Idgr(A)

. (4)

Given 1 ≤ j ≤ k, consider the action of the symmetric group Snj on Pn1,...,nk defined by

σ f
(
. . . , x(j)

1 , . . . , x(j)
nj , . . .

)
= f

(
. . . , x(j)

σ (1), . . . , x
(j)
σ (nj), . . .

)
.

Then the spaces Pn1,...,nk and Pn1,...,nk(A) become F[H]-modules, where H = Sn1 × · · · ×
Snk . Any F[H]-module Pn1,...,nk(A) is decomposed into the sum of irreducible F[H]-
submodules and in the languages of group characters, it can be written as

χH (Pn1,...,nk(A)) =
∑

λ(1)	n1,...,λ(k)	nk
mλ(1),...,λ(k)χ

λ(1) ,...,λ(k) . (5)

Here, χ
λ(1) ,...,λ(k) is the character of the irreducible H-representation defined by the k-tuple

(λ(1), . . . , λ(k)) of partitions λ(1) 	 n1, . . . , λ(k) 	 nk and mλ(1),...,λ(k) is the multiplicity of
the corresponding F[H]-module in Pn1,...,nk(A). The integer

lλ(1),...,λ(k) (A) =
∑

λ(1)	n1,...,λ(k)	nk
mλ(1),...,λ(k) (6)

is called the partial colength, whereas the integer
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lgrn (A) =
∑

n1+···+nk=n
ln1,...,nk(A) (7)

is called the graded colength of A.
As it was mentioned in the introduction, graded codimensions are exponentially

bounded if A is finite dimensional. Namely,

cgrn (A) ≤ dn+1 (8)

where d = dimA (see [21] and also [7, Proposition 2]). This result was proved in [7,21]
under the assumption that � is a finite group. The same argument is valid for an arbitrary
groupoid. Relation (8) allows us to consider upper and lower limits of n

√
cgrn (A) and we can

define the lower and the upper graded PI-exponents as follows:

expgr(A) = lim inf
n→∞

n
√
cgrn (A), expgr(A) = lim sup

n→∞
n
√
cgrn (A).

If the lower and the upper limits coincide, then we also define the graded PI-exponent by

expgr (A) = expgr(A) = expgr(A).

Representation theory of symmetric groups is a useful tool for studying asymptotics
of codimension growth. Basic notions of Sn-representations can be found in [22] and its
application to PI-theory in [19,20].

Recall that, given a partition λ 	 n, there is exactly one (up to isomorphism) irreducible
Sn-representation defined byλ. Its character and dimension are denoted byχλ andχλ(1) =
dλ, respectively. For the groupH = Sn1×· · ·×Snk , any irreducible representation is defined
by the k-tuple of partitions λ(1) 	 n1, . . . , λ(k) 	 nk and its character and dimension are
χ

λ(1) ,...,λ(k) . Moreover,
χ

λ(1) ,...,λ(k) (1) = dλ(1) · · · dλ(k) , (9)

respectively. In particular, (5) and (9) imply the equality

cn1,...,nk(A) = χH (Pn1,...,nk(A))(1)

=
∑

λ(1)	n1,...,λ(k)	nk
mλ(1),...,λ(k)dλ(1) · · · dλ(k) . (10)

Let d ≥ 1 be a fixed integer and let ν = (ν1, . . . , νq) 	 m be a partition ofmwith q ≤ d.
Dimension of an irreducible F[Sm]-module with the character χν is closely connected with
the following function:

�(ν) = 1

( ν1
m )

ν1
m · · · ( νd

m )
νd
m

.

Here, we assume that νq+1 = . . . = νd = 0 in the case q < d and 00 = 1. The values
�(ν)m and dν are close in the following sense.
Lemma 1: (see [11, Lemma 1]) Let m ≥ 100. Then

�(ν)m

md2+d
≤ dν ≤ m�(ν)m.
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Wewill use the following property of�. Let ν and ρ be any two partitions ofm, such that
ν = (ν1, . . . , νp), ρ = (ρ1, . . . , ρq), p, q ≤ d and q = p or q = p + 1, ρp+1 = 1. As before,
we consider ρ and ν as partitions with d components. We say that the Young diagram Dρ

is obtained from diagram Dν by pushing down one box if there exists 1 ≤ i < j ≤ d such
that ρi = νi − 1, ρj = νj + 1 and ρt = νt for all remaining 1 ≤ t ≤ d.
Lemma 2: (see [11, Lemma 3], [23, Lemma 2]) Let Dρ be obtained from Dν by pushing
down one box. Then �(ρ) ≥ �(ν).

3. Polynomial growth of graded colength

Consider a finite dimensional �-graded algebra A with the support Supp A = {g1, . . . , gk},
A = Ag1 ⊕ · · · ⊕ Agk . Let

d1 = dimAg1 , . . . , dk = dimAgk

be dimensions of the homogeneous components. Recall that an irreducible F[St]-module
corresponding to the partitionμ 	 t can be realized as aminimal left F[St]-ideal generated
by an essential idempotent eTλ where Tλ is some Young tableaux with Young diagram Dλ.
ForH = Sn1 ×· · ·×Snk , any irreducible F[H]-module is isomorphic to the tensor product
of F[Sn1], . . . , F[Snk ]-modules with characters χ

λ(1) , . . . ,χλ(k) , respectively. The following
remark easily follows from the construction of essential idempotents and therefore we
omit the proof.
Lemma 3: Let λ(1) = (λ

(1)
1 , . . . , λ(1)

q1 ), . . . , λ(k) = (λ
(k)
1 , . . . , λ(k)

qk ) be partitions of
n1, . . . , nk, respectively. Suppose that the multiplicity mλ(1),...,λ(k) on the right hand side
of (5) is non-zero. Then q1 ≤ d1, . . . , qk ≤ dk.

For convenience, we shall assume as before that q1 = d1, . . . , qk = dk even if qi is
strictly less than di for some i.

Denote by R = R{Xg1 ∪ . . . ∪ Xgk} the relatively free algebra of the variety var A of
�-graded algebras generated by A. Denote by Rn1,...,nk

d1,...,dk
the subspace of polynomials in R of

degree n1 in the set of variables {X(1)
1 , . . . ,X(1)

d1 } ⊆ Xg1 , of degree n2 in {X(2)
1 , . . . ,X(2)

d2 } ⊆
Xg2 , etc.
Lemma 4: Multiplicities on the right hand side of (5) satisfy the inequalities

mλ(1),...,λ(k) ≤ dimRn1,...,nk
d1,...,dk

.

Proof: Let P̃n1,...,nk be the subspace ofmultilinear polynomials of degree n = n1+· · ·+nk
on x(1)

1 , . . . , x(1)
n1 , . . . , x

(k)
1 , . . . , x(k)

nk in R. Here, x(i)
j ∈ Xgi for all 1 ≤ i ≤ k, 1 ≤ j ≤ ni. Then

P̃n1,...,nk is isomorphic toPn1,...,nk(A) as anF[H]-module.Denote for brevity q = mλ(1),...,λ(k)

and consider the F[H]-submodule

M = M1 ⊕ · · · ⊕ Mq

of P̃n1,...,nk , whereM1, . . . ,Mq are isomorphic irreducible F[H]-modules withH-character
χ

λ(1) ,...,λ(k) . AnyMj is generated as an F[H]-module by a multilinear polynomial of the type
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fj
(
x(1)
1 , . . . , x(1)

n1 , . . . , x
(k)
1 , . . . , x(k)

nk

)
= eT

λ(1) · · · eT
λ(k)hj

(
x(1)
1 , . . . , x(1)

n1 , . . . , x
(k)
1 , . . . , x(k)

nk

)
with a multilinear polynomial hj ∈ P̃n1,...,nk .

One can split the set of indeterminates x(1)
1 , . . . , x(k)

nk into a disjoint union of subsets

P(1)
1 =

{
x(1)
1 , . . . , x(1)

λ
(1)
1

}
,

P(1)
2 =

{
x(1)
λ

(1)
1 +1

, . . . , x(1)
λ

(1)
1 +λ

(1)
2

}
,

· · ·
P(1)
d1 =

{
x(1)
n1−λ

(1)
d1

+1
, . . . , x(1)

n1

}
,

. . .

P(k)
1 =

{
x(k)
1 , . . . , x(k)

λ
(k)
1

}
,

P(k)
2 =

{
x(k)
λ

(k)
1 +1

, . . . , x(k)
λ

(k)
1 +λ

(k)
2

}
,

· · ·

P(k)
dk

=
{
x(k)
nk−λ

(1)
dk

+1
, . . . , x(k)

nk

}

so that all f1, . . . , fq are symmetric on any subset P(1)
1 , . . . , P(k)

dk
.

Now, we identify all variables in each symmetric subset, that is, we apply a homomor-
phism ϕ : R → R such that

• ϕ(x(j)
α ) = x(j)

1 if 1 ≤ α ≤ λ
(j)
1 ,

· · ·
• ϕ(x(j)

α ) = x(j)
dj if λ(j)

1 + · · · + λ
(j)
dj−1 < α ≤ nj

for all j = 1, . . . , k. Then all ϕ(f1), . . . ,ϕ(fq) lie in R
n1,...,nk
d1,...,dk

. Note that the total linearization
of each of ϕ(fj) is equal to fj with a non-zero coefficient independent of j. Hence, a non-
trivial linear relation α1ϕ(f1) + · · · + αqϕ(fq) = 0 implies the same relation α1f1 + · · · +
αqfq = 0. But f1, . . . , fq belong to distinct irreducible summandsM1, . . . ,Mq, respectively.
In particular, they are linearly independent. Hence, q does not exceed dimRn1,...,nk

d1,...,dk
, and

the proof is completed. �
Now, we restrict the dimension of Rn1,...,nk

d1,...,dk
.

Lemma 5: Let A = Ag1 ⊕ · · · ⊕ Agk be a �-graded algebra with the support {g1, . . . , gk}
and let d1 = dimAg1 , . . . , dk = dimAgk . Then

dimRn1,...,nk
d1,...,dk

≤ (d1 + · · · + dk)(n1 + 1)d
2
1 · · · (nk + 1)d

2
k . (11)
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Proof: Let {a(gi)
1 , . . . , a(gi)

di }be abasis of the subspaceAgi , 1 ≤ i ≤ k. Consider a polynomial
ring F[Y ], where Y = Yg1 ∪ . . . ∪ Ygk and

Ygi =
{
ygim,j| 1 ≤ m ≤ di, j = 1, 2, . . .

}
.

Then algebra F[Y ] can be naturally endowed by a�-gradingwith Supp F[Y ] = {g1, . . . , gk}
if we set deg� y = gi when y ∈ Ygi . Denote Ã = A ⊗ F[Y ] and fix elements

zgij =
di∑

m=1

a(gi)
m ⊗ ygim,j, j = 1, 2, . . . ,

in Ã. Then alg{zgij } is also a �-graded algebra, where deg zgij = gi. Moreover, Ã � R and
Rn1,...,nk
d1,...,dk

is a subspace of A⊗T , where T is the subspace of F[Y ] spanned by monomials of
degree at most nt in the set of indeterminates {ygtm,j| 1 ≤ m, j ≤ dt}, t = 1, . . . , k. Clearly,

dimT ≤ (n1 + 1)d
2
1 · · · (nk + 1)d

2
k (12)

hence (11) follows from (12). �
Now, we are ready to get an upper bound for graded colength of A.

Theorem 1: Let A = ⊕
g∈� Ag be a finite dimensional algebra graded by groupoid � with

Supp A = {g1, . . . , gk}. Let also dimAgi = di, 1 ≤ i ≤ k. Then the nth graded colength of A
satisfies the inequality

lgrn ≤ d(n + 1)k+d21 ···+d2k+d1+···+dk

where d = dimA = d1 + · · · + dk.
Proof: By Lemma 3, the total number of partitions λi 	 ni does not exceed (ni + 1)di for
any i = 1, . . . , k. Hence, by (6) and Lemmas 4 and 5, we have

ln1,...,nk(A) ≤ d(n1 + 1)d
2
1+d1 · · · (nk + 1)d

2
k+dk

and
lgrn ≤ d(n + 1)k+d21 ···+d2k+d1+···+dk

as follows from (7). �

4. Existence of graded PI-exponents

We begin this section with a technical result connecting dimensions of irreducible rep-
resentations of symmetric groups and multinomial coefficients. Given a partition μ =
(μ1, . . . ,μt) 	 m, we denote by qμ(qμ1, . . . , qμt) the partition of qm, where q ≥ 1 is an
arbitrary integer. We also define the height ht(μ) as ht(μ) = t. Recall that dμ = χμ(1) is
the dimension of the corresponding irreducible representation of Sm.
Lemma 6: Let n1, . . . , nk be positive integers, n1 + · · · + nk = n ≥ 100. Let also
λ(1), . . . , λ(k) be partitions of n1, . . . , nk, respectively, such that ht(λ(1)), . . . , ht(λ(k)) ≤ d.
If q ≥ 100 then
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(
qn

qn1, . . . , qnk

)
dqλ(1) · · · dqλ(k) ≥

(
1
qn

)k(d2+d+1) [
1
n2k

(
n

n1, . . . , nk

)
dλ(1) · · · dλ(k)

]q
.

Proof: Given non-negative real α1, . . . αk with α1 + · · · + αk = 1, we denote

�(α1, . . . αk) = 1
(α1)α1 · · · (αk)αk

.

From the Stirling formula for factorials, it easily follows that

1
mk�

(m1

m
, · · · , mk

m

)m ≤
(

m
m1, . . . ,mk

)
≤ m�

(m1

m
, · · · , mk

m

)m
, (13)

wherem1, . . . ,mk are non-negative integers andm1 + · · · + mk = m. Applying (13) to

P =
(

qn
qn1, . . . , qnk

)
we obtain

P >
(

1
qn

)k
�

(
qn1
qn

, . . . ,
qnk
qn

)qn
=

(
1
qn

)k [
�

(n1
n
, . . . ,

nk
n

)n]q
.

Applying again (13), we get

P >
(

1
qn

)k [
1
n

(
n

n1, . . . , nk

)]q
. (14)

It follows from Lemma 1 and (13) that

dqλ(1) · · · dqλ(k) >
(

1
qn1

· · · 1
qnk

)k(d2+d) [
�(λ(1))n1 · · ·�(λ(k))nk

]q
>

(
1
qn

)k(d2+d) [
dλ(1) · · · dλ(k)

]q
. (15)

Now, our lemma is a consequence of (14) and (15). �
Recall that A is a d-dimensional �-graded algebra. Now, let

a = expgr(A) = lim sup
n→∞

n
√
cgrn (A). (16)

The next lemma is the main step of the proof of Theorem 2.
Lemma 7: Let � be a commutative semigroup and let a in (16) be strictly greater than 1.
If A is graded simple, then for any ε > 0 and any δ > 0, there exists an increasing sequence
of positive integers n(1), n(2), . . . such that

(i) n
√
cgrn (A) > (1 + δ)(1 − ε) for all n = n(1), n(2), . . .; and

(ii) n(q+1), n(q) ≤ d, for all q = 1, 2, . . ..
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Proof: Clearly, there exists an integer n(1) such that

cgrn(1) (A) > (a − ε)n
(1)

and n(1) can be chosen arbitrarily large. There are also n1, . . . , nk ≥ 0 such that n1 + · · · +
nk = n(1) and (

n(1)

n1, . . . , nk

)
cn1,...,nk(A) >

1
(n(1) + 1)k

(a − ε)n
(1)

.

(see (2)). Without loss of generality, we can suppose that k = |Supp A|. Consider the
H = Sn1 × · · · × Snk -action on Pn1,...,nk . It follows from (6), (7), (10) that there exist
partitions λ(1) 	 n1, . . . , λ(k) 	 nk such that

dλ(1) · · · dλ(k) >
1

lgrn(1) (A)
cn1,...,nk(A).

By Theorem 1, we have
lgrn(1) (A) < d(n(1) + 1)k(d+1)2

hence
dλ(1) · · · dλ(k) >

1
d(n(1) + 1)k(d+1)2

cn1,...,nk(A).

and (
n(1)

n1, . . . , nk

)
dλ(1) · · · dλ(k) >

1
d(n(1) + 1)k(d+1)2+k

(a − ε)n
(1)

. (17)

There exists a multilinear polynomial

f = f
(
x(1)
1 , . . . , x(1)

n1 , . . . , x
(k)
1 , . . . , x(k)

nk

)
�∈ Idgr(A)

where x(i)
j ∈ Xgi for all 1 ≤ i ≤ k, 1 ≤ j ≤ nk such that f generates an irreducible

F[H]-module with the character

χH (F[H]f ) = χ
λ(1) ,...,λ(k) .

There are homogeneous in �-grading a11, . . . , a
1
n1 , . . . , a

k
1, . . . , a

k
nk with deg� aij = gi

such that
Q = f

(
a11, . . . , a

k
nk

)
�= 0.

Since � is associative and commutative, it follows that Q is homogeneous in �-grading
of A. Therefore, one can find d′ ≤ d and homogeneous c1, . . . , cd′ ∈ A satisfying the
inequality

(Q ∗ c1 ∗ . . . ∗ cd′) ∗ Q �= 0 (18)

where a ∗ b denotes the right or the left multiplication by b (otherwise Span < Q > is a
graded ideal of A). Denote

g1 = f1 = f (x(1)
1,1 , . . . , x

(1)
1,n1 , . . . , x

(k)
1,1 , . . . , x

(k)
1,nk),
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where x(i)
α,β are new homogeneous variables, deg� x(i)

α,β = gi, and take

g2 = (f1 ∗ z1 ∗ · · · ∗ zd′) ∗ f2,

where deg� z1 = deg� c1, . . . , deg� zd′ = deg� cd′ ,

f2 = f (x(1)
2,1 , . . . , x

(1)
2,n1 , . . . , x

(k)
2,1 , . . . , x

(k)
2,nk),

with x(i)
α,β ∈ Xgi . Then g2 ∈ P2n1+q1,...,2nk+qk is not an identity of A, as follows from (18),

and q1, . . . , qk ≥ 0, q1 + · · · + qk = d′.
The square H × H of group H acts on {x(i)

α,β} where the first copy of H acts on {x(i)
1,β},

while the second copy acts on {x(i)
2,β} and

χH×H (F[H × H]g2) = χ
λ(1) ,...,λ(k) ⊗ χ

λ(1) ,...,λ(k) .

Denote n(2) = 2n(1) + d′. Repeating this procedure, we construct for all q = 3, 4, . . . a
multilinear polynomial

gq = gq(x
(1)
1,1 , . . . , x

(1)
1,n1 , . . . , x

(k)
q,1 , . . . , x

(k)
q,nk , z1, z2, . . . )

of degre n(q) such that:

(i) all x(i)
α,β , zj are homogeneous and x(i)

α,β ∈ Xgi ;
(ii) gq is not an identity of A;
(iii) n(q) = qn(1) + d(q), d(q) ≤ (q − 1)d ≤ dq, n(q) − n(q−1) ≤ d; and
(iv) q copies Hq = H × · · · × H of H act on gq permuting x(i)

α,β and gq generates an
irreducible F[Hq]-moduleM with

χ(M) = (χ
λ(1) ,...,λ(k) )

⊗q.

Denote H(q) = Sqn1 × · · · × Sqnk . Given 1 ≤ i ≤ k, group Sqni acts on {x(i)
1,1, . . . , x

(i)
q,ni}.

We can induce the Hq-action on M to the H(q)-action. Consider the decomposition of
M̃ = F[H(q)]gq into irreducible components,

χH (q)(M̃) =
∑

ρ(1)	qn1,...,ρ(k)	qnk
tρ(1),...,ρ(k)χ

ρ(1) ,...,ρ(k) .

It follows by the Richardson–Littlewood rule that for any 1 ≤ i ≤ k, either ρ(i) = qλ(i) or
ρ(i) is obtained from λ(i) by putting down one or more boxes ofDqλ(i) . Then, by Lemma 2,
we have �(ρ(i)) ≥ �(qλ(i)) = �(λ(i)). Now, Lemma 1 implies the inequality

dρ(1) · · · dρ(k) >
(

1
qn(1)

)k(d+1)2

dqλ(1) · · · dqλ(k) . (19)
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Recall that gq is not an identity of A. Hence, there exist integers pq,1, . . . , pq,k ≥ 0 such that
pq,1 + · · · + pq,k = d(k) and

cqn1+pq,1,...,qnk+pq,k(A) ≥ dρ(1) · · · dρ(k) .

In particular,

cgrn(q) (A) ≥
(

qn(1)

qn1, . . . , qnk

)
dρ(1) · · · dρ(k) . (20)

Note that for any partition μ 	 m, ν 	 m with �(μ) ≥ �(ν), it follows by Lemma 1
that

dμ ≥ 1
md2+d

�(μ)m ≥ 1
md2+d

�(ν)m ≥ 1
md2+d+1

dν.

Then, by Lemma 6 and (19), the right hand side of (20) is not less than(
1

qn(1)

)2k(d+1)2 (
1

n(1)

)2kq
[(

n(1)

n1, . . . , nk

)
dλ(1) · · · dλ(k)

]q

.

Now, (17) implies the following inequality

cgrn(q) (A) ≥
(

1
qn(1)

)2k(d+1)2 (
1

n(1)

)2kq (
1

d(n(1) + 1)

)2k(d+1)2q
(a − ε)n

(q)
.

Since a > 1, by the assumptions of the lemma, we then have

(a − ε)qn
(1) ≥ (a − ε)n

(q)

aqd

for all small enough ε. Hence
n
√
cgrn (A) > D(a − ε),

where D = D1D2,

D1 =
(

1
n(q)

) 2k(d+1)2

n(q)
, D2 =

(
1

n(1)

) 2k
n(1)

(
1

d(n(1) + 1)

) 2k(d+1)2

n(1)
(
1
a

) d
n(1)+d

.

For small δ1, δ2 > 0, one can choose n(1) such that D1 > (1 − δ1) and D2 > (1 − δ2) for all
n(q), q ≥ 1. Finally, we can take δ1, δ2 small enough and get the inequality

n
√
cgrn (A) > (1 − δ)(a − ε),

for all n = n(q), q = 1, 2, . . .. �
Remark 1: In the proof of the previous lemma, we used associativity and commutativity
of � only for getting relation (18). In case of an arbitrary groupoid �, the element Q in
(18) can be non -homogeneous in �-grading and hence an ideal I generated byQ in A can
be strictly less than A. But if A is simple in a non-graded sense, then I = A and relation
(18) and Lemma 7 hold.
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For completing the proof of the main result, we need the following remark. Denote by
Ann A the annihilator of A.
Lemma 8: Let A be a �-graded algebra with a finite support of order k. If Ann A = 0, then

cgrn+1(A) >
1

8knk
cgrn (A)

for all sufficiently large n.
Proof: Denote Supp A = {g1, . . . , gk}. It follows from (2) that there exists n1, . . . , nk ≥ 0,
n1 + · · · + nk = n such that

1
2nk

cgrn (A) <
1

(n + 1)k
cgrn (A) < cn1,...,nk(A). (21)

Recall that cn1,...,nk(A) = dim Pn1,...,nk(A) (see 4). Denote by Ui, 1 ≤ i ≤ k, the subspace of
polynomials f in Pn1,...,nk(A) such that ϕ(f )Agi = 0 for all graded evaluations ϕ : F{X} →
A. Similarly, let Wi, 1 ≤ i ≤ k, be the subspace of polynomials h ∈ Pn1,...,nk(A) satisfying
Agiϕ(h) = 0 for all graded evaluations ϕ : F{X} → A. Denote

V = U1 ∩ . . . ∩ Uk ∩ W1 ∩ . . . ∩ Wk.

If f ∈ V , then all values of f in A lie in Ann A = 0, that is V = 0. Suppose that

dimU1, . . . , dimUk, . . . , dimW1, . . . , dimWk >
4k − 1
4k

N

where N = cn1,...,nk(A). Then dimV > (2k · 4k−1
4k − (2k − 1))N = 1

2N , that is V �= 0, a
contradiction. It follows that dimUi < 4k−1

4k N or dimWi < 4k−1
4k N for at least one i. Let,

for instance, dimU1 < 4k−1
4k N . Denote by T the codimension of U1 in Pn1,...,nk(A). Then

T >
1
4k

cn1,...,nk(A) >
1

8knk
cgrn (A)

as follows from (21). Now, if f1, . . . , fT are linearly independent modulo U1 elements
from Pn1,...,nk(A), then f1z, . . . , fTz are linearly independent elements in Pn1+1,n2,...,nk(A),
provided that z is a new homogeneous indeterminate, deg� z = g1. Hence

cgrn+1(A) ≥ cn1+1,n2,...,nk(A) ≥ T >
1

8knk
cgrn (A),

and we are done. �
Now, we are ready to prove the main result of this paper.

Theorem 2: Let � be a commutative semigroup and let A = ⊕
g∈� Ag be a finite dimen-

sional �-graded algebra. If A is graded simple, then there exists the limit

expgr (A) = lim
n→∞

n
√
cgrn (A).
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Proof: Denote

a = expgr(A) = lim sup
n→∞

n
√
cgrn (A).

If a = 0, then A is nilpotent and expgr (A) = 0. If A is not nilpotent, then a ≥ 1. In the
case a = 1, the lower limit of n

√
cgrn (A) is also 1 and we are done.

Let now a > 1. By Lemma 7, there exists a sequence n(1) < n(2) < . . . such that

cgrn ≥ (1 − δ)n(a − ε)n

for all n = n(i), i ≥ 1, and ε, δ > 0 can be chosen arbitrarily small.
Now, let m = n(i),m′ = n(i+1) and let m < n < m′. Then n = m + p, 1 ≤ p < d. By

Lemma 8, we have

cgrn (A)=cgrm+p(A) >
(

1
(8k(m + p))

)p
(1−δ)n(a−ε)m >

(
1

8kn

)d 1
(a − ε)d

(1−δ)n(a−ε)n.

(22)
Clearly, inequality (22) also holds for all n = n(1), n(2), . . ., and for all small ε, δ > 0.

Hence
lim inf
n→∞

n
√
cgrn (A) ≥ (1 − δ)(a − ε).

Since ε, δ are arbitrary, we can conclude that

expgr(A) = lim inf
n→∞

n
√
cgrn (A) = a

and the proof of the theorem is completed. �
Finally, note that associativity and commutativity of � was used only in the proof

of Lemma 7 (see Remark 1). Hence, for an arbitrary groupoid �, we have obtained the
following result.
Theorem 3: Let A = ⊕

g∈� Ag be a finite dimensional algebra graded by a groupoid �. If
A is simple, then there exists its graded PI-exponent

expgr (A) = lim
n→∞

n
√
cgrn (A).
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