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Exponential growth of codimensions
of identities of algebras with unity

M. V. Zaicev and D. Repovš

Abstract. The asymptotic behaviour is studied of exponentially bounded
sequences of codimensions of identities of algebras with unity. A series of
algebras is constructed for which the base of the exponential increases by
exactly 1 when an outer unity is adjoined to the original algebra. It is
shown that the PI-exponents of unital algebras can take any value greater
than 2, and the exponents of finite-dimensional unital algebras form a dense
subset in the domain [2,∞).
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§ 1. Introduction

1.1. In this paper we study functions that characterize the number of identity
relations holding in one or another algebra. With every algebra A over a field F of
characteristic zero, we can associate an integer sequence {cn(A)}, n = 1, 2, . . . , con-
structed from its multilinear identities. The asymptotic behaviour of this sequence
contains certain information on the structure of the algebra A itself. For example,
if A is an associative algebra, then cn(A) = 1 for all n if and only if A is a commu-
tative non-nilpotent algebra. But if cn(A) = 0 for some n > 1, then A is nilpotent,
An = 0 (and conversely). It was recently shown that {cn(A)} is asymptotically
increasing, that is, there exists a positive integer t such that ct+j 6 ct+j+1 for
all j = 0, 1, . . . . If cm−1 > cm, then this value of t is closely connected with the
nilpotency class of the Jacobson radical of the algebra A (the result was announced
in [1], a complete proof was published in [2]). If the field F is algebraically closed
and A is simple, then cn(A) ∼ dn, where d = dimA (see [3]). Here the relation
cn(A) ∼ dn means that

lim
n→∞

n
√
cn(A) = d.

The same effect is also observed in the case of Lie algebras (see [4]), Jordan
algebras, alternative algebras, and a number of other classes (see [5]). For Lie
algebras there is a well-known open problem of classification of infinite-dimensional
simple Lie algebras. At present, this problem is apparently far from its solution,
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but certain information on the structure of such an algebra L can be obtained if
{cn(L)} has exponential growth (see [6]).

1.2. The presence or absence of unity in an algebra substantially affects the struc-
ture of its identities. For example, if A is an associative algebra with unity, then the
set of all its identities is completely determined by the system of so-called proper
identities (see [7]). If, in addition, A satisfies all identities of the 2× 2 matrix alge-
bra, then asymptotically for its T-ideal there exist only countably many variants,
which can be described explicitly (see [8]). If {cn(A)} grows polynomially, then
cn(A) = qnk +O(nk−1) for some integer k and positive rational number q (see [9]).
Later it was shown that for a fixed k one can find a suitable algebra for any q ∈ Q,
q > 0 (see [10]). It was also proved in the same paper that if A is a unital algebra,
then

1
k!

6 q 6
k∑

i=2

(−1)i

i!
≃ 1
e
.

Another positive effect of the presence of a unity manifested itself in the proof
of the following conjecture. As a refinement of Amitsur’s conjecture, Regev conjec-
tured that

cn(A) ≃ Cn
t
2 dn

for any associative PI-algebra, where t and n are integers, C = const. After a series
of partial results, in 2008 Regev’s conjecture was confirmed for algebras with unity
(see [11], [12]). And only recently the validity of this conjecture was proved in the
general case (see [1], [2]).

In [13], for all real γ > 1, examples were constructed of finite-dimensional alge-
bras with exponential growth of codimensions cn ∼ γ′ ≈ γ. As shown in [14],
for finite-dimensional algebras with unity, exponential growth cannot be slower
than 2n.

In [15], it was pointed out that if A is an associative PI-algebra, and A# the
algebra obtained from A by adjoining an outer unity, then exp(A#) is equal to
exp(A) or exp(A) + 1. This simple assertion follows from the results of [16], [17],
where not only was the existence of the limit

exp(A) = lim
n→∞

n
√
cn(A)

proved for any associative PI-algebra A, but also a procedure for the calculation
of this quantity was proposed. Nevertheless, this observation made it possible to
propose the conjecture that exp(A#) is always equal to exp(A) or exp(A) + 1. The
first nontrivial example confirming this conjecture was constructed in [14], another
example was proposed in [18], and in [19] a series of examples was presented, in
which for any algebra A from paper [13] with exp(A) = γ ∈ R, 1 6 γ 6 2, its
extension A# has exponent exp(A#) = γ + 1 ∈ [2, 3]. We also note that in [20]
the author proposed a method of construction, from a Lie algebra L over a field F ,
of a Poisson algebra that is equal to L ⊕ F as a vector space and contains L as
a Lie subalgebra of codimension 1. The algebra L⊕F can be regarded as a natural
modification of the algebra L#. Somewhat later, the same author proved that
exp(L⊕ F ) = exp(L) + 1 (see [21]).
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1.3. The main goal of the present paper is the construction of a family of algebras
Aγ , γ ∈ R, γ > 1, for which exp(Aγ) = γ (Theorem 1) and exp(A#

γ ) = γ + 1
(Theorem 2). Note that in the construction of these examples we use infinite
periodic words and Sturmian words, the combinatorial properties of which are used
to obtain asymptotic estimates.

Apart from one more confirmation of the aforementioned conjecture, these results
show that any real number γ > 2 can be realized as the PI-exponent of a unital alge-
bra (see Corollary 1). Furthermore, Theorem 2 and several combinatorial properties
of infinite words imply that the PI-exponents of finite-dimensional unital algebras
form a dense subset in the domain [2,∞).

One can get acquainted with the foundations of the theory of identity relations
and the quantitative PI-theory from the monographs [22]–[24].

§ 2. Basic notions and constructions

2.1. LetA be an algebra over a field F , and let F{X} be an absolutely free F -algebra
with an infinite set of generators X. A polynomial f = f(x1, . . . , xn) ∈ F{X},
x1, . . . , xn ∈ X, is called an identity of A if f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A.
The set of all identities Id(A) of the algebra A forms an ideal in F{X}. Let Pn

denote the subspace of all multilinear polynomials in x1, . . . , xn in F{X}. Then
Pn ∩ Id(A) is the set of all multilinear identities of degree n of the algebra A. It
is well known that in the case of zero characteristic of the ground field, the ideal
Id(A) is completely determined by the set of subspaces {Pn ∩ Id(A)}, n = 1, 2, . . . .
Let Pn(A) denote the quotient space

Pn(A) =
Pn

Pn ∩ Id(A)
,

and let cn(A) denote its dimension

cn(A) = dimPn(A).

The quantity cn(A) is called the nth codimension of identities of the algebra A
(or simply the nth codimension of A) and is one of the quantitative characteristics
of the set of identity relations of A. Studying the asymptotic behaviour of the
sequence {cn(A)} is one of the key problems of quantitative PI-theory.

In the general case, {cn(A)} may have super-exponential growth. For example,
if A = F{X}, then

cn(A) =
1
n
Cn−1

2n−2n!;

if A is a free associative algebra, then cn(A) = n!, and if A is a free Lie algebra,
then cn(A) = (n − 1)! . But in many cases the growth of the sequence {cn(A)} is
bounded by an exponential function. The class of algebras with exponentially
bounded codimension growth contains all associative PI-algebras (see [25]), all
finite-dimensional algebras (see [26]) of any signature, the Kac-Moody algebras
(see [27]), infinite-dimensional simple Lie algebras of Cartan type (see [28]), and
quite a number of others. In this case, the upper and lower limits

exp(A) = lim
n→∞

n
√
cn(A), exp(A) = lim

n→∞

n
√
cn(A)
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are defined, and are called the upper and lower PI-exponents of A. If the ordinary
limit exists, that is,

exp(A) = exp(A),

then it is called the (ordinary) PI-exponent.

2.2. In the study of the asymptotics of the growth of {cn(A)}, a useful tool is the
theory of representations of symmetric groups. The group Sn naturally acts on Pn:

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Furthermore, the subspace Pn ∩ Id(A) is invariant under this action, and therefore
Pn(A) is also endowed with the structure of an F [Sn]-module. All the requisite
information on the theory of representations of symmetric groups and its applica-
tion in the study of identity relations can be found in [29], [22]–[24]. Since repre-
sentations of the group Sn are completely reducible, the module Pn(A) decomposes
into a direct sum of irreducible F [Sn]-modules, which fact it is convenient to write
down in the language of character theory. The character χ(Pn(A)) is called the
nth cocharacter of A and is denoted by χn(A). The decomposition of Pn(A) into
irreducible components is written as the decomposition of χn(A) into a sum of
irreducible characters:

χn(A) =
∑
λ⊢n

mλχλ, (2.1)

where χλ is the character of the irreducible representation of Sn corresponding to
a partition λ of the number n, while the non-negative integer mλ is its multiplicity.
In particular, relation (2.1) means that

cn(A) =
∑
λ⊢n

mλdλ, (2.2)

where dλ = degχλ is the dimension of the irreducible representation of Sn corres-
ponding to a partition λ. To obtain estimates of the codimension growth, we need
one more quantity, which is called the nth colength of A, defined as

ln(A) =
∑
λ⊢n

mλ,

where the mλ are the coefficients on the right-hand side of (2.2). Obviously,

cn(A) 6 ln(A) max{dλ | λ ⊢ n, mλ ̸= 0}. (2.3)

We need more detailed information on the structure of irreducible F [Sn]-modules.
Recall that a partition λ of a number n is defined as an ordered tuple of integers
λ = (λ1, . . . , λk) such that λ1 > · · · > λk > 0 and λ1 + · · ·+ λk = n. The number
h(λ) = k is called the height of λ. From a partition λ, we construct a table of n
boxes called a Young diagram Dλ. It consists of k rows and contains λj boxes in the
jth row for every j = 1, . . . , k. If the numbers 1, . . . , n are written in the boxes of
the diagram Dλ, then the construction thus obtained is called a Young tableau Tλ.
It is known that any irreducible F [Sn]-module is isomorphic to the minimal left
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ideal F [Sn]eTλ
of the group ring of Sn, where the element eTλ

is constructed as
follows.

Let RTλ
denote the subgroup of all permutations permuting the numbers 1, . . . , n

only within the rows of the tableau Tλ. Clearly, RTλ
≃ Sλ1 × · · · × Sλk

. In similar
fashion, the subgroup CTλ

is defined; the elements of this subgroup do not take any
number beyond a column of Tλ. We set

R(Tλ) =
∑

σ∈RTλ

σ, C(Tλ) =
∑

τ∈CTλ

(sgn τ)τ, eTλ
= R(Tλ)C(Tλ).

It is the character of this module that is called the irreducible character χλ. The
element eTλ

is called a Young symmetrizer and it is a quasi-idempotent of the
ring F [Sn], that is, e2Tλ

= γeTλ
, where γ is a nonzero scalar. In particular, this

implies that the element C(Tλ)eTλ
is not equal to zero and generates the same

minimal left ideal F [Sn]eTλ
. In the context of the action of Sn on the space of mul-

tilinear polynomials Pn, this fact makes it possible to draw a simple but important
conclusion.

Remark 1. Let M be an irreducible F [Sn]-submodule of Pn. Then M is generated
as an F [Sn]-module by a multilinear polynomial with the following properties:

• the set of variables involved in f splits into a union of disjoint subsets

{x1, . . . , xn} = X1 ∪ · · · ∪Xt,

where t = λ1 is the length of the first row of Dλ and |Xj | is the height of
the jth column of Dλ, j = 1, . . . , k;

• the polynomial f is skew-symmetric with respect to each of the sets
X1, . . . , Xt.

2.3. For estimating the dimensions of irreducible representations of Sn, it is con-
venient to use the function Φ(λ) defined on partitions as follows.

First let 0 6 x1, . . . , xd 6 1 be any real numbers such that x1 + · · · + xd = 1,
d > 2. We set

Φ(x1, . . . , xd) =
1

xx1
1 · · ·xxd

d

. (2.4)

We use the continuity of Φ and the property that if we fix the values of all variables
except xi, xj , then the maximum of Φ is attained at xi = xj . Moreover, if xi > xj ,
then Φ(xi − ε, xj + ε) is increasing as ε increases from 0 to (xi − xj)/2. But if
we fix one of the variables, for example, xd = γ, then the maximum is attained at
x1 = · · · = xd−1, that is,

max Φ = Φ(θ, . . . , θ, γ), where (d− 1)θ + γ = 1.

We use the notation

Φd−1(γ) = Φ( θ, . . . , θ︸ ︷︷ ︸
d−1

, γ), (d− 1)θ + γ = 1. (2.5)
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Now let λ = (λ1, . . . , λt) ⊢ n and d > t. We write λ in the form λ = (λ1, . . . , λd)
even if d > t, setting λt+1 = · · · = λd = 0. Then

Φ(λ) = Φ
(
λ1

n
, . . . ,

λd

n

)
.

Obviously, the value of Φ(λ) is independent of d > t if we use the convention 00 = 1.
The value of Φ(λ) and the degree of the character dλ = degχλ are connected by

the following relation.

Lemma 1 (see [30], Lemma 1). Let λ = (λ1, . . . , λt) ⊢ n be a partition of n into
t 6 d components and suppose that n > 100. Then

Φ(λ)n

nd2+d
6 dλ 6 nΦ(λ)n.

We need the following property of Φ. Let λ = (λ1, . . . , λq) and µ = (µ1, . . . , µq)
be two partitions of a number n, and suppose that λq, µq > 0. We say that the
Young diagram Dµ is obtained from the diagram Dλ by pushing one box down if
there exist 1 6 i < j 6 q such that µi = λi − 1, µj = λj + 1, and µk = λk for all
other 1 6 k 6 q. If, however, λ = (λ1, . . . , λq), λq > 0, µ = (µ1, . . . , µq, 1) ⊢ n,
then Dµ is obtained from Dλ by pushing down one of the boxes if one of the rows
of Dµ is shorter by one box than the corresponding row of Dλ, while all other rows,
except the last one, have the same length.

Lemma 2 (see [30], Lemma 3, [31], Lemma 2). Suppose that Dµ is obtained from
Dλ by pushing down one box. Then Φ(µ) > Φ(λ).

We also use the following property of the function Φ(x1, . . . , xd).

Lemma 3 (see [19], Lemma 2). Let Φ(x1, . . . , xd) be defined by formula (2.4), and
let Φ(z1, . . . , zd) = a for some fixed values z1, . . . , zd . Then

max
06t61

{
Φ(y1, . . . , yd, 1− t) | y1 = tz1, . . . , yd = tzd

}
= a+ 1,

and the maximum is attained at t = a/(a+ 1).

In fact, Lemma 3 means that when an additional row is added to the diagramDλ,
the value of Φ(λ) increases by at most 1.

2.4. For constructing examples of algebras with a given nature of behaviour of
{cn(A)}, we use an approach that was proposed for the first time in [13] and which
is based on combinatorial properties of infinite binary words. For this, we recall
some notions.

Let w = w1w2 . . . be an infinite word in the binary alphabet, that is, every wi is
equal to 0 or 1. The complexity of w is defined as the function of positive integer
argument Compw(n) that is equal to the number of different subwords of length n
in w. If w is periodic, then Compw(n) = const = T for all n > T , where T is the
period of w. It is also known that if w is not periodic, then Compw(n) > n+1 for all
n > 1 (see [32]). The sum wk+1 + · · ·+wk+m of a finite subword u = wk+1 . . . wk+m

is customarily denoted by h(u), and the length by |u|.
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For a given word w, the quantity

π(w) = lim
n→∞

h(w1 . . . wn)
n

(2.6)

is called the slope of w if the limit on the right-hand side of (2.6) exists.
If compw(n) = n+ 1 for all n > 1, then w is called a Sturmian word. Sturmian

words possess the following properties (see [32]).

Proposition 1. Let w be a periodic word or a Sturmian word. Then there exists
a constant C such that

(1) |h(x)− h(y)| 6 C for any finite subwords x and y of the same length;
(2) the slope π(w) always exists;
(3) for any finite subword u in w ,∣∣∣∣h(u)|u|

− π(w)
∣∣∣∣ 6

C

|u|
;

(4) for any real α ∈ (0, 1) there exists w such that π(w) = α and w is a peri-
odic word if α is a rational number, or a Sturmian word if α is irrational;
moreover, we can choose C = 1 if w is a Sturmian word, or C = T if w is
a periodic word with period T , and then

π(w) =
h(w1 . . . wT )

T
.

In what follows we also regard words of 0s only, or of 1s only, as being periodic,
and then Proposition 1 also extends to the cases α = 0, α = 1.

§ 3. Sturmian words and non-associative algebras

In the present section we construct a family of non-associative algebras, the
PI-exponents of which take any real values in the domain [2,∞). The idea of con-
struction of algebras with prescribed codimension growth on the basis of Sturmian
words was first proposed and realized in [33], [13], where for any real 1 6 α 6 2,
an algebra Aα with exp(Aα) = α was constructed. In the recent paper [19] it was
proved that if we adjoin an outer unity to Aα, then the exponent exists for the
resulting algebra A#

α and is equal to α + 1. The series of algebras constructed
below generalizes the construction proposed in [13]. It should be noted that exam-
ples of algebras with an arbitrary PI-exponent α > 2 were also presented in [13],
but attempts to use them to construct unital algebras with exponents greater than
three were unsuccessful. This is what made construction of new examples necessary.

3.1. Let m and d be positive integers such that m > 2, d 6 m − 1, and let
w = w1w2 . . . be an infinite word in the binary alphabet {0; 1}. We consider an
infinite sequence (m1,m2, . . . ) in which mj = m + wj for all j > 1. An algebra
A(m, d,w) is defined by its basis

{ai, b, z
i
jk | 1 6 i 6 d, 1 6 j 6 mk, k = 1, 2, . . . }
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and multiplication table

zi
jkai =

{
zi
j+1,k if j < mk,

0 if j = mk,
zi
mk,kb =

{
zi+1
1k if i < d,

z1
1,k+1 if i = d.

All the other products of basis elements are equal to zero. We point out some
properties of A(m, d,w):

• A(m, d,w) satisfies the identity x1(x2x3) ≡ 0,
• the linear span ⟨zi

jk | 1 6 i 6 d, 1 6 j 6 mk, k > 1⟩ is an ideal of A(m, d,w)
with zero multiplication of codimension d+ 1,

• if f = f(x1, . . . , xn) is a multilinear polynomial of degree n > d + 3 that is
skew-symmetric with respect to x1, . . . , xd+3, then f ≡ 0 is an identity in
A(m, d,w),

• if f = f(x1, . . . , xn) is a multilinear polynomial of degree n > 2d + 4
that is skew-symmetric with respect to x1, . . . , xd+2 and with respect to
xd+3, . . . , x2d+4, then f ≡ 0 is an identity in A(m, d,w).

Remark 1 in the preceding section immediately yields the following result.

Lemma 4. Let A(m, d,w) be an algebra defined by an infinite word w and integer
parameters m > 2 and 1 6 d 6 m− 1. If

χn(A) =
∑
λ⊢n

mλχλ (3.1)

is the nth cocharacter of A, then mλ ̸= 0 in (3.1) only for h(λ) 6 d+2, where h(λ)
is the height of λ, that is, the number of rows in the diagram Dλ . Furthermore, if
λ = (λ1, . . . , λd+2) and mλ ̸= 0, then λd+2 6 1.

3.2. To obtain an upper estimate for the growth of {cn(A(m, d,w))}, we first need
to bound the growth of the colength {ln(A(m, d,w))}.

First let A be an arbitrary algebra. Let R = R(y1, y2, . . . ) denote the relatively
free algebra of the variety var(A) generated by A, and let

W (p)
n (A) = Span{yi1 · · · yin

| 1 6 i1, . . . , in 6 p}

denote the linear span of all monomials of degree n in y1, . . . , yp with all possible
arrangements of brackets, that is, of all homogeneous polynomials of degree n in
y1, . . . , yp contained in R.

Lemma 5 (see [13], Lemma 4.1). Let A be an algebra with nth cocharacter χn(A) =∑
λ⊢nmλχλ . Then for any λ ⊢ n with h(λ) 6 p we have the inequality

mλ 6 dimW (p)
n (A). (3.2)

Throughout what follows we simply omit brackets in a left-normed product,
that is, we write (zt)v as ztv. This agreement is especially convenient when working
with the algebras A(m, d,w), since all nonzero products in them are left-normed
due to the identity x1(x2x3) ≡ 0.

Lemma 6. Let A = A(m, d,w) be defined by m, d, and an infinite word w . Then

dimW (p)
n (A) 6 d(m+ 1)n(d+1)p Compw(n).
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Proof. Let W denote the linear span of monomials of the form tyi1 · · · yin−1 , where
t = yp+1, 1 6 i1, . . . , in−1 6 p. Then

dimW (p)
n (A) 6 p dimW.

Let y be some element of W . Clearly, y is nonzero if and only if there exists
a homomorphism σ : R→ A for which σ(y) ̸= 0.

In order to obtain an estimate for the dimension of W , we consider the following
construction. Let F ⟨a1, . . . , ad, b⟩ be a free associative algebra with generators
a1, . . . , ad, b, and M be a free right F ⟨a1, . . . , ad, b⟩-module with one generator x.
Then any element of M can be written as a linear combination of elements of the
form xf(a1, . . . , ad, b), where f(a1, . . . , ad, b) is a monomial in a1, . . . , ad, b.

Now suppose that σ is a homomorphism from R into A. Clearly, it is sufficient
to verify the condition σ(y) = 0, y ∈W , only for all homomorphisms of the form

σ(t) = zi
jk, σ(ys) = αs

1a1 + · · ·+ αs
dad + βsb, 1 6 s 6 p,

where αs
r, βs are any scalars in F .

We consider the polynomial ring F [αs
r, β

s], 1 6 s 6 p, 1 6 r 6 d, in which αs
r, βs

are now regarded as variables. For brevity, we denote this ring by F [α, β]. Let
ψ : W →M ⊗ F [α, β] be the linear map defined by

ψ(tyi1 · · · yin−1) = x(αi1
1 a1+ · · ·+αi1

d ad +βi1b) · · · (αin−1
1 a1+ · · ·+αin−1

d ad +βin−1b).
(3.3)

We observe that if
h =

∑
λi1...in−1tyi1 · · · yin−1 ,

then ψ(h) = 0 only if h ≡ 0 is an identity in A, that is, h is a zero element with
respect to the free algebra R(y1, y2, . . . ). This means that (3.3) correctly defines ψ
and that ψ is an embedding of W into M ⊗ F [α, β].

Let ϕi
jk denote the linear map from M into A such that

ϕi
jk(xf(a1, . . . , ad, b)) = zi

jkf(a1, . . . , ad, b), (3.4)

where the polynomial on the right-hand side of (3.4) is interpreted as a polynomial
in right multiplications by a1, . . . , ad, b in A. We set

I =
⋂
i,j,k

kerϕi
jk.

If y ∈M/I ⊗ F [α, β], then for any specification of the variables {αs
r, β

s} in F and
for any substitution ϕi

jk : M → A, the element y goes to zero. This means that W
is embedded in M/I ⊗ F [α, β]. Moreover, W is embedded in M/I ⊗ F [α, β](n−1),
where F [α, β](n−1) is the subspace of homogeneous polynomials of degree n− 1 in
F [α, β]. In particular,

dimW 6 dimF [α, β](n−1) · dim
M

I
.

Obviously,
dimF [α, β](n−1) 6 (n− 1)dp+p 6 n(d+1)p.
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We now estimate the dimension of M/I from above. We fix the indices i, j, k.
First, we observe that the rules of multiplication of basis elements in A imply that
there exists exactly one monomial f i

j,k that is not contained in the kernel of ϕi
j,k:

f i
j,k = x ai · · · ai︸ ︷︷ ︸

mk−j

b ai+1 · · · ai+1︸ ︷︷ ︸
p1

b · · · b ai+r · · · ai+r︸ ︷︷ ︸
pr

b ai+r+1 · · · ai+r+1︸ ︷︷ ︸
s

,

where the indices of ai+1, . . . , ai+r+1 are calculated modulo d, mk − j + p1 + · · ·+
pr +s+r+1 = n−1, s 6 d, and all p1, . . . , pr are equal to one of mk,mk+1, . . . and
are uniquely determined by the subword w(k, k+ n− 1) = (wk, wk+1, . . . , wk+n−1)
of length n of the word w. In particular, f i

j,k = f i
j,l and kerϕi

j,k = kerϕi
j,l if

w(k, k + n− 1) = w(l, l + n− 1) in w. Since 1 6 i 6 d and 1 6 j 6 m + 1, the
number of different kernels kerϕi

j,k is at most d(m+ 1) Compw(n). Consequently,

dim
M

I
6 d(m+ 1) Compw(n), dimW (p)

n (A) 6 d(m+ 1)n(d+1)p Compw(n),

and Lemma 6 is proved.

As a corollary, we obtain an estimate of the colength growth for an algebra
defined by a Sturmian word or an infinite periodic word.

Proposition 2. Let A = A(m, d,w), where w is a Sturmian word or an infinite
periodic word. Then

ln(A) 6 2d2(m+ 1)n(d+1)(d+3)(n+ 1).

Proof. By Lemma 4, we have h(λ) 6 d+2 and λd+2 6 1 for any partition λ ⊢ n with
nonzero multiplicity mλ. The number of such partitions does not exceed 2dnd+1.
Therefore Lemmas 5 and 6 yield the required estimate.

3.3. We can now set about obtaining upper estimates of PI-exponents.
Let A = A(m, d,w) be an algebra constructed from an infinite word w, where w

is a periodic word or a Sturmian word. If f = f(zi
jk, a1, . . . , ad, b) is an associative

word in the alphabet {zi
jk, a1, . . . , ad, b}, then we can speak about its degrees degb f ,

degai
f , degzi

jk
f in the variables, about the total degree deg f , as well as about the

value of f in A, if we consider it as a left-normed product of basis elements.
We need one sufficient condition for the fact that f ̸= 0.

Lemma 7. For given m, d, w , there exists a sequence {εn > 0}, n = 1, 2, . . . , such
that if f = f(zi

jk, a1, . . . , ad, b) is a monomial of degree n that is not equal to zero
in A(m, d,w), then

degb f

n
6

1
m+ α

+ εn,

where α = π(w) is the slope of w . Furthermore, εn → 0 as n→∞.

Proof. The word f can be written in the form f = ZPQ, where Z is a product of
basis elements {zi

jk, aα, b} of degree degZ 6 (m+ 1)d, while Q = Q(a1, . . . , ad, b),
degQ 6 (m+ 1)d, and

P = amk−1
1 b · · · amk−1

d b · · · amk+t−1−1
1 b · · · amk+t−1−1

d b.
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Then degb P = td and

degai
P = (mk − 1) + · · ·+ (mk+t−1 − 1) = mk + · · ·+mk+t−1 − t

= (m− 1)t+ wk + · · ·+ wk+t−1

for any i = 1, . . . , d. As noted in Proposition 1, there exists for w a constant C
such that |wk + · · ·+ wk+t−1 − αt| 6 C. Therefore,

degP = dmt+ d(wk + · · ·+ wk+t−1) > dt

(
m+ α− C

t

)
and n = deg f > degP , degb f 6 td+ 2d = (t+ 2)d. Consequently,

degb f

n
6

1 + 2d/t
m+ α− C/t

.

Since n 6 d(mk + · · · +mk+t−1) + 2(m + 1)d 6 d(m + 1)t + 2(m + 1)d, it follows
that

t >
n

d(m+ 1)
− 2

and t grows linearly as n grows. Consequently,

lim
n→∞

degb f

n
=

1
m+ α

,

whence the assertion of the lemma follows.

We now obtain an upper estimate for the codimension growth of the algebra
A(m, d,w).

Lemma 8. Let A = A(m, d,w), where w is an infinite periodic word or a Sturmian
word with slope α = π(w). Then

exp(A) 6 Φd

(
1

m+ α

)
,

where the function Φd is defined by formula (2.5).

Proof. We fix an arbitrarily small ε > 0 and claim that for it there exists N such
that if n > N , λ ⊢ n, and mλ ̸= 0 in (3.1), then

Φ(λ) 6 Φd

(
1

m+ α
+ ε

)
.

First suppose that λd+1 = 0, that is, λ = (λ1, . . . , λd, 0, 0). Then

Φ(λ) 6 Φ
(

1
d
, . . . ,

1
d
, 0, 0

)
6 Φ

(
θ, . . . , θ︸ ︷︷ ︸

d

,
1

m+ α

)
= Φd

(
1

m+ α

)
.

Now suppose that λd+1 ̸= 0. Then by Remark 1, there exists a multilinear
polynomial h = h(x1, . . . , xn) that is not an identity of A, but is skew-symmetric
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with respect to λ1 sets of variables X1, . . . , Xλ1 , where |X1| = d + 1 or d + 2
depending on the value of λd+2 (being 0 or 1), while |X2| = · · · = |Xλd+1 | = d+ 1.
Consequently, there exists a substitution ϕ : X → {ar, b, z

i
jk} such that f = ϕ(h) =

f(zi
jk, a1, . . . , ad, b) is a nonzero monomial in A. Then degb f > λd+1, and by

Lemma 7,
λd+1

n
6

degb f

n
6

1
m+ α

+ εn.

If λd+2 = 0, then

Φ(λ) 6 Φ
(
θ, . . . , θ︸ ︷︷ ︸

d

,
1

m+ α
+ εn, 0

)
= Φd

(
1

m+ α
+ εn

)
6 Φd

(
1

m+ α
+ ε

)

for all big n, since εn → 0 as n grows, while Φd(1/(m + α) + x) is increasing as x
increases. If, however, λd+2 = 1, then

Φ(λ) 6 Φ
(
θ, . . . , θ︸ ︷︷ ︸

d

,
1

m+ α
+ εn,

1
n

)
.

Since εn → 0 and 1/n→ 0 as n→∞, it follows that

lim
n→∞

Φ
(
θ, . . . , θ,

1
m+ α

+ εn,
1
n

)
= Φ

(
θ̄, . . . , θ̄,

1
m+ α

, 0
)
,

where θ̄d+ 1/(m+ α) = 1. Consequently, there exists n such that

Φ
(
θ, . . . , θ,

1
m+ α

+ εn,
1
n

)
6 Φ

(
θ′, . . . , θ′,

1
m+ α

+ ε, 0
)
.

Consequently,

Φ(λ) 6 Φ
(
θ, . . . , θ,

1
m+ α

+ εn,
1
n

)
6 Φ

(
θ′, . . . , θ′,

1
m+ α

+ ε, 0
)

= Φd

(
1

m+ α
+ ε

)
,

where θ′d+ 1/(m+ α) + ε = 1 and θ′ > θ. Since

cn(A) =
∑

mλdλ 6 ln(A) max{dλ | λ ⊢ n, mλ ̸= 0},

it follows from Lemma 1 and Proposition 2 that

lim
n→∞

n
√
cn(A) 6 Φd

(
1

m+ α
+ ε

)
for any fixed ε > 0. Consequently,

exp(A) 6 Φd

(
1

m+ α

)
,

and Lemma 8 is proved.
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We now pass to a lower estimate for the codimension growth of the algebra
A(m, d,w).

Lemma 9. Let A(m, d,w) be the algebra from Lemma 8. Then

exp(A) > Φd

(
1

m+ α

)
,

where α = π(w) is the slope of w .

Proof. In a free algebra F{X}, consider the monomial

h1 = zx1
1x

1
2 · · ·x1

py
1
1 · · ·xd

1x
d
2 · · ·xd

py
1
d

of degree (p+1)d+1, where p = m1−1> m−1> d. Let Alt11 : P(p+1)d+1 → P(p+1)d+1

be the alternation operator with respect to z, x1
1, x

2
1, . . . , x

d
1, y

1
1 , and Alt1i be the

alternation operator with respect to x1
i , x

2
i , . . . , x

d
i , y

1
i for every 2 6 i 6 d. If p > d,

then we also denote by Alt1d+j the alternation with respect to x1
d+j , x

2
d+j , . . . , x

d
d+j

for every 1 6 j 6 p− d. We set f1 = Alt11 . . .Alt1p(h1).
Consider the substitution ϕ : X → A under which

ϕ(z) = z1
11, ϕ(x1

1) = · · · = ϕ(x1
p) = a1, . . . , ϕ(xd

1) = · · · = ϕ(xd
p) = ad,

ϕ(y1
1) = · · · = ϕ(y1

d) = b.

Then
ϕ(f1) = z1

11 a1 · · · a1︸ ︷︷ ︸
m1−1

b · · · ad · · · ad︸ ︷︷ ︸
m1−1

b = z1
12.

Note that the result of the substitution ϕ does not change (up to a nonzero factor)
if it is applied not to the element f1 itself but to its symmetrization Sym f1, where
Sym means symmetrization with respect to the sets {x1

1, . . . , x
1
p}, . . . , {xd

1, . . . , x
d
p},

{y1
1 , . . . , y

1
d}. Then the polynomial Sym f1 generates in P(p+1)d+1 an irreducible

F [S(p+1)d+1]-module corresponding to the partition λ = (λ1, . . . , λd+2), where
λ1 = · · · = λd = p = m1 − 1, λd+1 = d, λd+2 = 1, and the condition ϕ(Sym f1) ̸= 0
means that the multiplicity mλ in the decomposition (2.1) is not equal to zero.

We set p1 = p. Next, for all j = 2, 3, . . . we construct polynomials f2, f3, . . . as
follows. If f1, . . . , fj−1 are already constructed, then we take

hj = fj−1x
1
q+1 · · ·x1

q+pj
yj
1 · · ·xd

q+1 · · ·xd
q+pj

yj
d,

where q = p1 + · · ·+ pj−1, pj = mj − 1, and define fj as

fj = Altj
1 . . .Altj

pj
(hj),

where Altj
1, . . . ,Altj

d are the alternations with respect to the sets

{x1
q+1, . . . , x

d
q+1, y

j
1}, . . . , {x1

q+d, . . . , x
d
q+d, y

j
d},
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respectively. If, however, pj > d, then Altj
d+i is the alternation with respect to

{x1
q+d+i, . . . , x

d
q+d+i}, 1 6 i 6 pj − d. We extend the action of the substitution

ϕ : X → A constructed at the (j − 1)st step by setting

ϕ(x1
q+1) = · · · = ϕ(x1

q+pj
) = a1, . . . , ϕ(xd

q+1) = · · · = ϕ(xd
q+pj

) = ad,

ϕ(yj
1) = · · · = ϕ(yj

d) = b.

Then, as before,
ϕ(Sym fj) = γz1

1,j+1 ̸= 0,

where the symmetrization Sym is carried out over the sets

{x1
1, x

1
2, . . . , x

1
q+pj

}, . . . , {xd
1, x

d
2, . . . , x

d
q+pj

}, {y1
1 , . . . , y

1
d, . . . , y

j
1, . . . , y

j
d}.

Then, as for j = 1, Sym fj generates an irreducible module with character χλ,
where λ = (λ1, . . . , λd+2), λ1 = · · · = λd = m1 + · · ·+mj − j, λd+1 = jd, λd+2 = 1,
and mλ ̸= 0 in (2.1).

Thus, for every positive integer t we have constructed a polynomial ft of degree

n = n(t) = (m1 + · · ·+mt)d+ 1 = tmd+ d(w1 + · · ·+ wt) + 1,

which is not an identity. Furthermore, ft takes a nonzero value under the substi-
tution ϕ : X → A when the element b is substituted td times. Then by Lemma 7,

td

n
6

1
m+ α

+ εn,

where α = π(w) is the slope of w, and εn → 0 as n → ∞. Furthermore, the
symmetrization Sym ft also is not an identity in A, ϕ(Sym ft) = K · ϕ(ft), K ̸= 0,
and generates in Pn an irreducible F [Sn]-module with character χλ(n) , where

λ(n) = (λ1, . . . , λd+2), λ1 = · · · = λd = m1 + · · ·+mt − 1,
λd+1 = td, λd+2 = 1.

Consequently,

λd+1

n
=

1
m+ (w1 + · · ·+ wt)/t+ 1/(td)

= β, Φ(λ(n)) = Φ
(
λ1

n
, . . . ,

λ1

n︸ ︷︷ ︸
d

, β,
1
n

)
.

In order to obtain a lower estimate for Φ(λ(n)), we use properties of periodic
words and Sturmian words. By Proposition 1,

lim
t→∞

w1 + · · ·+ wt

t
= α,

and since mtd 6 n 6 (m + 1)td, the quantity (w1 + · · · + wt)/t can be made
arbitrarily close to α for all sufficiently large n. Consequently, for any ε > 0, there
exists N such that

β =
1

m+ (w1 + · · ·+ wt)/t+ 1/(td)
>

1
m+ α

− ε
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for all n > N . Then from properties of the function Φ, we obtain

Φ(λ(n)) > Φ
(
θ, . . . , θ︸ ︷︷ ︸

d

,
1

m+ α
− ε, 0

)
= Φd

(
1

m+ α
− ε

)
,

where θd+ 1/(m+ α)− ε = 1.
Since

cn(A) > dλ(n) >
1

n(d+2)2+d+2
Φ(λ(n))n

by Lemma 1, and ε > 0 is chosen arbitrarily, it follows that

lim
n(t)→∞

n(t)

√
cn(t)(A) > Φd

(
1

m+ α

)
.

It remains to observe that cn(A) is a non-decreasing sequence and that

n(t+ 1)− n(t) 6 (m+ 1)d,

whence the equation

exp(A) = lim
n→∞

n

√
cn(t)(A) > Φd

(
1

m+ α

)
.

Lemma 9 is proved.

Lemmas 8 and 9 immediately give us the main result of this section.

Theorem 1. Let m and d be integers such that m > 2, 1 6 d 6 m−1, and let w be
an infinite periodic word or a Sturmian word with slope α. Then the PI-exponent
of the algebra A(m, d,w) exists and is equal to

exp(A) = Φd

(
1

m+ α

)
= Φ

(
m+ α− 1
d(m+ α)

, . . . ,
m+ α− 1
d(m+ α)︸ ︷︷ ︸

d

,
1

m+ α

)
.

§ 4. Exponents of algebras with adjoined unity

4.1. Recall that if an outer unity is adjoined to an algebra A, then the result-
ing algebra is denoted by A#. We will adjoin unities to the algebras A(m, d,w)
considered in § 3.

We shall need a technical result from [19].
Recall that for a given algebra B we denote by W

(p)
n (B) the subspace of all

homogeneous polynomials of degree n in y1, . . . , yp in the relatively free algebra
R(y1, y2, . . . ) of the variety var(B) with free generators y1, y2, . . . .

Lemma 10 (see [19], Lemma 6). Let B be an arbitrary algebra and suppose that
dimW

(p)
n (B)6αnT for some α∈R and T ∈N. Then dimW

(p)
n (B#)6α(n+1)T+p+1 .

First we estimate the growth of colength from above.
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Lemma 11. Let A = A(m, d,w) be the algebra from the preceding section, where
m > 2, d 6 m− 1, and w is a Sturmian word or an infinite periodic word. Then

ln(A#) 6 (n+ 1)3(d+3)2

for all sufficiently large n.

Proof. By Lemma 6,

dimW (d+3)
n (A) 6 d(m+ 1)n(d+1)(d+3) Compw(n).

Since the complexity of a periodic word is a constant, and for a Sturmian word
it is equal to n+ 1, it follows that

dimW (d+3)
n (A) 6 n(d+3)2

for all sufficiently large n. Therefore

dimW (d+3)
n (A#) 6 (n+ 1)2(d+3)2 ,

by Lemma 10. It follows from Remark 1 that

χn(A#) =
∑
λ⊢n

h(λ)6d+3

mλχλ,

and mλ 6 dimW
(d+3)
n (A#) 6 (n + 1)2(d+3)2 . And since the number of partitions

λ ⊢ n with h(λ) 6 d+ 3 does not exceed (n+ 1)d+3, we have

ln(A#) 6 (n+ 1)3(d+3)2 .

Lemma 11 will be required for an upper estimate of the PI-exponent of the
algebra A(m, d,w)#. But first we estimate its codimension growth from below.

Lemma 12. Let A = A(m, d,w) be defined by parameters m > 2, d 6 m − 1,
and w . Then

exp(A#) > exp(A) + 1.

Proof. In the proof of Lemma 9, for any δ > 0, we chose an increasing sequence
n = n(t), t = t0, t0 +1, . . . , a family of partitions λ(n) ⊢ n(t), and a set of polynom-
ials ft, t > t0, with the following properties:

• the partition λ has the form λ = (λ1, . . . , λd+2), λ1 = · · · = λd = m1 + · · ·+
mt − t, λd+1 = td, λd+2 = 1,

• Φ(λ(n)) > Φd(1/(m+ α)− δ), where α is the slope of w,
• n(t+ 1)− n(t) 6 d(m+ 1) for all t > t0,
• the symmetrization of ft is not an identity of A and generates an irreducible
F [Sn]-module with character χλ,

• ft is skew-symmetric with respect to λ1 sets of variables: one of size d+ 2,
td− 1 of size d+ 1, and λ1 − λd+1 of size d.

Furthermore, exp(A) = Φd(1/(m+ α)).
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Let h̃t,k denote the product

h̃t,k = ftz1 · · · zk, k > 1.

We consider the same substitution ϕ that produced a nonzero value for ft and
Sym ft; we extend its action to h̃t,k by setting ϕ(z1) = · · · = ϕ(zk) = 1. Then,
obviously,

ϕ(h̃t,k) = ϕ(ft) ̸= 0.

Moreover, if k 6 td, then we can include z1, . . . , zk in the first k skew-symmetric
sets for ft and carry out additional alternation over extended sets. Furthermore,
the rules of multiplication of basis elements of A imply that

ϕ(Alt(h̃t,k)) = γϕ(h̃t,k),

where γ is a nonzero integer coefficient. For the polynomial ft,k = Alt(h̃t,k), the
variables are also distributed over λ1 skew-symmetric sets: one of size d+3, k−1 of
size d+ 2, td− k of size d+ 1, and λ1− td of size d. Moreover, if we carry out sym-
metrization of this polynomial over the same variables as for ft, plus symmetriza-
tion with respect to z1, . . . , zk, then the value ϕ(Sym(ft,k)) is also proportional to
ϕ(ft) with a nonzero coefficient. That is, the polynomial Sym(ft,k) generates an
irreducible F [Sn+k]-module with character χµ, where

µ = (µ1, . . . , µd+3), µ1 = λ1, . . . , µd = λd, µd+1 = λd+1, µd+2 = k, µd+3 = 1.

The fact that all partitions of the form

µ = (λ1, . . . , λd, k, λd+1, 1), µ = (k, λ1, . . . , λd+2)

have nonzero multiplicities in the character χn+k(A#) is proved in similar fashion.
In other words, we can add any row (the 1st, (d + 1)st, or (d + 2)nd) to the
diagram Dλ and obtain the diagram Dµ corresponding to the partition µ ⊢ n + k
with nonzero multiplicity.

We estimate from below the maximum value of Φ(µ) and k corresponding to
this maximum value. We set λ1/n = u1, . . . , λd+2/n = ud+2, β = Φ(λ). Then by
Lemma 3,

Φ(θu1, . . . , θud+2, 1− θ) = 1 + Φ(λ) (4.1)

is the maximum value that Φ(µ) can take, where θ = β/(β + 1). This means that
if k satisfies the two inequalities

k

n+ k
6 1− θ =

1
β + 1

6
k + 1

n+ k + 1
, (4.2)

then the maximum of Φ(µ) is attained either at this k, or at k + 1. Relation (4.2)
is equivalent to the double inequality

n

β
− 1 6 k 6

n

β
. (4.3)
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Recall that n and k depend on t: n = n(t), k = k(t). Taking into account (4.3)
and the choice of n(t), we obtain

n(t+ 1) + k(t+ 1)− n(t)− k(t) 6
β + 1
β

d(m+ 1). (4.4)

We set r = r(t) = n(t) + k(t), and denote by µ(r) a partition of r(t) with
maximum value Φ(µ(r)). Since, as n grows, the quantity 1/(β + 1) is ever more
precisely approximated by a fraction of the form k/(n+ k), we can assume in view
of (4.2) that

Φ(µ(r)) > Φ(λ(n)) + 1− δ′

for all sufficiently large n, where δ′ > 0 is any quantity given beforehand, n = n(t),
r = r(t). Then in view of Lemma 1, we have

cr(t)(A#) >
Φ(µ(r(t)))n

n(d+2)2+d+3
>

(Φ(λ(n)) + 1− δ′)n

n(d+2)2+d+3
>

(Φd(1/(m+ α)− δ) + 1− δ′)n

n(d+2)2+d+3
.

(4.5)
Since all the differences r(t + 1) − r(t) are bounded by the same constant

(see (4.4)), and the sequence {cn(A#)} is nondecreasing, it follows from (4.5) that

lim
n→∞

n

√
cn(A#) > Φd

(
1

m+ α
− δ

)
+ 1− δ′.

Finally, since δ and δ′ are any arbitrarily small quantities, we obtain

exp(A#) > exp(A) + 1,

and Lemma 12 is proved.

4.2. We now obtain an upper estimate for exp(A)#.

Lemma 13. We have the inequality

exp(A#) 6 exp(A) + 1.

Proof. Since the colength ln(A#) is polynomially bounded by Lemma 11, it is
sufficient to prove that

Φ(λ) 6 Φd

(
1

m+ α

)
+ 1 = exp(A) + 1

for any λ ⊢ n with mλ ̸= 0 in χn(A), as shown by relation (2.3).
Let h = h(x1, . . . , xn) be a multilinear polynomial that is not an identity of A#

and that generates in Pn an irreducible F [Sn]-module with character χλ. As pointed
out earlier, we can assume that h is skew-symmetric with respect to λ1 sets of
variables, and λd+2 of them have size at least λd+2. If λd+2 = 0, then

Φ(λ) 6 Φ
(

1
d+ 1

, . . . ,
1

d+ 1︸ ︷︷ ︸
d+1

, 0, 0
)

= d+ 1 < 1 + Φd

(
1

m+ α

)
.
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Suppose that λd+2 ̸= 0. We fix an arbitrary ε > 0. Since h ̸∈ Id(A#), there
exists a substitution ϕ of the basis elements of A and 1 in place of the variables
x1, . . . , xn for which

ϕ(h) = f(zi
jk, a1, . . . , ad, b) = f

is a nonzero monomial of degree n′ in {zi
jk, a1, . . . , ad, b}, where n′ = n−n1 and n1

is the number of 1s from A# substituted in place of x1, . . . , xn.
We observe that λd+3 can take only two values, 0 or 1. First suppose that

λd+3 = 1. In this case, h has r = λd+2 skew-symmetric sets of variables of size at
least d+ 2, and λd+1 − λd+2 skew-symmetric sets of variables of size d+ 1. One of
the elements {1, b} is substituted into each of these latter sets. Suppose that b is
substituted into exactly k sets, and λd+1 − λd+2 = k + t. Then n1 > r + t and

n′′ = n− r − t > n− n1 = n′ = degb f > r + k.

If λd+1 > λd+2, then by transferring boxes from the (d+1)st row of the diagram Dλ

into the (d+2)nd row, we can obtain a partition λ′ ⊢ n for which either the (d+2)nd
row of Dλ′ has length r+k (if k 6 t), or the (d+1)st row has length r+k (if k > t).
By deleting this row, we obtain a partition µ ⊢ n′′ for which µd+1 = r + k. Then

µd+1

n′′
6

degb f

n′
6

1
m+ α

+ εn′ (4.6)

by Lemma 7, where n′ = n − n1 and n1 is the number of 1s substituted into h in
place of x1, . . . , xn.

We now obtain an inequality similar to (4.6) for λd+3 = 0. In this case,
h(x1, . . . , xn) depends on r = λd+2 skew-symmetric sets of size d + 2. If both
elements 1 ∈ A#, b ∈ A were substituted into each of them, then the same argu-
ments as above would give us relation (4.6). In the opposite case, we substitute
either 1 into r−1 of these sets and the element b into all r sets, or, on the contrary,
unity into the r sets and the basis element b into r − 1 sets. By transferring, if
necessary, boxes from the (d+ 1)st row of Dλ into the (d+ 2)nd (as for λd+3 = 1)
and deleting a row of length r + t (where k and t are defined in the same way as
in the case λd+3 = 1), we obtain a partition µ ⊢ n′′ = n− r − t with µd+1 = r + k.
Here, in the first case we obtain the inequalities

µd+1 6 degb f, n′′ > n− n1 + 1 > n− n1 = n′,

and in the second case, the inequalities

µd+1 6 degb f + 1, n′′ > n− n1 = n′.

Obviously, in the first case the partition µ satisfies condition (4.6), and in the
second, the condition

µd+1

n′′
6

degb f

n′
6

1
m+ α

+ εn′ +
1
n′
. (4.7)

Since (4.6) is a stronger restriction than (4.7), we can assume that µ =
(µ1, . . . , µd+1) ⊢ n′′ always satisfies inequality (4.7) in which n′′ 6 n and n′′ → ∞
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as n → ∞, while n′ = n − n1, where n1 is the number of 1s substituted into
h(x1, . . . , xn) in order to obtain a nonzero value.

First, we observe that λ1 > n1, since h is skew-symmetric with respect to λ1 sets
of variables. We set x = λ1/n. Then

Φ(λ) 6 Φ
(
x,

1− x

d+ 2
, . . . ,

1− x

d+ 2︸ ︷︷ ︸
d+2

)
= H(x).

The limit of the function H(x) as x → 1 is equal to 1. In particular, this means
that there exists an integer q such that if λ1 > n(q − 1)/q, then Φ(λ) < d for all
sufficiently large n > N .

We now divide all partitions of λ ⊢ n>N into two groups: where λ1>n(q − 1)/q,
and where λ1 6 n(q − 1)/q. For all partitions in the first group, the inequality

Φ(λ) < d < Φd

(
1

m+ α
+ ε

)
holds due to the choice of q and n. For partitions in the second group, we use relation
(4.7). The diagram Dµ is obtained from Dλ′ by deleting a row, and Dλ′ is obtained
from Dλ by transferring several boxes down. Therefore Φ(λ) 6 Φ(λ′) 6 Φ(µ) + 1,
by Lemmas 2 and 3. Then it follows from (4.7) that

Φ(λ) 6 Φ(µ) + 1 6 Φ
(
θ, . . . , θ,

1
m+ α

+ εn′ +
1
n′
,

1
n′′

)
,

due to the properties of Φ, where

dθ +
1

m+ α
+ εn′ +

1
n′

+
1
n′′

= 1.

Since λ1 6 n(q − 1)/q, it follows that n′ = n − n1 > n − λ1 > n/q. Therefore
n′ → ∞, as well as n′′, as n grows, and εn′ → 0. As in the proof of Lemma 7, we
obtain that

Φ(λ) 6 1 + Φ
(
θ′, . . . , θ′,

1
m+ α

+ ε, 0
)

= 1 + Φd

(
1

m+ α
+ ε

)
for all sufficiently large n. Since ε > 0 was chosen arbitrarily, we obtain

exp(A#) 6 1 + Φd

(
1

m+ α

)
= exp(A) + 1.

Lemma 13 is proved.

Combination of Lemmas 12 and 13 immediately yields the following result.

Theorem 2. Let m and d be integers such that m > 2, m− 1 > d, and let w be an
infinite periodic word or a Sturmian word. If A = A(m, d,w) and A# is obtained
from A by adjoining a unity, then exp(A#) exists, and exp(A#) = exp(A) + 1.
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Corollary 1. For any real number γ>2, there exists (in general, a non-associative)
algebra Aγ with unity and with PI-exponent exp(Aγ) = γ .

Proof. For given d, the set of values{
Φd

(
1

m+ α

)
= exp(A(m, d,w)) | 0 6 α 6 1, m = d+ 1, d+ 2, . . .

}
covers the entire interval (d, d + 1]. Consequently, any real number γ > 2 is real-
ized as an exponent exp(A#), where A = A(m, d,w) for suitable m, d, and w.
For γ = 2, there are many realizations even in the associative case. For example,
for an infinite-dimensional Grassmann algebra G with unity, we have cn(G) = 2n−1

(see [34] or [24], Theorem 4.1.8). Therefore, exp(G) = 2.

The question about the set of values of PI-exponents of finite-dimensional alge-
bras is of independent interest. Clearly, if the field F is countable, then this set
is also countable. It was shown in [13] that the set {exp(A)|dimA < ∞} is dense
in [1,∞), and it was proved in [4] that for a finite-dimensional unital algebra A,
the growth of {cn(A)} either is polynomial or is bounded below by the exponential
function 2n.

Another consequence of Theorems 1 and 2 is the fact that the set of PI-exponents
of finite-dimensional algebras with unity is a dense subset in the domain [2,∞) ⊂ R.

Corollary 2. For any real 2 6 α < β , there exists a finite-dimensional (in general,
non-associative) algebra B with unity such that

α 6 exp(B) 6 β.

Proof. Consider the algebra A(m, d,w), where w is an infinite periodic word with
period T , and, together with it, a finite-dimensional algebra B = B(m, d,w) with
basis {

a1, . . . , ad, b, z
i
jk | 1 6 i 6 d, 1 6 j 6 m+ wj , 1 6 k 6 T

}
and multiplication table

zi
jkai =

{
zi
j+1,k if j < m+ wk,

0 if j = m+ wk,

zi
m+wk,kb =


zi+1
1k if i < d,

z1
1,k+1 if i = d, k < T,

z1
11 if i = d, k = T.

It is easy to observe that the algebras A(m, d,w) and B(m, d,w) are PI-equivalent,
that is, they have the same identities. But then the algebras A(m, d,w)# and
B(m, d,w)# are also PI-equivalent. Therefore, exp(A(m, d,w)#)=exp(B(m, d,w)#).
In particular, exp(B(m, d,w)#) = exp(A(m, d,w)) + 1.

By Proposition 1, for any rational q ∈ (0, 1), there exists a periodic word w with
slope π(w) = q. But then

exp(B(m, d,w)#) = Φd

(
1

m+ q

)
+ 1,
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by Theorem 2. Therefore we can find a rational positive number q < 1 such that
α 6 exp(B(m, d,w)#) 6 β.
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Dušan D. Repovš
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