

Communications in Algebra[®], 43: 3823–3839, 2015 Copyright [®] Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927872.2014.924130

NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS

Dušan Repovš¹ and Mikhail Zaicev²

 ¹Faculty of Education, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
 ²Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, Russia

We study polynomial identities of algebras with adjoined external unit. For a wide class of algebras we prove that adjoining external unit element leads to increasing of PI-exponent precisely to 1. We also show that any real number from the interval [2,3] can be realized as PI-exponent of some unital algebra.

Key Words: Codimension; Exponential growth; Fractional PI-exponent; Non-associative unital algebra; Polynomial identity.

2010 Mathematics Subject Classification: Primary: 16R10; Secondary: 16P90.

1. INTRODUCTION

We study numerical characteristics of polynomial identities of algebras over a field F of characteristic zero. Given an algebra A over F, one can associate to it the sequence $\{c_n(A)\}$ of non-negative integers called the *sequence of codimensions*. If the growth of $\{c_n(A)\}$ is exponential, then the limiting ratio of consecutive terms is called PI-*exponent* of A and written exp(A). In the present paper, we are mostly interested what happens with PI-exponent if we adjoin to A an external unit element.

The first results in this area were proved for associative algebras. It is known that exp(A) is an integer in the associative case [6], [7]. It was shown in [9] that it follows from the proofs in [6], [7] that either $exp(A^{\sharp}) = exp(A)$ or $exp(A^{\sharp}) = exp(A) + 1$ and both options can be realized. Here A^{\sharp} is the algebra A with adjoined external unit.

The next result was published in [15], following an example of 5-dimensional algebra A with exp(A) < 2 constructed in [4]. The point is that in the associative or Lie case PI-exponent cannot be less than 2 ([11], [13]). For a finite dimensional Lie superalgebra, Jordan and alternative algebra PI-exponent is also at least 2. Starting from the example A from [4] it was shown in [15] that $exp(A^{\sharp}) = exp(A) + 1$. In [15]

Received March 2, 2014. Communicated by V. A. Artamonov.

Address correspondence to Prof. Dušan Repovš, Faculty of Education, Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva ploščad 16, SI-1000 Ljubljana, Slovenia; E-mail: dusan.repovs@guest.arnes.si

also the following problem was stated: Is it true that always either $exp(A^{\sharp}) = exp(A)$ or $exp(A^{\sharp}) = exp(A) + 1$?

An example of 4-dimensional simple algebra A with a fractional PI-exponent was constructed in [2]. It was also shown that $exp(A^{\sharp}) = exp(A) + 1$. This result was announced in [1]. It was also shown in [1] that if A is itself a unital algebra then $exp(A^{\sharp}) = exp(A)$.

In the present paper (see Theorem 1) we shall prove that for a previously known series of algebras A_{α} with $exp(A_{\alpha}) = \alpha$, $\alpha \in \mathbb{R}$, $1 < \alpha < 2$ (see [3]), any extended algebra A_{α}^{\sharp} has exponent $\alpha + 1$. That is, we shall show that there exist infinitely many algebras A such that $exp(A^{\sharp}) = exp(A) + 1$.

Another important question is the following: which real numbers can be realized as PI-exponents of some algebra? For example, if A is any associative PI-algebra or a finite dimensional Lie or Jordan algebra, then exp(A) is an integer (see [5], [6], [7], [14]).

For unital algebras it is only known that if dim $A < \infty$ then exp(A) cannot be less than 2. As a consequence of the main result of our paper (see Corollary 1) we shall obtain that for any real $\alpha \in [2, 3]$ there exists a unital algebra B_{α} such that $exp(B_{\alpha}) = \alpha$.

2. PRELIMINARIES

Let A be an algebra over a field F of characteristic zero, and let $F{X}$ be absolutely free algebra over F with a countable set of generators $X = \{x_1, x_2, ...\}$. Recall that a polynomial $f = f(x_1, ..., x_n)$ is said to be an *identity* of A if $f(a_1, ..., a_n) = 0$ for all $a_1, ..., a_n \in A$. The set Id(A) of all polynomial identities of A forms an ideal of $F{X}$.

Denote by P_n the subspace of all multilinear polynomials in $F\{X\}$ on x_1, \ldots, x_n . Then the intersection $Id(A) \cap P_n$ is the space of all multilinear identities of A of degree n.

Denote

$$P_n(A) = \frac{P_n}{Id(A) \cap P_n}.$$

A non-negative integer

$$c_n(A) = \dim P_n(A)$$

is called the *n*th *codimension* of *A*. Asymptotic behavior of the sequence $\{c_n(A)\}, n = 1, 2, ...,$ is an important numerical invariant of identities of *A*. We refer to [8] for an account of basic notions of the theory of codimensions of PI-algebras.

If the sequence $\{c_n(A)\}$ is exponentially bounded, i.e., $c_n(A) \le a^n$ for all *n* and for some number *a* (for example in the case when dim $A < \infty$ and in many other cases), we can define the lower and the upper PI-exponents of *A* by

$$\underline{exp}(A) = \liminf_{n \to \infty} \sqrt[n]{c_n(A)}, \qquad \overline{exp}(A) = \limsup_{n \to \infty} \sqrt[n]{c_n(A)}$$

and (the ordinary) PI-exponent

$$exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)}$$

provided that $exp(A) = \overline{exp}(A)$.

In order to compute the values of codimensions we can consider symmetric group action on P_n defined by

$$\sigma f(x_1, \dots, x_n) = f(x_{\sigma(1)}, \dots, x_{\sigma(n)}) \quad \forall \sigma \in S_n$$

The subspace $P_n \cap Id(A)$ is invariant under this action and we can study the structure of $P_n(A)$ as an S_n -module. Denote by $\chi_n(A)$ the S_n -character of $P_n(A)$, called the *n*th cocharacter of A. Since char F = 0 and any S_n -representation is completely reducible, the *n*th cocharacter has the decomposition

$$\chi_n(A) = \sum_{\lambda \vdash n} m_\lambda \chi_\lambda,\tag{1}$$

where χ_{λ} is the irreducible S_n -character corresponding to the partition $\lambda \vdash n$ and non-negative integer m_{λ} is the multiplicity of χ_{λ} in $\chi_n(A)$.

Obviously, it follows from (1) that

$$c_n(A) = \sum_{\lambda \vdash n} m_\lambda \deg \chi_\lambda.$$

Another important numerical characteristic is the *n*th *colength* of A defined by

$$l_n(A) = \sum_{\lambda \vdash n} m_{\lambda}$$

with m_{λ} taken from (1). In particular, if the sequence $\{l_n(A)\}$ is polynomially bounded as a function of *n* while some of deg χ_{λ} with $m_{\lambda} \neq 0$ are exponentially large, the principal part of the asymptotic of $\{c_n(A)\}$ is defined by the largest value of deg χ_{λ} with nonzero multiplicity.

For studying the asymptotic of codimensions, it is convenient to use the following functions. Let $0 \le x_1, \ldots, x_d \le 1$ be real numbers such that $x_1 + \cdots + x_d = 1$. Denote

$$\Phi(x_1,\ldots,x_d)=\frac{1}{x_1^{x_1}\cdots x_d^{x_d}}$$

If d = 2, then instead of $\Phi(x_1, x_2)$ we will write

$$\Phi_0(x) = \frac{1}{x^x (1-x)^{1-x}}.$$

We assume that some of x_1, \ldots, x_d can have zero values. In this case, we assume that $0^0 = 1$.

Given $\lambda = (\lambda_1, \dots, \lambda_d) \vdash n$, we define

$$\Phi(\lambda) = \frac{1}{\left(\frac{\lambda_1}{n}\right)^{\frac{\lambda_1}{n}} \cdots \left(\frac{\lambda_d}{n}\right)^{\frac{\lambda_d}{n}}}.$$
(2)

For partitions $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n$ with k < d, we also consider $\Phi(\lambda)$ as in (2), assuming $\lambda_{k+1} = \dots = \lambda_d = 0$.

The relationship between deg χ_{λ} and $\Phi(\lambda)$ is given by the following lemma.

Lemma 1 (See [10, Lemma 1]). Let $\lambda = (\lambda_1, ..., \lambda_k) \vdash n$ be a partition of n. If $k \leq d$ and $n \geq 100$, then

$$\frac{\Phi(\lambda)^n}{n^{d^2+d}} \leq \deg \chi_{\lambda} \leq n \Phi(\lambda)^n.$$

Now we investigate how the value of $\Phi(x_1, \ldots, x_d)$ increases after adding one extra variable.

Lemma 2. Let

$$\Phi(x_1, \dots, x_d) = \frac{1}{x_1^{x_1} \cdots x_d^{x_d}}, \quad 0 \le x_1, \dots, x_d, \quad x_1 + \dots + x_d = 1,$$

and let $\Phi(z_1, \ldots, z_d) = a$ for some fixed z_1, \ldots, z_d . Then

$$\max_{0 \le t \le 1} \{ \Phi(y_1, \dots, y_d, 1-t) | y_1 = tz_1, \dots, y_d = tz_d \} = a+1.$$

Moreover, the maximal value is achieved if $t = \frac{a}{a+1}$.

Proof. Consider

$$g(t) = \ln \Phi^{-1}(tz_1, \dots, tz_d, 1-t).$$

Then

$$g(t) = t \ln t + (1 - t) \ln(1 - t) - t \ln a.$$

Hence its derivative is equal to

$$g'(t) = \ln \frac{t}{(1-t)a}$$

and g'(t) = 0 if and only if t = (1 - t)a, that is $t = \frac{a}{a+1}$. It is not difficult to check that g has the minimum at this point.

Now we compute the value of *g*:

$$g\left(\frac{a}{a+1}\right) = \frac{a}{a+1}\ln\frac{a}{a+1} + \frac{1}{a+1}\ln\frac{1}{a+1} - \frac{a}{a+1}\ln a = \ln B,$$

where

$$B = \left(\frac{a}{a+1}\right)^{\frac{a}{a+1}} \left(\frac{1}{a+1}\right)^{\frac{1}{a+1}} a^{-\frac{a}{a+1}} = \frac{1}{a+1}$$

Hence $\Phi_{max} = B^{-1} = a + 1$ and we have completed the proof.

The following lemma shows what happens with $\Phi(\lambda)$ when we insert an extra row in Young diagram D_{λ} .

Lemma 3. Let γ be a positive real number and let $\lambda = (\lambda_1, \ldots, \lambda_d)$ be a partition of n such that $\frac{\lambda_1}{n}, \ldots, \frac{\lambda_d}{n} \ge \gamma$. Then for any $\varepsilon > 0$ there exist n' = kn and a partition $\mu \vdash n'$, $\mu = (\mu_1, \ldots, \mu_{d+1})$ such that for some integers $1 \le i \le d+1$ and $q \ge 1$ the following conditions hold:

1) $\mu_j = q\lambda_j$ for all $j \le i - 1$; 2) $\mu_{j+1} = q\lambda_j$ for all $j \ge i$; and 3) $|\Phi(\lambda) - \Phi(\mu) + 1| < \varepsilon$.

Moreover, k does not depend on λ and n.

Proof. Denote

$$z_1 = \frac{\lambda_1}{n}, \dots, z_d = \frac{\lambda_d}{n}$$

and $a = \Phi(z_1, \ldots, z_d) = \Phi(\lambda)$. By Lemma 2,

$$\Phi(tz_1, \dots, tz_d, 1-t) = a+1$$
(3)

if $t = \frac{a}{a+1}$. It is not difficult to check that $1 \le \Phi(x_1, \ldots, x_d) \le d$, and hence $\frac{1}{d+1} \le 1 - t \le \frac{1}{2}$.

Note that $\Phi = \Phi(x_1, \ldots, x_{d+1})$ can be viewed as a function of *d* independent indeterminates x_1, \ldots, x_d . Conditions $0 < \gamma \le x_1, \ldots, x_d$ and $\frac{1}{d+1} \le x_{d+1} \le \frac{1}{2}$ define a compact domain *Q* in \mathbb{R}^d since $x_{d+1} = 1 - x_1 - \cdots - x_d$. Since Φ is continuous on *Q*, there exists an integer *k* such that

$$|\Phi(x_1,\ldots,x_d,x_{d+1}) - \Phi(x'_1,\ldots,x'_d,x'_{d+1})| < \varepsilon$$

as soon as $|x_i - x'_i| < \frac{1}{k}$ for all i = 1, ..., d. Clearly, k does not depend on n and λ . Then there exists a rational number $t_0 = \frac{q}{k} < 1$ such that $|t - t_0| < \frac{1}{k}$ and

$$|\Phi(t_0 z_1, \dots, t_0 z_d, 1 - t_0) - a - 1| < \varepsilon.$$
(4)

Denote $y_0 = 1 - t_0$. Then $t_0 z_i \le 1 - t_0 = y_0 \le t_0 z_{i-1}$ for some *i* (or $y_0 > t_0 z_1$, or $y_0 < t_0 z_d$).

Now we set n' = kn,

$$\mu_1 = q\lambda_1, \dots, \mu_{i-1} = q\lambda_{i-1},$$

 $\mu_{i+1} = q\lambda_i, \dots, \mu_{d+1} = q\lambda_d,$

and $\mu_i = n(k - q)$. Then $\mu = (\mu_1, \dots, \mu_{d+1})$ is a partition of n' and

$$\Phi(\mu) = \Phi(t_0 z_1, \dots, t_0 z_d, 1 - t_0).$$

In particular, $|\Phi(\lambda) - \Phi(\mu) - 1| < \varepsilon$ by (3) and (4), and we have completed the proof of the lemma.

3. ALGEBRAS OF INFINITE WORDS

In this section we recall some constructions and algebras from [3] and their properties. These algebras will be used for constructing unital algebras.

Let $K = (k_1, k_2, ...)$ be an infinite sequence of integers $k_i \ge 2$. Then the algebra A(K) is defined by its basis

$$\{a, b\} \cup Z_1 \cup Z_2 \cup \dots, \tag{5}$$

where

$$Z_i = \{ z_j^{(i)} | 1 \le j \le k_i, \ i = 1, 2, \dots \}$$
(6)

with the multiplication table

$$z_1^{(i)}a = z_2^{(i)}, \dots, z_{k_i-1}^{(i)}a = z_{k_i}^{(i)}, z_{k_i}^{(i)}b = z_1^{(i+1)}$$
(7)

for all i = 1, 2, ... All remaining products are assumed to be zero.

It is easy to verify (see also [3]) that A satisfies the identity $x_1(x_2x_3) = 0$ and if $m_{\lambda} \neq 0$ in (1) then $\lambda = (\lambda_1)$ or $\lambda = (\lambda_1, \lambda_2)$ or $\lambda = (\lambda_1, \lambda_2, 1)$. Denote by $W_n^{(d)}$, $d \leq n$, the subspace of the free algebra $F\{X\}$ of all homogeneous polynomials of degree n on x_1, \ldots, x_d . Given a PI-algebra A, we define

$$W_n^{(d)}(A) = rac{W_n^{(d)}}{W_n^{(d)} \cap Id(A)}$$

Recall that the height $h(\lambda)$ of a partition $\lambda = (\lambda_1, \dots, \lambda_d)$ is equal to d. We will use the following result from [3].

Lemma 4 ([3, Lemma 4.1]). Let A be a PI-algebra with nth cocharacter $\chi_n(A) = \sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}$. Then for every $\lambda \vdash n$ with $h(\lambda) \leq d$, we have that $m_{\lambda} \leq \dim W_n^{(d)}(A)$.

Now let $w = w_1 w_2 \dots$ be an infinite word in the alphabet $\{0, 1\}$. Given an integer $m \ge 2$, let $K_{m,w} = \{k_i\}, i = 1, 2, \dots$, be the sequence defined by

$$k_{i} = \begin{cases} m, & if \ w_{i} = 0\\ m+1, & if \ w_{i} = 1, \end{cases}$$
(8)

and write $A(m, w) = A(K_{m,w})$.

Recall that the complexity $Comp_w(n)$ of an infinite word w is the number of distinct subwords of w of the length n (see [12], Chapter 1). Slightly modifying the proof of Lemma 4.2 from [3] we obtain:

Lemma 5. For any $m \ge 2$ and for any infinite word w, the following inequalities hold:

$$\dim W_n^{(d)}(A(m, w)) \le d(m+1)nComp_w(n)$$

and

$$l_n(A(m, w)) \le n^3 \dim W_n^{(3)}(A(m, w))$$

Now we fix the algebra A(m, w) by choosing the word w. Obviously, $Comp_w(n) \leq T$ for any infinite periodic word with period T. It is well known (see [12]) that $Comp_w(n) \geq n+1$ for any aperiodic word w. In the case when $Comp_w(n) = n+1$ for all $n \geq 1$, the word w is said to be *Sturmian*. It is also known that for any Sturmian or periodic word the limit

$$\pi(w) = \lim_{n \to \infty} \frac{w_1 + \dots + w_n}{n} > 0$$

always exists (we always assume that a periodic word is nonzero). This limit $\pi(w)$ is called the *slope* of w. For any real number $\alpha \in (0, 1)$, there exists a word w with $\pi(w) = \alpha$ and w is Sturmian or periodic depending on whether α is irrational or rational, respectively. Moreover,

$$exp(A(m,w)) = \Phi_0(\beta) = \frac{1}{\beta^{\beta}(1-\beta)^{1-\beta}}$$

for Sturmian or periodic word w, where $\beta = \frac{1}{m+\alpha}$, $\alpha = \pi(w)$ (see [3], Theorem 5.1). As a consequence, for any real $1 \le \alpha \le 2$ there exists an algebra A such that $exp(A) = \alpha$.

Finally, for any periodic word w and for any $m \ge 2$ there exists a finite dimensional algebra B(m, w) satisfying the same identities as A(m, w). In particular, for any rational $0 < \beta \le \frac{1}{2}$, there exists a finite dimensional algebra B with

$$exp(B) = \Phi_0(\beta) = \frac{1}{\beta^{\beta}(1-\beta)^{1-\beta}}.$$

4. ALGEBRA WITH ADJOINED UNIT

We fix a Sturmian or periodic word w and $m \ge 2$ and consider the algebra A = A(m, w). Denote by A^{\sharp} the algebra obtained from A by adjoining external unit element 1. Our main goal is to prove that $exp(A^{\sharp})$ exists and that

$$exp(A^{\sharp}) = exp(A) + 1.$$

First we find a polynomial upper bound for the colength of A^{\sharp} . We start with a remark concerning an arbitrary algebra *B*. Recall that, given an algebra *B*, $W_n^{(d)}(B)$

is the dimension of the space of homogeneous polynomials on x_1, \ldots, x_d of total degree *n* modulo ideal Id(B).

Lemma 6. Let B be an arbitrary algebra. Suppose that dim $W_n^{(d)}(B) \le \alpha n^T$ for some natural T, $\alpha \in \mathbb{R}$ and for all $n \ge 1$. Then

$$\dim W_n^{(d)}(B^{\sharp}) \le \alpha (n+1)^{T+d+1}.$$

Proof. Denote by $F{X}^{\sharp}$ absolutely free algebra generated by X with adjoined unit element. First note that a multihomogeneous polynomial $f(x_1, \ldots, x_d)$ is an identity of B^{\sharp} if all multihomogeneous on x_1, \ldots, x_d components of $f(1 + x_1, \ldots, 1 + x_d)$ are identities of B.

Clearly, the number of multihomogeneous polynomials on x_1, \ldots, x_d of total degree k, linearly independent modulo Id(B), does not exceed dim $W_k^{(d)}(B)$. On the other hand, the number of multihomogeneous components of total degree k in a free algebra $F\{x_1, \ldots, x_d\}$ does not exceed $(k + 1)^d$. Take now

$$N = (k+1)^d \sum_{k=0}^n \dim W_k^{(d)}(B) + 1$$

assuming that dim $W_0^{(d)}(B) = 1$. Clearly,

$$N \le 1 + (n+1)^d \alpha \sum_{k=0}^n k^T < \alpha (n+1)^{T+d+1}.$$

Given homogeneous polynomials f_1, \ldots, f_{N+1} on x_1, \ldots, x_d of degree n, consider their linear combination $f = \lambda_1 f_1 + \cdots + \lambda_{N+1} f_{N+1}$ with unknown coefficients $\lambda_1, \ldots, \lambda_{N+1}$. The assumption that some multihomogeneous component of $f(1 + x_1, \ldots, 1 + x_d)$ is an identity of B^{\sharp} is equivalent to some linear equation on $\lambda_1, \cdots, \lambda_{N+1}$. Hence the condition that all multihomogeneous components of $f(1 + x_1, \ldots, 1 + x_d)$ are identities of B leads to at most N linear equations on $\lambda_1, \cdots, \lambda_{N+1}$. It follows that f_1, \ldots, f_{N+1} are linearly dependent modulo $Id(B^{\sharp})$, and we have completed the proof.

Lemma 7. Let A = A(m, w) where $m \ge 2$ and w is periodic or a Sturmian word. Then

$$l_n(A^{\sharp}) \le 4(m+1)(n+1)^{12}$$

for all sufficiently large n.

Proof. First note that the cocharacter of A^{\sharp} lies in the strip of width 4: that is, if $m_{\lambda} \neq 0$ in the decomposition

$$\chi_n(A^{\sharp}) = \sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}, \qquad (9)$$

then $h(\lambda) \le 4$. The number of partitions of *n* of type $\lambda = (\lambda_1, \dots, \lambda_k)$ with $1 \le k \le 4$ is less than n^4 . By Lemma 5,

$$\dim W_n^{(4)}(A) \le 4(n+1)Comp_w(n).$$
(10)

If w is a Sturmian word, then $Comp_w(n) = n + 1$. If w is periodic, then its complexity is finite and hence $Comp_w(n) \le n + 1$ for all sufficiently large n in (10). In particular,

$$\dim W_n^{(4)}(A) \le 4(m+1)(n+1)^2 \le 4(m+1)n^2$$

for all sufficiently large n. Applying Lemmas 4, 5, and 6, we obtain

 $m_{\lambda} \leq \dim W_n^{(4)}(A^{\sharp}) \leq 4(m+1)(n+1)^8$

for all $m_{\lambda} \neq 0$ in (9) and then

$$l_n(A^{\sharp}) = \sum_{\lambda \vdash n} m_{\lambda} \le 4(m+1)n^4(n+1)^8 \le .4(m+1)(n+1)^{12}.$$

In the next step, we shall find an upper bound for $\Phi(\lambda)$, provided that $m_{\lambda} \neq 0$ in the *n*th cocharacter of A^{\sharp} .

Lemma 8. For any $\varepsilon > 0$, there exists n_0 such that $m_{\lambda} = 0$ in (9) if $n > n_0$ and

$$rac{\lambda_3}{\lambda_1} \geq rac{eta}{1-eta} + arepsilon$$

where $\beta = \frac{1}{m+\alpha}$ and α is the slope of w.

Proof. First let $\lambda = (\lambda_1, \lambda_2, \lambda_3, 1) \vdash n$. Inequality $m_{\lambda} \neq 0$ means that there exists a multilinear polynomial g of degree n depending on one alternating set of four variables, $\lambda_3 - 1$ alternating sets of three variables and some extra variables, and g is not an identity of A^{\ddagger} . That is, there exists an evaluation $\varphi : F\{X\}^{\ddagger} \to A^{\ddagger}$ such that $\varphi(g) \neq 0$ and the set $\{\varphi(x_1), \ldots, \varphi(x_n)\}$ contains at least λ_3 basis elements $b \in A$ and at most λ_1 elements $a \in A$. Obviously, $\varphi(g) = 0$ if $\{\varphi(x_1), \ldots, \varphi(x_n)\}$ does not contain exactly one element $z_i^{(i)} \in A$.

Any nonzero product of basis elements of A is the left-normed product of the type

 $z_i^{(i)}a^{k_1}b^{l_1}\cdots a^{k_t}b^{l_t},$

where $k_1, \ldots, k_t, l_1, \ldots, l_t$ are equal to 0 or 1. More precisely, this product can be written in the form

$$z_i^{(i)} f(a, b),$$
 (11)

where

$$f(a,b) = a^{t_0} b a^{t_1} b \cdots b a^{t_k} b a^{t_{k+1}}$$

is an associative monomial on a and b and

$$t_0 = m + w_i - j, t_1 = m + w_{i+1} - 1, \dots, t_k = m + w_{i+k} - 1, t_{k+1} \le m + w_{i+k+1} - 1.$$

In particular, $\deg_b f = k + 1$ and

$$\deg_a f = t_0 + t_1 + \dots + t_{k+1} \ge t_1 + \dots + t_k = (m-1)k + w_{i+1} + \dots + w_{i+k}.$$

The total degree of monomial (11) (i.e., the number of factors) is

$$n = (m+1)k + w_i + \dots + w_{i+k} + t_{k+1} - j + 1$$

Hence, $(m + 1)k \ge n - (1 + k) - m - 1$ and $k \ge \frac{n-m-2}{m+2}$. In particular, k grows with increasing n.

It is known that

$$\frac{w_{i+1} + \dots + w_{i+k}}{k} \ge \alpha - \frac{C}{k}$$

for some constant C (see [3], Proposition 5.1 or [12], Section 2.2). This implies that

$$\deg_a f > (m-1)k + k(\alpha - \delta),$$

where $\delta = \frac{C}{k}$ and

$$\frac{\deg_b f}{\deg_a f} < \frac{1 + \frac{1}{k}}{m - 1 + \alpha - \delta}.$$

Since $\varphi(g) \neq 0$, at least one monomial of the type (11) in $\varphi(g)$ is nonzero. Therefore,

$$\frac{\lambda_3}{\lambda_1} \le \frac{\deg_b f}{\deg_a f} < \frac{1 + \frac{1}{k}}{m - 1 + \alpha - \delta}.$$
(12)

Since δ is an arbitrary small positive real number, one can choose n_0 such that

$$\frac{\lambda_3}{\lambda_1} < \frac{1 + \frac{1}{k}}{m - 1 + \alpha - \delta} < \frac{1}{m - 1 + \alpha} + \frac{\varepsilon}{2}$$
(13)

for all $n \ge n_0$. Combining (12) and (13), we conclude that

$$\frac{\lambda_3}{\lambda_1} < \frac{1}{m-1+\alpha} + \frac{\varepsilon}{2} \tag{14}$$

provided that $m_{\lambda} \neq 0$ in (9) and $n \ge n_0$. Note that $\frac{\beta}{1-\beta} = \frac{1}{m-1+\alpha}$ and hence we have completed the proof of the lemma in the case when $\lambda = (\lambda_1, \lambda_2, \lambda_3, 1)$.

Slightly modifying previous arguments, we get the proof of the inequality (14) for a partition $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ with three parts. The only difference is that non-identical polynomial g depends on at least λ_3 skewsymmetric sets of variables of

order 3, but after evaluation, one of these variables can be replaced by $z_j^{(i)}$, and we get the inequality

$$\frac{\lambda_3 - 1}{\lambda_1} \le \frac{\deg_b f}{\deg_a f}$$

instead of (12). Taking into account that $\lambda_1 \to \infty$ if $n \to \infty$ we get the same conclusion, and thus complete the proof.

For the lower bound of codimensions of A^{\sharp} , we need the following results.

Let A = A(m, w) be an algebra defined by an integer $m \ge 2$ and by an infinite word $w = w_1 w_2 \dots$ in the alphabet $\{0, 1\}$. Then

$$z_1^{(1)}a^{i_1}ba^{i_2}b\cdots a^{i_r}b = z_1^{r+1}$$
(15)

if $i_1 = m - 1 + w_1$, $i_2 = m - 1 + w_2$, ..., $i_r = m - 1 + w_r$. Otherwise, the left-hand side of (15) is zero.

Lemma 9. Let $\lambda = (j, \lambda_2, \lambda_3, 1)$ be a partition of $n = j + mr + w_1 + \dots + w_r + 1$ with $j \ge \lambda_2 = (m-1)r + w_1 + \dots + w_r$, $\lambda_3 = r$, or let $\lambda = (\lambda_1, j, \lambda_3, 1)$ be a partition of the same n with $\lambda_1 = (m-1)r + w_1 + \dots + w_r > j \ge \lambda_3 = r$. Then $m_{\lambda} \ne 0$ in (9).

Proof. Recall that, given S_n -module M, the multiplicity of χ_{λ} in the character $\chi(M)$ is nonzero if $e_{T_{\lambda}}M \neq 0$ for some Young tableaux T_{λ} of shape D_{λ} . The essential idempotent $e_{T_{\lambda}} \in FS_n$ is equal to

$$e_{T_{\lambda}} = \left(\sum_{\sigma \in R_{T_{\lambda}}} \sigma\right) \left(\sum_{\tau \in C_{T_{\lambda}}} (sgn \ \tau) \tau\right).$$

Here $R_{T_{\lambda}}$ is the row stabilizer of T_{λ} , i.e., the subgroup of all $\sigma \in S_n$ permuting indices only inside rows of T_{λ} , and $C_{T_{\lambda}}$ is the column stabilizer of T_{λ} .

First, let $\lambda_1 = j \ge \lambda_2$. Denote $n_0 = mr + w_1 + \dots + w_r + 1$, and consider the Young tableaux T_{λ} of the following type. Into the boxes of the 1st row of D_{λ} we place $n_0 + 1, \dots, n_0 + j$ from left to right. Into the third row, we insert $j_1 = i_1 + 2, \dots, j_r = i_1 + \dots + i_r + r + 1$. (In fact, j_1, \dots, j_r are the positions of *b* in the product (15)). Into the second row, we insert from left to right $j_1 - 1, \dots, j_r - 1, i_{r+1}, \dots, i_{\lambda_2}$ where $\{i_{r+1}, \dots, i_{\lambda_2}\} = \{2, \dots, n_0\} \setminus \{j_1 - 1, j_1, \dots, j_r - 1, j_r\}$ and into the unique box of the 4th row we put 1.

Then

$$e_{T_{\lambda}}(x_1,\ldots,x_n) = Sym_1Sym_2Sym_3Alt_1\cdots Alt_{\lambda_2}(x_1,\ldots,x_n),$$

where we have as follows:

- Alt₁ is the alternation on $\{1, j_1 1, j_1, n_0 + 1\}$;
- Alt_k is the alternation on $\{j_k 1, j_k, n_0 + k\}$ if $2 \le k \le r$;
- Alt_k is the alternation on $\{i_k, n_0 + k\}$ if $r < k \le \lambda_2$;

- Sym_1 is the symmetrization on $\{n_0 + 1, \dots, n_0 + j\}$;
- Sym_2 is the symmetrization on $\{j_1, \ldots, j_r\}$;
- Sym₃ is the symmetrization on $\{2, \ldots, n\} \setminus \{j_1, \ldots, j_r\}$.

After an evaluation

$$\varphi(x_1) = z_1^{(1)}, \, \varphi(x_{n_0+1}) = \dots = \varphi(x_{n_0+j}) = 1 \in A^{\sharp}, \, \varphi(x_{j_1}) = \dots = \varphi(x_{j_r}) = b$$

and

$$\varphi(x_i) = a \ if \ i \neq 1, j_1, \dots, j_r, n_0 + 1, \dots, n_0 + j,$$

we have

$$\varphi(e_{T_{\lambda}}(x_1\cdots x_n)) = j!r!(n_0-r-1)!z_1^{(r+1)} \neq 0;$$

hence $m_{\lambda} \neq 0$ in (9).

Similarly, filling up the second row of T_{λ} by $n_0 + 1, \ldots, n_0 + j$ in the case when $\lambda_1 = (m-1) + w_1 + \cdots + w_r > j \ge \lambda_3 = r$, we prove that $e_{T_{\lambda}}(x_1 \cdots x_n)$ is not an identity of A^{\sharp} .

Recall that, given $0 \le \beta \le 1$,

$$\Phi_0(\beta) = \Phi(\beta, 1 - \beta) = \frac{1}{\beta^{\beta} (1 - \beta)^{1 - \beta}}.$$

Lemma 10. Let A = A(m, w) be an algebra defined for an integer $m \ge 2$ and a Sturmian or periodic word w with slope α . Let also $\beta = \frac{1}{m+\alpha}$. Then for any $\varepsilon > 0$ there exist a constant C, positive integers $n_1 < n_2 \dots$, and partitions $\lambda^{(i)} \vdash n_i$ such that for some large enough i_0 the following properties hold:

- 1) $|\Phi(\lambda^{(i)}) \Phi_0(\beta) 1| < \varepsilon$ for all $i \ge i_0$;
- 2) $n_{i+1} n_i < C$ for all $i \ge i_0$; and 3) $m_{\lambda}^{(i)} \ne 0$ in $\chi_{n_i}(A^{\sharp})$ for all $i \ge i_0$.

Proof. Note that $\beta < \frac{1}{2}$ since $\alpha > 0$. First, take an arbitrary $r \ge 1$, $n = mr + w_1 + w_2$ $\cdots + w_r$ and $\lambda = (\lambda_1, \lambda_2)$, where $\lambda_1 = (m-1)r + w_1 + \cdots + w_r$, $\lambda_2 = r$. We set

$$x_{1} = \frac{\lambda_{1}}{n} = \frac{m - 1 + \frac{w_{1} + \dots + w_{r}}{r}}{m + \frac{w_{1} + \dots + w_{r}}{r}}$$
$$x_{2} = \frac{\lambda_{2}}{n} = \frac{1}{m + \frac{w_{1} + \dots + w_{r}}{r}}.$$

As it was mentioned in the proof of Lemma 8 (see also [3], Proposition 5.1 or [12], Section 2.2), there exists a constant C_1 such that

$$\left|\frac{w_1 + \dots + w_r}{r} - \alpha\right| < \frac{C_1}{r}.$$
(16)

Hence for any $\varepsilon_1 > 0$, we can find r_0 such that

$$|\Phi(\lambda) - \Phi_0(\beta)| < \varepsilon_1 \tag{17}$$

for all $r \ge r_0$, since $\Phi(z_1, z_2)$ is a continuous function and $(x_1, x_2) \to (1 - \beta, \beta)$ when $r \to \infty$.

Now using Lemmas 2 and 3, given $\varepsilon_2 > 0$, we insert one extra row into D_{λ} , that is, we construct a partition $\mu = (\mu_1, \mu_2, \mu_3)$ of $n_0 = nk$ such that

$$|\Phi(\lambda) - \Phi(\mu) - 1| < \varepsilon_2. \tag{18}$$

We have three options. Either μ_1 is a new row, that is, $(\mu_2, \mu_3) = (q\lambda_1, q\lambda_2)$; or μ_2 is a new row, that is, $(\mu_1, \mu_3) = (q\lambda_1, q\lambda_2)$; or μ_3 is a new row, that is, $(\mu_1, \mu_2) = (q\lambda_1, q\lambda_2)$.

First, we exclude the third case. Suppose that $(\mu_1, \mu_2) = (q\lambda_1, q\lambda_2)$. Recall that by Lemma 2, the maximal value of $\Phi(tz_1, tz_2, 1 - t)$ is achieved if

$$t = \frac{\Phi(z_1, z_2)}{1 + \Phi(z_1, z_2)}.$$

Since $\Phi(z_1, z_2) < 2$ if $\beta < \frac{1}{2}$, we obtain that $1 - t > \frac{1}{3}$. For Lemma 3, this means that the new row of D_{μ} cannot be the third row; that is, the case $(\mu_1, \mu_2) = (q\lambda_1, q\lambda_2)$ is impossible.

Now let $(\mu_2, \mu_3) = (q\lambda_1, q\lambda_2)$. We exchange μ to μ' in the following way. We set $\mu'_2 = qr(m-1) + w_1 + \cdots + w_{qr}$ and take $\mu' = (\mu_1, \mu'_2, \mu_3)$. Then $\mu' \vdash n'$ where

$$n' - n_0 = \mu'_2 - \mu_2 = w_1 + \dots + w_{qr} - q(w_1 + \dots + w_r).$$

Using again inequality (16), we get

$$|n' - n_0| < C_1(q+1).$$
⁽¹⁹⁾

Inequality (19) also shows that $\mu_1 \ge \mu'_2 \ge \mu_3$ if *n* is sufficiently large and our construction of partition μ is correct.

Clearly, $|\Phi(\mu) - \Phi(\mu')| \to 0$ if $n \to \infty$ and

$$|\Phi(\mu) - \Phi(\mu')| < \varepsilon_3 \tag{20}$$

for any fixed $\varepsilon_3 > 0$, for all sufficiently large r (and n). Starting from this sufficiently large r, we denote $n_r = n' + 1$ and take $\lambda^{(r)} \vdash n_r$, $\lambda^{(r)} = (\mu_1, \mu', \mu_3, 1)$. All preceding n_1, \ldots, n_{r-1} and $\lambda^{(1)}, \ldots, \lambda^{(r-1)}$, we choose in an arbitrary way.

Since $\mu_3 = qr$, by Lemma 9 the multiplicity of the irreducible character $\lambda^{(r)}$ in $\chi_{n_r}(A^{\sharp})$ is not equal to zero and $|n_r - kn| < C_2 = C_1(q+1) + 1$ by (19), since $n_0 = nk$. It is not difficult to see that in this case

$$|\Phi(\mu') - \Phi(\lambda^{(r)})| < \varepsilon_4 \tag{21}$$

for any fixed $\varepsilon_4 > 0$ if r (and the corresponding n) is sufficiently large. Combining (17), (18), (20), and (21), we see that $\lambda^{(r)}$ satisfies conditions (1) and (3) of the lemma.

REPOVŠ AND ZAICEV

Finally, consider the difference between n_r and n_{r+1} , provided that all n_{r+1} , n_{r+2} , ... are constructed by the same procedure. That is, we take

$$\bar{n} = m(r+1) + w_1 + \dots + w_{r+1} + 1$$

and obtain n_{r+1} , satisfying the same condition

$$|n_{r+1} - k\bar{n}| < C_2.$$

On the other hand, $\bar{n} - kn = k(m + w_{r+1}) \le k(m + 1)$ and $|kn - n_r| < C_2$. Hence we have

$$|n_{r+1} - n_r| < C = 2C_2 + k(m+1).$$

This latter inequality completes the proof of the lemma if $(\mu_2, \mu_3) = (q\lambda_1, q\lambda_2)$. Arguments in the case $(\mu_1, \mu_3) = (q\lambda_1, q\lambda_2)$ are the same.

5. THE MAIN RESULT

Now we are ready to prove the main result of the paper.

Theorem 1. Let $w = w_1w_2...$ be a Sturmian or periodic word, and let A = A(m, w), $m \ge 2$, be an algebra defined by m and w in (5)–(8). If A^{\sharp} is the algebra obtained from A by adojining an external unit, then PI-exponent of A^{\sharp} exists and

$$exp(A^{\sharp}) = 1 + exp(A).$$

Proof. Let $\alpha = \pi(w)$ be the slope of w, and let $\beta = \frac{1}{m+\alpha}$. Recall that $exp(A) = \Phi_0(\beta)$, where

$$\Phi_0(\beta) = \frac{1}{\beta^{\beta} (1-\beta)^{1-\beta}}$$

([3]). First, we prove that for any $\delta > 0$, there exists N such that

$$\Phi(\lambda) < \Phi_0(\beta) + 1 + \delta \tag{22}$$

as soon as λ is a partition of $n \ge N$, with $m_{\lambda} \ne 0$ in $\chi_n(A^{\sharp})$.

By Lemma 8, for any $\varepsilon > 0$, there exists n_0 such that

$$\frac{\lambda_3}{\lambda_1} < \frac{\beta}{1-\beta} + \varepsilon \tag{23}$$

if $n \ge n_0$, $\lambda \vdash n$ and $m_{\lambda} \ne 0$. If $\lambda = (n)$ or $\lambda = (\lambda_1, \lambda_2)$, then by the hook formula for dimensions of irreducible S_n -representations it follows that deg $\chi_{\lambda} \le 2^n$. Then by Lemma 1,

$$\Phi(\lambda) \le 2\sqrt[n]{n^6}$$

and (22) holds for all sufficiently large *n*, since $1 \le \Phi_0(\beta) \le 2$.

NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS

Let $\lambda = (\lambda_1, \lambda_2, \lambda_3)$. Denote $\mu = (\lambda_1, \lambda_3) \vdash n'$, where $n' = n - \lambda_2$. If $x_1 = \frac{\lambda_1}{n'}, x_2 = \frac{\lambda_3}{n'}$, then

$$\Phi(\mu) = \Phi(x_1, x_2) = \Phi_0(x_2)$$

and

$$x_2 \le \varphi(\varepsilon) = \frac{\beta + (1 - \beta)\varepsilon}{1 + (1 - \beta)\varepsilon}$$

which follows from (23). Since

$$\lim_{n\to\infty}\varphi(\varepsilon)=\beta$$

and Φ_0 is continuous, there exist N and ε such that $\Phi(\mu) < \Phi_0(\beta) + \delta$ for all n > N. Then by Lemma 2,

$$\Phi(\lambda) \le \Phi(\mu) + 1 < \Phi_0(\beta) + 1 + \delta.$$

Now consider the case $\lambda = (\lambda_1, \lambda_2, \lambda_3, 1)$. Excluding the second row of diagram D_{λ} , we get a partition $\mu = (\mu_1, \mu_2, 1) = (\lambda_1, \lambda_3, 1)$ of $n' = n - \lambda_2$ with

$$\frac{\mu_2}{\mu_1} < \frac{\beta}{1-\beta} + \varepsilon.$$

Consider also partition $\mu' = (\mu_1, \mu_2)$ of n' - 1. As before, given $\delta > 0$, one can find n_0 such that

$$\Phi(\mu') < \Phi_0(\beta) + \frac{\delta}{2}$$

provided that $n \ge n_0$.

Since Φ is continuous, for all sufficiently large *n* (and *n'*), we have

$$\Phi(\mu) < \Phi_0(\beta) + \delta.$$

Applying again Lemma 2, we get (22). It now follows from (22) and Lemmas 1 and 7 that

Hence

$$\overline{exp}(A^{\sharp}) = \limsup_{n \to \infty} \sqrt[n]{c_n(A^{\sharp})} \le \Phi_0(\beta) + \delta + 1$$

for any $\delta > 0$, that is,

$$\overline{exp}(A^{\sharp}) \le \Phi_0(\beta) + 1 = exp(A) + 1.$$
(24)

REPOVŠ AND ZAICEV

Now we find a lower bound for codimensions. Since

$$c_n(A^{\sharp}) \ge \deg \chi_{\lambda} \ge \frac{\Phi(\lambda)^n}{n^{20}},$$

by Lemma 1 if $m_{\lambda} \neq 0$ in $\chi_n(A^{\sharp})$, then by Lemma 10 for any $\varepsilon > 0$ there exists a sequence $n_1 < n_2 < \ldots$ such that

$$c_{n_i}(A^{\sharp}) \ge \frac{1}{n_i^{20}} (\Phi_0(\beta) + 1 - \varepsilon)^{n_i}, \ i = 1, 2, \dots$$

and $n_{i+1} - n_i < C = const$, for all $i \ge 1$. Note that the sequence $\{c_n(R)\}$ is nondecreasing for any unital algebra R. Then

$$\underline{exp}(A^{\sharp}) = \liminf_{n \to \infty} \sqrt[n]{c_n(A^{\sharp})} \ge \Phi_0(\beta) + 1.$$
(25)

Π

Now (24) and (25) complete the proof of the theorem.

Corollary 1. For any real numbers $\gamma \in [2, 3]$ there exists an algebra A with 1 such that $exp(A) = \gamma$.

As it was mentioned in the preliminaries, PI-exponents of finite dimensional algebras form a dense subset of the interval [1, 2]. Hence we get the following corollary.

Corollary 2. For any real numbers $\beta < \gamma \in [2, 3]$, there exists a finite dimensional algebra B with 1 such that $\beta \leq exp(B) \leq \gamma$. In particular, PI-exponents of finite dimensional unital algebras form a dense subset of the interval [2, 3].

FUNDING

The first author was supported by SRA grants P1-0292-0101, J1-6271-0101 and J1-5435-0101. The second author was supported by RFBR grant No. 13-01-00234a.

REFERENCES

- Bezushchak, O. E., Belyaev, A. A., Zaicev, M. V. (2012). Exponents of identities of algebras with adjoined unit. *Vestnik Kiev Nat. Univ. Ser. Phis.-Mat. Nauk* 3(1):7–9.
- [2] Bezushchak, O. E., Belyaev, A. A., Zaicev, M. V. (2013). Codimensions of identities of algebras with adjoined unit. *Fundam. Prikl. Mat.*, 18(3):11–26.
- [3] Giambruno, A., Mishchenko, S., Zaicev, M. (2008). Codimensions of algebras and growth functions. Adv. Math. 217:1027–1052.
- [4] Giambruno, A., Mishchenko, S., Zaicev, M. (2009). Polynomial identities of algebras of small dimension. *Comm. Algebra* 37:1934–1948.
- [5] Giambruno, A., Shestakov, I., Zaicev, M. (2011). Finite-dimensional non-associative algebras and codimension growth. Adv. Appl. Math. 47:125–139.
- [6] Giambruno, A., Zaicev, M. (1998). On codimension growth of finitely generated associative algebras. Adv. Math. 140:145–155.

- [7] Giambruno, A., Zaicev, M. (1999). Exponential codimension growth of PI algebras: An exact estimate. *Adv. Math.* 142:221–243.
- [8] Giambruno, A., Zaicev, M. (2005). Polynomial Identities and Asymptotic Methods. Math. Surveys Monogr., Vol. 12. Providence, RI: Amer. Math. Soc.
- [9] Giambruno, A., Zaicev, M. (2008). Proper identities, Lie identities and exponential codimension growth. J. Algebra 320:1933–1962.
- [10] Giambruno, A., Zaicev, M. (2012). On codimension growth of finite-dimensional Lie superalgebras. J. Lond. Math. Soc. (2) 85:534–548.
- [11] Kemer, A. R. (1978). T-ideals with exponential codimension growth are Specht. Sib. Mat. Zh. 19:54–69.
- [12] Lothaire, M. (2002). Algebraic Combinatorics on Words. Encyclopedia Math. Appl., Vol. 90. Cambridge: Cambridge University Press.
- [13] Mishchenko, S. P. (1996). Lower bounds on the dimensions of irreducible representations of symmetric groups and the exponents of varieties of Lie algebras. *Mat. Sb.* 187:83–94.
- [14] Zaitsev, M. V. (2002). Integrality of exponents of growth of identities of finitedimensional Lie algebras. (Russian) *Izv. Ross. Akad. Nauk Ser. Mat.* 66:23–48; English transl.: *Izv. Math.* 66:463–487.
- [15] Zaitsev, M. V. (2011). Identities of finite-dimensional unital algebras. (Russian) Algebra Logika 50:563–594, 693, 695; English transl.: Algebra Logic 50:381–404.

Downloaded by [faculties of the University of Ljubljana] at 01:00 27 June 2015