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We study polynomial identities of algebras with adjoined external unit. For a wide
class of algebras we prove that adjoining external unit element leads to increasing of
PI-exponent precisely to 1. We also show that any real number from the interval [2,3]
can be realized as PI-exponent of some unital algebra.
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1. INTRODUCTION

We study numerical characteristics of polynomial identities of algebras over
a field F of characteristic zero. Given an algebra A over F , one can associate to it
the sequence �cn�A�� of non-negative integers called the sequence of codimensions.
If the growth of �cn�A�� is exponential, then the limiting ratio of consecutive terms
is called PI-exponent of A and written exp�A�. In the present paper, we are mostly
interested what happens with PI-exponent if we adjoin to A an external unit element.

The first results in this area were proved for associative algebras. It is known
that exp�A� is an integer in the associative case [6], [7]. It was shown in [9] that
it follows from the proofs in [6], [7] that either exp�A�� = exp�A� or exp�A�� =
exp�A� + 1 and both options can be realized. Here A� is the algebra A with adjoined
external unit.

The next result was published in [15], following an example of 5-dimensional
algebra A with exp�A� < 2 constructed in [4]. The point is that in the associative or
Lie case PI-exponent cannot be less than 2 ([11], [13]). For a finite dimensional Lie
superalgebra, Jordan and alternative algebra PI-exponent is also at least 2. Starting
from the example A from [4] it was shown in [15] that exp�A�� = exp�A� + 1. In [15]
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3824 REPOVŠ AND ZAICEV

also the following problem was stated: Is it true that always either exp�A�� = exp�A�
or exp�A�� = exp�A� + 1?

An example of 4-dimensional simple algebra A with a fractional PI-exponent
was constructed in [2]. It was also shown that exp�A�� = exp�A� + 1. This result was
announced in [1]. It was also shown in [1] that if A is itself a unital algebra then
exp�A�� = exp�A�.

In the present paper (see Theorem 1) we shall prove that for a previously
known series of algebras A� with exp�A�� = �, � ∈ �� 1 < � < 2 (see [3]), any
extended algebra A�

� has exponent � + 1. That is, we shall show that there exist
infinitely many algebras A such that exp�A�� = exp�A� + 1.

Another important question is the following: which real numbers can be
realized as PI-exponents of some algebra? For example, if A is any associative
PI-algebra or a finite dimensional Lie or Jordan algebra, then exp�A� is an integer
(see [5], [6], [7], [14]).

For unital algebras it is only known that if dim A < � then exp�A� cannot
be less than 2. As a consequence of the main result of our paper (see Corollary 1)
we shall obtain that for any real � ∈ 	2� 3
 there exists a unital algebra B� such that
exp�B�� = �.

2. PRELIMINARIES

Let A be an algebra over a field F of characteristic zero, and let F�X� be
absolutely free algebra over F with a countable set of generators X = �x1� x2� � � � �.
Recall that a polynomial f = f�x1� � � � � xn� is said to be an identity of A if
f�a1� � � � � an� = 0 for all a1� � � � � an ∈ A. The set Id�A� of all polynomial identities of
A forms an ideal of F�X�.

Denote by Pn the subspace of all multilinear polynomials in F�X� on
x1� � � � � xn. Then the intersection Id�A� ∩ Pn is the space of all multilinear identities
of A of degree n.

Denote

Pn�A� = Pn

Id�A� ∩ Pn

�

A non-negative integer

cn�A� = dim Pn�A�

is called the nth codimension of A. Asymptotic behavior of the sequence �cn�A��� n =
1� 2� � � � � is an important numerical invariant of identities of A. We refer to [8] for
an account of basic notions of the theory of codimensions of PI-algebras.

If the sequence �cn�A�� is exponentially bounded, i.e., cn�A� ≤ an for all n and
for some number a (for example in the case when dim A < � and in many other
cases), we can define the lower and the upper PI-exponents of A by

exp�A� = lim inf
n→�

n
√

cn�A�� exp�A� = lim sup
n→�

n
√

cn�A��

D
ow

nl
oa

de
d 

by
 [

fa
cu

lti
es

 o
f 

th
e 

U
ni

ve
rs

ity
 o

f 
L

ju
bl

ja
na

] 
at

 0
1:

00
 2

7 
Ju

ne
 2

01
5 



NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS 3825

and (the ordinary) PI-exponent

exp�A� = lim
n→�

n
√

cn�A�

provided that exp�A� = exp�A�.
In order to compute the values of codimensions we can consider symmetric

group action on Pn defined by

�f�x1� � � � � xn� = f�x��1�� � � � � x��n� ∀� ∈ Sn�

The subspace Pn ∩ Id�A� is invariant under this action and we can study the
structure of Pn�A� as an Sn-module. Denote by n�A� the Sn-character of Pn�A�,
called the nth cocharacter of A. Since char F = 0 and any Sn-representation is
completely reducible, the nth cocharacter has the decomposition

n�A� = ∑
��n

m��� (1)

where � is the irreducible Sn-character corresponding to the partition � � n and
non-negative integer m� is the multiplicity of � in n�A�.

Obviously, it follows from (1) that

cn�A� = ∑
��n

m�deg ��

Another important numerical characteristic is the nth colength of A defined by

ln�A� = ∑
��n

m�

with m� taken from (1). In particular, if the sequence �ln�A�� is polynomially
bounded as a function of n while some of deg � with m� 	= 0 are exponentially large,
the principal part of the asymptotic of �cn�A�� is defined by the largest value of
deg � with nonzero multiplicity.

For studying the asymptotic of codimensions, it is convenient to use the
following functions. Let 0 ≤ x1� � � � � xd ≤ 1 be real numbers such that x1 + · · · +
xd = 1. Denote

��x1� � � � � xd� = 1
x

x1
1 · · · xxd

d

�

If d = 2, then instead of ��x1� x2� we will write

�0�x� = 1
xx�1 − x�1−x

�

We assume that some of x1� � � � � xd can have zero values. In this case, we assume
that 00 = 1.
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3826 REPOVŠ AND ZAICEV

Given � = ��1� � � � � �d� � n, we define

���� = 1

� �1
n

�
�1
n · · · � �d

n
�

�d
n

� (2)

For partitions � = ��1� � � � � �k� � n with k < d, we also consider ���� as in (2),
assuming �k+1 = · · · = �d = 0.

The relationship between deg � and ���� is given by the following lemma.

Lemma 1 (See [10, Lemma 1]). Let � = ��1� � � � � �k� � n be a partition of n. If k ≤ d
and n ≥ 100, then

����n

nd2+d
≤ deg � ≤ n����n�

Now we investigate how the value of ��x1� � � � � xd� increases after adding one
extra variable.

Lemma 2. Let

��x1� � � � � xd� = 1
x

x1
1 · · · xxd

d

� 0 ≤ x1� � � � � xd� x1 + · · · + xd = 1�

and let ��z1� � � � � zd� = a for some fixed z1� � � � � zd. Then

max
0≤t≤1

���y1� � � � yd� 1 − t��y1 = tz1� � � � � yd = tzd� = a + 1�

Moreover, the maximal value is achieved if t = a
a+1 .

Proof. Consider

g�t� = ln �−1�tz1� � � � � tzd� 1 − t��

Then

g�t� = t ln t + �1 − t� ln�1 − t� − t ln a�

Hence its derivative is equal to

g′�t� = ln
t

�1 − t�a

and g′�t� = 0 if and only if t = �1 − t�a, that is t = a
a+1 . It is not difficult to check

that g has the minimum at this point.
Now we compute the value of g:

g

(
a

a + 1

)
= a

a + 1
ln

a

a + 1
+ 1

a + 1
ln

1
a + 1

− a

a + 1
ln a = ln B�
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NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS 3827

where

B =
(

a

a + 1

) a
a+1

(
1

a + 1

) 1
a+1

a− a
a+1 = 1

a + 1
�

Hence �max = B−1 = a + 1 and we have completed the proof. �

The following lemma shows what happens with ���� when we insert an extra
row in Young diagram D�.

Lemma 3. Let � be a positive real number and let � = ��1� � � � � �d� be a partition of n
such that �1

n
� � � � � �d

n
≥ �. Then for any � > 0 there exist n′ = kn and a partition � � n′,

� = ��1� � � � � �d+1� such that for some integers 1 ≤ i ≤ d + 1 and q ≥ 1 the following
conditions hold:

1) �j = q�j for all j ≤ i − 1;
2) �j+1 = q�j for all j ≥ i; and
3) ����� − ���� + 1� < �.

Moreover, k does not depend on � and n.

Proof. Denote

z1 = �1

n
� � � � � zd = �d

n

and a = ��z1� � � � � zd� = ����. By Lemma 2,

��tz1� � � � � tzd� 1 − t� = a + 1 (3)

if t = a
a+1 . It is not difficult to check that 1 ≤ ��x1� � � � � xd� ≤ d, and hence 1

d+1 ≤
1 − t ≤ 1

2 .
Note that � = ��x1� � � � � xd+1� can be viewed as a function of d independent

indeterminates x1� � � � � xd. Conditions 0 < � ≤ x1� � � � � xd and 1
d+1 ≤ xd+1 ≤ 1

2 define
a compact domain Q in �d since xd+1 = 1 − x1 − · · · − xd. Since � is continuous on
Q, there exists an integer k such that

���x1� � � � � xd� xd+1� − ��x′
1� � � � � x′

d� x′
d+1�� < �

as soon as �xi − x′
i� < 1

k
for all i = 1� � � � � d. Clearly, k does not depend on n and �.

Then there exists a rational number t0 = q

k
< 1 such that �t − t0� < 1

k
and

���t0z1� � � � � t0zd� 1 − t0� − a − 1� < �� (4)

Denote y0 = 1 − t0. Then t0zi ≤ 1 − t0 = y0 ≤ t0zi−1 for some i (or y0 > t0z1, or
y0 < t0zd).

Now we set n′ = kn,

�1 = q�1� � � � � �i−1 = q�i−1�

�i+1 = q�i� � � � � �d+1 = q�d�
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3828 REPOVŠ AND ZAICEV

and �i = n�k − q�. Then � = ��1� � � � � �d+1� is a partition of n′ and

���� = ��t0z1� � � � � t0zd� 1 − t0��

In particular, ����� − ���� − 1� < � by (3) and (4), and we have completed the
proof of the lemma. �

3. ALGEBRAS OF INFINITE WORDS

In this section we recall some constructions and algebras from [3] and their
properties. These algebras will be used for constructing unital algebras.

Let K = �k1� k2� � � � � be an infinite sequence of integers ki ≥ 2. Then the
algebra A�K� is defined by its basis

�a� b� ∪ Z1 ∪ Z2 ∪ � � � � (5)

where

Zi = �z
�i�
j �1 ≤ j ≤ ki� i = 1� 2� � � � � (6)

with the multiplication table

z
�i�
1 a = z

�i�
2 � � � � � z

�i�
ki−1a = z

�i�
ki

� z
�i�
ki

b = z
�i+1�
1 (7)

for all i = 1� 2� � � � . All remaining products are assumed to be zero.
It is easy to verify (see also [3]) that A satisfies the identity x1�x2x3� = 0 and if

m� 	= 0 in (1) then � = ��1� or � = ��1� �2� or � = ��1� �2� 1�. Denote by W �d�
n , d ≤ n,

the subspace of the free algebra F�X� of all homogeneous polynomials of degree n
on x1� � � � � xd. Given a PI-algebra A, we define

W �d�
n �A� = W �d�

n

W
�d�
n ∩ Id�A�

�

Recall that the height h��� of a partition � = ��1� � � � � �d� is equal to d. We
will use the following result from [3].

Lemma 4 ([3, Lemma 4.1]). Let A be a PI-algebra with nth cocharacter n�A� =∑
��n m��. Then for every � � n with h��� ≤ d, we have that m� ≤ dim W �d�

n �A�.

Now let w = w1w2 � � � be an infinite word in the alphabet �0� 1�. Given an
integer m ≥ 2, let Km�w = �ki�� i = 1� 2� � � � , be the sequence defined by

ki =
{

m� if wi = 0

m + 1� if wi = 1�
(8)

and write A�m� w� = A�Km�w�.
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NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS 3829

Recall that the complexity Compw�n� of an infinite word w is the number of
distinct subwords of w of the length n (see [12], Chapter 1). Slightly modifying the
proof of Lemma 4.2 from [3] we obtain:

Lemma 5. For any m ≥ 2 and for any infinite word w, the following inequalities hold:

dim W �d�
n �A�m� w�� ≤ d�m + 1�nCompw�n�

and

ln�A�m� w�� ≤ n3 dim W �3�
n �A�m� w���

Now we fix the algebra A�m� w� by choosing the word w. Obviously,
Compw�n� ≤ T for any infinite periodic word with period T . It is well known
(see [12]) that Compw�n� ≥ n + 1 for any aperiodic word w. In the case when
Compw�n� = n + 1 for all n ≥ 1, the word w is said to be Sturmian. It is also known
that for any Sturmian or periodic word the limit

��w� = lim
n→�

w1 + · · · + wn

n
> 0

always exists (we always assume that a periodic word is nonzero). This limit ��w�
is called the slope of w. For any real number � ∈ �0� 1�, there exists a word w with
��w� = � and w is Sturmian or periodic depending on whether � is irrational or
rational, respectively. Moreover,

exp�A�m� w�� = �0��� = 1
���1 − ��1−�

for Sturmian or periodic word w, where � = 1
m+�

� � = ��w� (see [3], Theorem 5.1).
As a consequence, for any real 1 ≤ � ≤ 2 there exists an algebra A such that
exp�A� = �.

Finally, for any periodic word w and for any m ≥ 2 there exists a finite
dimensional algebra B�m� w� satisfying the same identities as A�m� w�. In particular,
for any rational 0 < � ≤ 1

2 , there exists a finite dimensional algebra B with

exp�B� = �0��� = 1
���1 − ��1−�

�

4. ALGEBRA WITH ADJOINED UNIT

We fix a Sturmian or periodic word w and m ≥ 2 and consider the algebra
A = A�m� w�. Denote by A� the algebra obtained from A by adjoining external unit
element 1. Our main goal is to prove that exp�A�� exists and that

exp�A�� = exp�A� + 1�

First we find a polynomial upper bound for the colength of A�. We start with a
remark concerning an arbitrary algebra B. Recall that, given an algebra B, W �d�

n �B�
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3830 REPOVŠ AND ZAICEV

is the dimension of the space of homogeneous polynomials on x1� � � � � xd of total
degree n modulo ideal Id�B�.

Lemma 6. Let B be an arbitrary algebra. Suppose that dim W �d�
n �B� ≤ �nT for some

natural T , � ∈ � and for all n ≥ 1. Then

dim W �d�
n �B�� ≤ ��n + 1�T+d+1�

Proof. Denote by F�X�� absolutely free algebra generated by X with adjoined unit
element. First note that a multihomogeneous polynomial f�x1� � � � � xd� is an identity
of B� if all multihomogeneous on x1� � � � � xd components of f�1 + x1� � � � � 1 + xd� are
identities of B.

Clearly, the number of multihomogeneous polynomials on x1� � � � � xd of total
degree k, linearly independent modulo Id�B�, does not exceed dim W

�d�
k �B�. On the

other hand, the number of multihomogeneous components of total degree k in a
free algebra F�x1� � � � � xd� does not exceed �k + 1�d. Take now

N = �k + 1�d
n∑

k=0

dim W
�d�
k �B� + 1

assuming that dim W
�d�
0 �B� = 1. Clearly,

N ≤ 1 + �n + 1�d�
n∑

k=0

kT < ��n + 1�T+d+1�

Given homogeneous polynomials f1� � � � � fN+1 on x1� � � � � xd of degree
n, consider their linear combination f = �1f1 + · · · + �N+1fN+1 with unknown
coefficients �1� � � � � �N+1. The assumption that some multihomogeneous component
of f�1 + x1� � � � � 1 + xd� is an identity of B� is equivalent to some linear equation
on �1� · · · � �N+1. Hence the condition that all multihomogeneous components of
f�1 + x1� � � � � 1 + xd� are identities of B leads to at most N linear equations on
�1� · · · � �N+1. It follows that f� � � � � fN+1 are linearly dependent modulo Id�B��, and
we have completed the proof. �

Lemma 7. Let A = A�m� w� where m ≥ 2 and w is periodic or a Sturmian word. Then

ln�A
�� ≤ 4�m + 1��n + 1�12

for all sufficiently large n.

Proof. First note that the cocharacter of A� lies in the strip of width 4: that is, if
m� 	= 0 in the decomposition

n�A
�� = ∑

��n

m��� (9)
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NUMERICAL INVARIANTS OF IDENTITIES OF UNITAL ALGEBRAS 3831

then h��� ≤ 4. The number of partitions of n of type � = ��1� � � � � �k� with 1 ≤ k ≤ 4
is less than n4. By Lemma 5,

dim W �4�
n �A� ≤ 4�n + 1�Compw�n�� (10)

If w is a Sturmian word, then Compw�n� = n + 1. If w is periodic, then its
complexity is finite and hence Compw�n� ≤ n + 1 for all sufficiently large n in (10).
In particular,

dim W �4�
n �A� ≤ 4�m + 1��n + 1�2 ≤ 4�m + 1�n2

for all sufficiently large n. Applying Lemmas 4, 5, and 6, we obtain

m� ≤ dim W �4�
n �A�� ≤ 4�m + 1��n + 1�8

for all m� 	= 0 in (9) and then

ln�A
�� = ∑

��n

m� ≤ 4�m + 1�n4�n + 1�8 ≤ �4�m + 1��n + 1�12�
�

In the next step, we shall find an upper bound for ����, provided that m� 	= 0
in the nth cocharacter of A�.

Lemma 8. For any � > 0, there exists n0 such that m� = 0 in (9) if n > n0 and

�3

�1

≥ �

1 − �
+ �

where � = 1
m+�

and � is the slope of w.

Proof. First let � = ��1� �2� �3� 1� � n. Inequality m� 	= 0 means that there exists
a multilinear polynomial g of degree n depending on one alternating set of four
variables, �3 − 1 alternating sets of three variables and some extra variables, and
g is not an identity of A�. That is, there exists an evaluation � � F�X�� → A� such
that ��g� 	= 0 and the set ���x1�� � � � � ��xn�� contains at least �3 basis elements b ∈ A
and at most �1 elements a ∈ A. Obviously, ��g� = 0 if ���x1�� � � � � ��xn�� does not
contain exactly one element z

�i�
j ∈ A.

Any nonzero product of basis elements of A is the left-normed product of the
type

z
�i�
j ak1bl1 · · · akt blt �

where k1� � � � � kt� l1� � � � � lt are equal to 0 or 1. More precisely, this product can be
written in the form

z
�i�
j f�a� b�� (11)

where

f�a� b� = at0bat1b · · · batkbatk+1
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3832 REPOVŠ AND ZAICEV

is an associative monomial on a and b and

t0 = m + wi − j� t1 = m + wi+1 − 1� � � � � tk = m + wi+k − 1� tk+1 ≤ m + wi+k+1 − 1�

In particular, degbf = k + 1 and

degaf = t0 + t1 + · · · + tk+1 ≥ t1 + · · · + tk = �m − 1�k + wi+1 + · · · + wi+k�

The total degree of monomial (11) (i.e., the number of factors) is

n = �m + 1�k + wi + · · · + wi+k + tk+1 − j + 1�

Hence, �m + 1�k ≥ n − �1 + k� − m − 1 and k ≥ n−m−2
m+2 . In particular, k grows with

increasing n.
It is known that

wi+1 + · · · + wi+k

k
≥ � − C

k

for some constant C (see [3], Proposition 5.1 or [12], Section 2.2). This implies that

degaf > �m − 1�k + k�� − ���

where � = C
k

and

degbf

degaf
<

1 + 1
k

m − 1 + � − �
�

Since ��g� 	= 0, at least one monomial of the type (11) in ��g� is nonzero. Therefore,

�3

�1

≤ degbf

degaf
<

1 + 1
k

m − 1 + � − �
� (12)

Since � is an arbitrary small positive real number, one can choose n0 such that

�3

�1

<
1 + 1

k

m − 1 + � − �
<

1
m − 1 + �

+ �

2
(13)

for all n ≥ n0. Combining (12) and (13), we conclude that

�3

�1

<
1

m − 1 + �
+ �

2
(14)

provided that m� 	= 0 in (9) and n ≥ n0. Note that �

1−�
= 1

m−1+�
and hence we have

completed the proof of the lemma in the case when � = ��1� �2� �3� 1�.
Slightly modifying previous arguments, we get the proof of the inequality (14)

for a partition � = ��1� �2� �3� with three parts. The only difference is that non-
identical polynomial g depends on at least �3 skewsymmetric sets of variables of
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order 3, but after evaluation, one of these variables can be replaced by z
�i�
j , and we

get the inequality

�3 − 1
�1

≤ degbf

degaf

instead of (12). Taking into account that �1 → � if n → � we get the same
conclusion, and thus complete the proof. �

For the lower bound of codimensions of A�, we need the following results.
Let A = A�m� w� be an algebra defined by an integer m ≥ 2 and by an infinite

word w = w1w2 � � � in the alphabet �0� 1�. Then

z
�1�
1 ai1bai2b · · · air b = zr+1

1 (15)

if i1 = m − 1 + w1� i2 = m − 1 + w2� � � � � ir = m − 1 + wr . Otherwise, the left-hand
side of (15) is zero.

Lemma 9. Let � = �j� �2� �3� 1� be a partition of n = j + mr + w1 + · · · + wr + 1
with j ≥ �2 = �m − 1�r + w1 + · · · + wr , �3 = r, or let � = ��1� j� �3� 1� be a partition
of the same n with �1 = �m − 1�r + w1 + · · · + wr > j ≥ �3 = r. Then m� 	= 0 in (9).

Proof. Recall that, given Sn-module M , the multiplicity of � in the character �M�
is nonzero if eT�

M 	= 0 for some Young tableaux T� of shape D�. The essential
idempotent eT�

∈ FSn is equal to

eT�
=

⎛
⎝ ∑

�∈RT�

�

⎞
⎠
⎛
⎝ ∑

�∈CT�

�sgn ���

⎞
⎠ �

Here RT�
is the row stabilizer of T�, i.e., the subgroup of all � ∈ Sn permuting indices

only inside rows of T�, and CT�
is the column stabilizer of T�.

First, let �1 = j ≥ �2. Denote n0 = mr + w1 + · · · + wr + 1, and consider the
Young tableaux T� of the following type. Into the boxes of the 1st row of D�

we place n0 + 1� � � � � n0 + j from left to right. Into the third row, we insert j1 =
i1 + 2� � � � � jr = i1 + · · · + ir + r + 1. (In fact, j1� � � � � jr are the positions of b in the
product (15)). Into the second row, we insert from left to right j1 − 1� � � � � jr −
1� ir+1� � � � � i�2

where �ir+1� � � � � i�2
� = �2� � � � � n0� \ �j1 − 1� j1� � � � � jr − 1� jr� and into

the unique box of the 4th row we put 1.
Then

eT�
�x1� � � � � xn� = Sym1Sym2Sym3Alt1 · · · Alt�2

�x1� � � � � xn��

where we have as follows:

• Alt1 is the alternation on �1� j1 − 1� j1� n0 + 1�;
• Altk is the alternation on �jk − 1� jk� n0 + k� if 2 ≤ k ≤ r;
• Altk is the alternation on �ik� n0 + k� if r < k ≤ �2;
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3834 REPOVŠ AND ZAICEV

• Sym1 is the symmetrization on �n0 + 1� � � � � n0 + j�;
• Sym2 is the symmetrization on �j1� � � � � jr�;
• Sym3 is the symmetrization on �2� � � � � n� \ �j1� � � � � jr�.

After an evaluation

��x1� = z
�1�
1 � ��xn0+1� = · · · = ��xn0+j� = 1 ∈ A�� ��xj1

� = · · · = ��xjr
� = b

and

��xi� = a if i 	= 1� j1� � � � � jr � n0 + 1� � � � � n0 + j�

we have

��eT�
�x1 · · · xn�� = j!r!�n0 − r − 1�!z�r+1�

1 	= 0�

hence m� 	= 0 in (9).
Similarly, filling up the second row of T� by n0 + 1� � � � � n0 + j in the case

when �1 = �m − 1� + w1 + · · · + wr > j ≥ �3 = r, we prove that eT�
�x1 · · · xn� is not

an identity of A�. �

Recall that, given 0 ≤ � ≤ 1,

�0��� = ���� 1 − �� = 1
���1 − ��1−�

�

Lemma 10. Let A = A�m� w� be an algebra defined for an integer m ≥ 2 and a
Sturmian or periodic word w with slope �. Let also � = 1

m+�
. Then for any � > 0 there

exist a constant C, positive integers n1 < n2 � � � , and partitions ��i� � ni such that for
some large enough i0 the following properties hold:

1) �����i�� − �0��� − 1� < � for all i ≥ i0;
2) ni+1 − ni < C for all i ≥ i0; and
3) m

�i�
� 	= 0 in ni

�A�� for all i ≥ i0.

Proof. Note that � < 1
2 since � > 0. First, take an arbitrary r ≥ 1, n = mr + w1 +

· · · + wr and � = ��1� �2�, where �1 = �m − 1�r + w1 + · · · + wr� �2 = r. We set

x1 = �1

n
= m − 1 + w1+···+wr

r

m + w1+···+wr

r

�

x2 = �2

n
= 1

m + w1+···+wr

r

�

As it was mentioned in the proof of Lemma 8 (see also [3], Proposition 5.1 or [12],
Section 2.2), there exists a constant C1 such that∣∣∣∣w1 + · · · + wr

r
− �

∣∣∣∣ <
C1

r
� (16)
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Hence for any �1 > 0, we can find r0 such that

����� − �0���� < �1 (17)

for all r ≥ r0, since ��z1� z2� is a continuous function and �x1� x2� → �1 − �� �� when
r → �.

Now using Lemmas 2 and 3, given �2 > 0, we insert one extra row into D�,
that is, we construct a partition � = ��1� �2� �3� of n0 = nk such that

����� − ���� − 1� < �2� (18)

We have three options. Either �1 is a new row, that is, ��2� �3� = �q�1� q�2�; or
�2 is a new row, that is, ��1� �3� = �q�1� q�2�; or �3 is a new row, that is, ��1� �2� =
�q�1� q�2�.

First, we exclude the third case. Suppose that ��1� �2� = �q�1� q�2�. Recall that
by Lemma 2, the maximal value of ��tz1� tz2� 1 − t� is achieved if

t = ��z1� z2�

1 + ��z1� z2�
�

Since ��z1� z2� < 2 if � < 1
2 , we obtain that 1 − t > 1

3 . For Lemma 3, this means that
the new row of D� cannot be the third row; that is, the case ��1� �2� = �q�1� q�2� is
impossible.

Now let ��2� �3� = �q�1� q�2�. We exchange � to �′ in the following way. We
set �′

2 = qr�m − 1� + w1 + · · · + wqr and take �′ = ��1� �′
2� �3�. Then �′ � n′ where

n′ − n0 = �′
2 − �2 = w1 + · · · + wqr − q�w1 + · · · + wr��

Using again inequality (16), we get

�n′ − n0� < C1�q + 1�� (19)

Inequality (19) also shows that �1 ≥ �′
2 ≥ �3 if n is sufficiently large and our

construction of partition � is correct.
Clearly, ����� − ���′�� → 0 if n → � and

����� − ���′�� < �3 (20)

for any fixed �3 > 0, for all sufficiently large r (and n). Starting from this sufficiently
large r, we denote nr = n′ + 1 and take ��r� � nr , ��r� = ��1� �′� �3� 1�. All preceding
n1� � � � � nr−1 and ��1�� � � � � ��r−1�, we choose in an arbitrary way.

Since �3 = qr, by Lemma 9 the multiplicity of the irreducible character ��r� in
nr

�A�� is not equal to zero and �nr − kn� < C2 = C1�q + 1� + 1 by (19), since n0 =
nk. It is not difficult to see that in this case

����′� − ����r��� < �4 (21)

for any fixed �4 > 0 if r (and the corresponding n) is sufficiently large. Combining
(17), (18), (20), and (21), we see that ��r� satisfies conditions (1) and (3) of the lemma.
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3836 REPOVŠ AND ZAICEV

Finally, consider the difference between nr and nr+1, provided that all nr+1� nr+2� � � �
are constructed by the same procedure. That is, we take

n̄ = m�r + 1� + w1 + · · · + wr+1 + 1

and obtain nr+1, satisfying the same condition

�nr+1 − kn̄� < C2�

On the other hand, n̄ − kn = k�m + wr+1� ≤ k�m + 1� and �kn − nr � < C2. Hence we
have

�nr+1 − nr � < C = 2C2 + k�m + 1��

This latter inequality completes the proof of the lemma if ��2� �3� = �q�1� q�2�.
Arguments in the case ��1� �3� = �q�1� q�2� are the same. �

5. THE MAIN RESULT

Now we are ready to prove the main result of the paper.

Theorem 1. Let w = w1w2 � � � be a Sturmian or periodic word, and let A = A�m� w�,
m ≥ 2� be an algebra defined by m and w in (5)–(8). If A� is the algebra obtained from
A by adojining an external unit, then PI-exponent of A� exists and

exp�A�� = 1 + exp�A��

Proof. Let � = ��w� be the slope of w, and let � = 1
m+�

. Recall that exp�A� =
�0���, where

�0��� = 1
���1 − ��1−�

([3]). First, we prove that for any � > 0, there exists N such that

���� < �0��� + 1 + � (22)

as soon as � is a partition of n ≥ N , with m� 	= 0 in n�A
��.

By Lemma 8, for any � > 0, there exists n0 such that

�3

�1

<
�

1 − �
+ � (23)

if n ≥ n0� � � n and m� 	= 0. If � = �n� or � = ��1� �2�, then by the hook formula
for dimensions of irreducible Sn-representations it follows that deg � ≤ 2n. Then by
Lemma 1,

���� ≤ 2
n
√

n6

and (22) holds for all sufficiently large n, since 1 ≤ �0��� ≤ 2.
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Let � = ��1� �2� �3�. Denote � = ��1� �3� � n′, where n′ = n − �2. If
x1 = �1

n′ � x2 = �3
n′ , then

���� = ��x1� x2� = �0�x2�

and

x2 ≤ ���� = � + �1 − ���

1 + �1 − ���

which follows from (23). Since

lim
n→� ���� = �

and �0 is continuous, there exist N and � such that ���� < �0��� + � for all n > N .
Then by Lemma 2,

���� ≤ ���� + 1 < �0��� + 1 + ��

Now consider the case � = ��1� �2� �3� 1�. Excluding the second row of diagram
D�, we get a partition � = ��1� �2� 1� = ��1� �3� 1� of n′ = n − �2 with

�2

�1

<
�

1 − �
+ ��

Consider also partition �′ = ��1� �2� of n′ − 1. As before, given � > 0, one can
find n0 such that

���′� < �0��� + �

2

provided that n ≥ n0.
Since � is continuous, for all sufficiently large n (and n′), we have

���� < �0��� + ��

Applying again Lemma 2, we get (22). It now follows from (22) and Lemmas 1 and
7 that

cn�A
�� = ∑

��n

m�deg � ≤ ��0��� + 1 + ��nln�A
�� ≤ 4�m + 1��n + 1�13��0��� + 1 + ��n�

Hence

exp�A�� = lim sup
n→�

n
√

cn�A
�� ≤ �0��� + � + 1

for any � > 0, that is,

exp�A�� ≤ �0��� + 1 = exp�A� + 1� (24)
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3838 REPOVŠ AND ZAICEV

Now we find a lower bound for codimensions. Since

cn�A
�� ≥ deg � ≥ ����n

n20
�

by Lemma 1 if m� 	= 0 in n�A
��, then by Lemma 10 for any � > 0 there exists a

sequence n1 < n2 < � � � such that

cni
�A�� ≥ 1

n20
i

��0��� + 1 − ��ni � i = 1� 2� � � �

and ni+1 − ni < C = const, for all i ≥ 1. Note that the sequence �cn�R�� is
nondecreasing for any unital algebra R. Then

exp�A�� = lim inf
n→�

n
√

cn�A
�� ≥ �0��� + 1� (25)

Now (24) and (25) complete the proof of the theorem. �

Corollary 1. For any real numbers � ∈ 	2� 3
 there exists an algebra A with 1 such
that exp�A� = �.

As it was mentioned in the preliminaries, PI-exponents of finite dimensional
algebras form a dense subset of the interval 	1� 2
. Hence we get the following
corollary.

Corollary 2. For any real numbers � < � ∈ 	2� 3
, there exists a finite dimensional
algebra B with 1 such that � ≤ exp�B� ≤ �. In particular, PI-exponents of finite
dimensional unital algebras form a dense subset of the interval 	2� 3
.
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