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1. Introduction

We consider finite dimensional Lie superalgebras over a field of characteristic zero 
and study their Z2-graded identities. We pay main attention to numerical invariants of 
identities, in particular, to graded codimensions and their asymptotic behaviour.
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It is well known that in case dimL < ∞ both graded and ordinary codimensions 
are exponentially bounded [2]. One of the more important questions of the theory of 
numerical invariants of polynomial identities is: does a (graded) PI-exponent exist?

There are many papers where the existence of PI-exponent is proved for different 
classes of algebras. For example, if A is an associative PI-algebra or a finite dimensional 
Lie, Jordan or alternative algebra, then its PI-exponent exists and is a non-negative 
integer (see [4–6,11]). The existence of PI-exponent for any finite dimensional simple 
algebra was proved in [8]. It is not difficult to show that if PI-exponent of A exists then 
it is less than or equal to d provided that d = dimA < ∞ (see for example [2]). In many 
important classes of algebras over an algebraically closed field (associative, Lie, Jordan, 
alternative) the equality exp(A) = dimA is equivalent to simplicity of A [4,5,11]. Recently 
[8] it was shown that exp(L) < dimL for any finite dimensional simple Lie superalgebra 
L of the type b(t), t ≥ 3 (in the notation of [9]). The existence of PI-exponent and 
similar inequality exp(L) < dimL for b(2) was also proved in [8] although it is not 
simple superalgebra.

Graded codimensions of Lie superalgebras were studied much less. In particular, it is 
still unknown whether expgr(L) exists even when L is a finite dimensional simple Lie 
superalgebra. In recent paper [10] it was proved that an upper graded PI-exponent of 
Lie superalgebra b(t), t ≥ 2, is less than or equal to t2 − 1 + t

√
t2 − 1. In particular, this 

gives an upper bound for ordinary PI-exponent of b(t). In the present paper we prove the 
existence of graded PI-exponent of b(2). We also prove that expgr(b(2)) = 3 +2

√
3. Note 

that it was recently announced that an ordinary PI-exponent does not exist in general 
non-associative case (see [12]).

2. Main constructions and definitions

Let L be a Lie superalgebra over a field F of characteristic zero, that is L = L0 ⊕ L1
is a non-associative Z2-graded algebra satisfying two identical relations

xy + (−1)|x||y|yx = 0,

x(yz) = (xy)z + (−1)|x||y|y(xz) = 0

where x, y, z ∈ L0 ∪ L1 and |x| = 0 if x ∈ L0 while |x| = 1 if x ∈ L1.
Elements from L0 ∪L1 are called homogeneous and we say that x is even if x ∈ L0 or 

x is odd if x ∈ L1.
Denote by L(X, Y ) a free Lie superalgebra with infinite sets of even generators X and 

odd generators Y . A polynomial f = f(x1, . . . , xm, y1, . . . , yn) ∈ L(X, Y ) is said to be a 
graded identity of Lie superalgebra L = L0⊕L1 if f(a1, . . . , am, b1, . . . , bn) = 0 whenever 
a1, . . . , am ∈ L0, b1, . . . , bn ∈ L1.

Given positive integers 0 ≤ k ≤ n, denote by Pk,n−k the subspace of all multilinear 
polynomials f = f(x1, . . . , xk, y1, . . . , yn−k) ∈ L(X, Y ) of degree k on even variables and 
of degree n − k on odd variables. Denote by Idgr(L) the ideal of L(X, Y ) of all graded 
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identities of L. Then Pk,n−k ∩ Idgr(L) is the subspace of all multilinear graded identities 
of L of total degree n depending on k even variables and n −k odd variables. Also denote 
by Pk,n−k(L) the quotient

Pk,n−k(L) = Pk,n−k

Pk,n−k ∩ Idgr(L) .

Then the graded (k, n − k)-codimension of L is

ck,n−k(L) = dimPk,n−k(L)

and the total graded codimension of L is

cgrn (L) =
n∑

k=0

(
n

k

)
ck,n−k(L).

It is known (see [2]) that if dimL < ∞ then the sequence {cgrn (L)}n≥1 is exponentially 
bounded and one can consider the related sequence n

√
cgrn (L). The latter sequence has 

the lower and upper limits

expgr(L) = lim inf
n→∞

n

√
cgrn (L), expgr(L) = lim sup

n→∞
n

√
cgrn (L)

called the lower and upper graded PI-exponents of L, respectively. If an ordinary limit 
exists, it is called an (ordinary) graded PI-exponent of L,

expgr(L) = lim
n→∞

n

√
cgrn (L).

Symmetric groups and their representations play an important role in the theory of 
codimensions. One can find all details concerning application of representation theory 
of symmetric groups to study of polynomial identities in [1,3,7]. In case of graded iden-
tities one can consider (Sk × Sn−k)-action on multilinear graded polynomials. Namely, 
the subspace Pk,n−k ⊆ L(X, Y ) has a natural structure of (Sk × Sn−k)-module where 
Sk acts on even variables x1, . . . , xk while Sn−k acts on odd variables y1, . . . , yn−k. 
Clearly, Pk,n−k ∩ Idgr(L) is the submodule under this action and we get an induced 
Sk × Sn−k-action on Pk,n−k(L). If G is a subgroup of Sk × Sn−k then G also acts natu-
rally on Pk,n−k(L). In particular,

ck,n−k(L) ≥ dimM (1)

for any subgroup G ⊆ Sk ×Sn−k and for any G-submodule M of Pk,n−k(L). We will use 
the relation (1) for getting a lower bound of ck,n−k(L).
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3. Graded PI-exponent of b(2)

Recall the construction of Lie superalgebra L = L0 ⊕ L1 = b(2). Even component L0
consists of all 4 × 4 matrices of the type

L0 =
{(

A 0
0 −At

) ∣∣∣ A ∈ M2(F ), tr(A) = 0
}
,

where A is 2 × 2 traceless matrix and t : A → At is the usual transpose involution.
Odd component L1 consists of 4 × 4 matrices

L1 =
{(

0 B

C 0

) ∣∣∣ where Bt = B, Ct = −C, B,C ∈ M2(F )
}
.

Also denote

L−
1 =

{(
0 0
C 0

) ∣∣∣ Ct = −C ∈ M2(F )
}
,

L+
1 =

{(
0 B

0 0

) ∣∣∣ Bt = B ∈ M2(F )
}
.

Then dimL−
1 = 1, dimL+

1 = 3.
As a vector space L is embedded into M4(F ). Using ordinary associative matrix 

multiplication we can define super-Lie product on L as

{x, y} = xy − (−1)|x||y|yx

for any homogeneous x, y ∈ L0 ∪ L1 where |x| = 0 if x ∈ L0 while |x| = 1, if x ∈ L1.
Note that L0 is a Lie algebra isomorphic to sl2(F ). We will identify L0 with sl2(F )

and use the standard basis of sl2(F )

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Furthermore, we will not use associative multiplication. This will allow us to omit 
super-Lie brackets, i.e. to write ab instead of {a, b}. We will also use the notation ab · · · c
for the left-normed product {{. . . {a, b}, . . .}, c}.

We will also use the following agreement for denoting alternating sets of variables. If 
f = f(x1, . . . , xk, y1, . . . , yn) is a multilinear polynomial and we apply to f the operator 
of alternation on variables x1, . . . , xk, then we will write the same symbol (bar, double 
bar, tilde, double tilde, etc.) over the variables x1, . . . , xk, that is

f(x̄1, . . . , x̄k, y1, . . . yn) =
∑

(sgn σ)f(xσ(1), . . . , xσ(k), y1, . . . , yn).

σ∈Sk
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For example x̄aȳ = xay − yax, or

¯̄x1a¯̄x2b¯̄x3 =
∑
σ∈S3

(sgn σ)xσ(1)axσ(2)bxσ(3).

We will also use this notation for non-multilinear polynomials with repeating variables 
as follows

x̄1x̄2a¯̄x1 ¯̄x2 = x1x2a¯̄x1 ¯̄x2 − x2x1a1 ¯̄x1 ¯̄x2

= x1x2ax1x2 − x1x2ax2x1 − x2x1ax1x2 + x2x1ax2x1.

Following this agreement we consider an alternating expression hēf̄ h̄ in the Lie algebra 
L0 = sl2(F ). Since he = 2e, hf = −2f , ef = h, it easily follows that

hēf̄ h̄ = 8h

and

h ēf̄ h̄¯̄e ¯̄f ¯̄h · · · ẽf̃ h̃︸ ︷︷ ︸
t alternating triples

= 8th. (2)

Consider a multilinear polynomial

g = g
(
x0, x

1
1, x

1
2, x

1
3, . . . , x

t
1, x

t
2, x

t
3
)

= Alt1Alt2 . . .Altt
(
x0x

1
1 · · ·x1

3
)

where Altj is the operator of alternation on xj
1, x

j
2, x

j
3, 1 ≤ j ≤ t, that is

g = x0x̄
1
1x̄

1
2x̄

1
3 · · · x̃t

1x̃
t
2x̃

t
3.

The evaluation ϕ : x1
1, . . . , x

t
1 → e, x1

2, . . . , x
t
2 → f, x0, x1

3, . . . , x
t
3 → h gives us

ϕ(g) = 8th (3)

in L0 by (2). Moreover, if we denote the symmetrization on variables x1
i , . . . , x

t
i, i = 1, 2, 3

by Symi, then it follows from (3) and the definition of ϕ that

ϕ
(
Sym1Sym2Sym3(g)

)
= (t!)38th (4)

in L0 by virtue of (2). An element

g′ = Sym1Sym2Sym3(g) (5)

with the fixed x0 generates in P3t+1,0 an irreducible S3t-submodule with the character χλ, 
λ = (t, t, t) where the permutation group S3t acts on x1

1, x
1
2, x

1
3, . . . , x

t
1, x

t
2, x

t
3.
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Given a partition μ = (μ1, . . . , μd) � n, we define the function

Φ(μ) = 1
zz11 · · · zzdd

,

where

z1 = μ1

n
, . . . , zd = μd

n
.

The value of Φ(μ) is closely connected with degχ(μ).

Lemma 1. (See [8, Lemma 1].) Let n ≥ 100. Then

Φ(μ)n

nd2+d
≤ dμ ≤ nΦ(μ)n. �

In particular, if m = 3t and μ = (t, t, t) then

degχμ ≥ m−123m. (6)

In the next step we will construct an irreducible S6k-submodule in P1,6k+1 
⊂ Idgr(L)
where S6k acts on some 6k odd variables. Denote

d =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎠ ∈ L−

1 .

Then L−
1 = Span〈d〉. It is not difficult to check that L+

1 L
−
1 = L0. Hence there exist 

a, b, c ∈ L+
1 such that

ad = e, bd = f, cd = h

where {e, f, h} is the fixed basis of L0. It follows that

h(ād)(b̄d)(c̄d) = 8h

in L and

h(ād)(b̄d)(c̄d)(¯̄ad̄)(¯̄bd)(¯̄cd) = h(ād)(b̄d)(c̄d)(¯̄ad)(¯̄bd)(¯̄cd) = 64h.

Repeating this procedure and using (3) we obtain a multialternating expression

H = h(ād)(b̄d)(c̄d)(¯̄ad̄)(¯̄bd)(¯̄cd)(ã ¯̄d)(b̃d)(c̃d) · · · (˜̃ad̂)(˜̃bd)(˜̃cd)(a ˜̃d)(bd)(cd)

= 8k+1h (7)
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depending on one h, k+1 elements a, b, c and 3(k+1) elements d. The element H on the 
left-hand side of (7) contains k alternating sets {a, b, c, d}. The first set consists of 1st a, 
1st b, 1st c and 4th d. The second set consists of 2nd a, 2nd b, 2nd c and 7th d, and so 
on. The element H also contains 2(k + 1) + 1 non-alternating entries d and four extra 
factors h, a, b, c out of alternating sets. This H is a value of the following multilinear 
polynomial: denote by

w = w
(
x0, y

1
1 , y

1
2 , y

1
3 , z

1
1 , z

1
2 , z

1
3 , . . . , y

k+1
1 , yk+1

2 , yk+1
3 , zk+1

1 , zk+1
2 , zk+1

3
)

= Alt1 . . .Altk
(
x0

(
y1
1z

1
1
)(
y1
2z

1
2
)(
y1
3z

1
3
)(
y2
1z

2
1
)(
y2
2z

2
2
)(
y2
3z

2
3
)
· · ·

×
(
yk+1
1 zk+1

1
)(
yk+1
2 zk+1

2
)(
yk+1
3 zk+1

3
))

where x0 is an even variable, all yαβ , zαβ are odd and Altj is the operator of alternation 

on yj1, y
j
2, y

j
3, z

j+1
1 , j = 1, . . . , k. Then ϕ(w) = H where ϕ is an evaluation of the form

ϕ(x0) = h, ϕ
(
yj1
)

= a, ϕ
(
yj2
)

= b, ϕ
(
yj3
)

= c, ϕ
(
zji
)

= d,

j = 1, . . . , k + 1, i = 1, 2, 3.

Also denote by Sym1, Sym2, Sym3 the symmetrization on the sets {y1
1 , . . . , y

k
1}, 

{y1
2 , . . . , y

k
2}, {y1

3 , . . . , y
k
3}, respectively, and by Sym4 the symmetrization on {z2

1 , z
2
2 , z

2
3 ,

. . . , zk+1
1 , zk+1

2 , zk+1
3 }. If

w′ = Sym1Sym2Sym3Sym4(w)

then

ϕ
(
w′) = (3k)!(k!)3ϕ(w) = (3k)!(k!)38k+1h

in L. In particular, w′ is not an identity of L.
Now let the permutation group S6k act on the set {yji , z

j+1
i | 1 ≤ j ≤ k,

i = 1, 2, 3} and let x0, z1
1 , z

1
2 , z

1
3 , y

k+1
1 , yk+1

2 , yk+1
3 be fixed. Then w′ generates an irre-

ducible S6k-submodule in P1,6(k+1) corresponding to the partition μ = (3k, k, k, k) � r =
6k with

Φ(μ) = 2
√

3.

Hence

degχμ ≥ r−20(2
√

3 )r (8)

by Lemma 1.
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Now let

u = w′(g′, y1
1 , y

1
2 , y

1
3 , · · · , zk+1

1 , zk+1
2 , zk+1

3
)

where g′ is taken from (5). If m = 3t, r = 6k, group Sm acts on even variables xj
i

from g′ whereas Sr acts on odd variables {yji , z
j
i } (except z1

1 , z
1
2 , z

1
3 , y

k+1
1 , yk+1

2 , yk+1
3 ) 

then u is not a graded identity of L as follows from (4), (6) and (7) and it generates an 
irreducible Sm×Sr-submodule M in Pm+1,r+6 with the character χλ,μ where λ = (t, t, t), 
μ = (3k, k, k, k). Hence by (6), (8)

dimM = degχλ degχμ ≥ 1
(m + r)32 3m(2

√
3 )r

and then by (1)

cm+1,r+6(L) = dimPm+1,r+6(L) ≥ dimM ≥ 3m(2
√

3)r

(m + r)32 . (9)

The inequality (9) means that we have proved the following lemma.

Lemma 2. Let t, r ≥ 1 be arbitrary integers and m = 3t, r = 6k. Then

cm+1,r+6(L) ≥ 3m(2
√

3 )r

(m + r)32 . �
Now we will find a lower bound for nth graded codimension of L for the special case 

of n.

Lemma 3. Let n − 7 be a multiple of 6. Then

cgrn (L) ≥ 1
318n38 (3 + 2

√
3 )n.

Proof. Let q = n − 7. Then applying Lemma 2 we obtain

cgrn (L) =
∑
i

(
n

i

)
ci,n−i(L) ≥

q/6∑
j=0

(
n

6j + 1

)
c1+6j,q+6−6j(L)

≥ 1
q32

q/6∑
j=0

(
n

6j + 1

)
36j(2

√
3 )q−6j ≥ A

n33

where

A =
q/6∑(

n

6j

)
36j(2

√
3 )q−6j
j=0
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since
(
n

i

)
≤ n

(
n

i + 1

)
.

Now, since given 0 ≤ j < q
6 , we have

(
q

6j + i

)
36j+i(2

√
3 )q−6j−i < (3q)5

(
q

6j

)
36j(2

√
3 )q−6j

for all 1 ≤ i ≤ 5. It follows that

A >
6

(3n)5
q∑

i=0

(
q

i

)
3i(2

√
3 )q−i = 6

(3n)5 (3 + 2
√

3 )q >
2

318n5 (3 + 2
√

3 )n.

Hence

cgrn (L) > (3 + 2
√

3 )n

318n38 . �
Now we consider the case when n − 7 is not a multiple of 6, that is n − 7 ≡ i (mod 6)

with 1 ≤ i ≤ 5.

Lemma 4. Let t, r, i ≥ 1 be arbitrary integers, m = 3t, r = 6k and i ≤ 5. Then

cm+1+i,r+6(L) ≥ 3m(2
√

3 )r

(m + r)32 .

Proof. The proof is similar to the proof of Lemma 2. We only need to change the poly-
nomial u = w(g′, y1

1 , . . . , z
k+1
3 ) to u′ = ux1 · · ·xi and consider an evaluation ϕ with the 

same values on x0, xi
j , y

i
j , z

i
j as in Lemma 2 and ϕ(x1) = e, ϕ(x2) = . . . = ϕ(xi) = h if 

i ≥ 2. Then ϕ(u′) = ±2iϕ(u) 
= 0 and we are done. �
Slightly modifying arguments of Lemma 3 and using Lemma 4, we get the following 

result for arbitrary 1 ≤ i ≤ 5.

Lemma 5. Let n − 7 ≡ i (mod 6), 1 ≤ i ≤ 5. Then

cgrn (L) ≥ 1
318n43 (3 + 2

√
3 )n. �

Now we are ready to prove the main result of the paper.

Theorem 1. Graded PI-exponent of Lie superalgebra L = b(2) exists and is equal to

expgr(L) = 3 + 2
√

3.
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Proof. By Lemmas 3 and 5

expgr(L) = lim inf
n→∞

n

√
cgrn (L) ≥ 3 + 2

√
3.

On the other hand, expgr(b(t)) ≤ t2 − 1 + t
√
t2 − 1 for all t ≥ 2 as proved in [10]. Hence 

the limit

expgr(b(2)
)

= lim
n→∞

n

√
cgrn

(
b(2)

)

exists and

expgr(L) = 3 + 2
√

3. �
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