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1. INTRODUCTION

This paper studies identities of nonassociative algebras over a field F of characteristic zero. All
necessary information about identities in algebras can be found in the books [1]–[3].

Each algebra A can be associated with an integer sequence {cn(A)}, n = 1, 2, . . . , called the
sequence of codimensions (all necessary definitions are given below). If this sequence grows ex-
ponentially, as, e.g., in the finite-dimensional case, there arises the question of the existence of the
limit limn→∞ n

√
cn(A) . It has been proved that such a limit exists and is integer for all associative

PI-algebras [4], [5], for finite-dimensional Lie algebras [6], [7], for finite-dimensional Jordan and
alternative algebras [8], [9], and for a whole series of other algebras. In the infinite-dimensional case,
this limit, called the PI-exponent, may take both fractional and integer values even in the class of Lie
algebras (see [10]–[12]); in the class of Lie superalgebras, finite-dimensional algebras with fractional
exponent have recently been found [13].

In the general case, the PI-exponent of a finite-dimensional algebra does not exceed the dimension
of this algebra and can be arbitrarily close to 1 [14], [15]. However, for two-dimensional algebras, the
PI-exponent either takes one of the values 2 and 1 (in this case, cn(A) ≤ n+ 1) or vanishes (in this case,
cn(A) = 0 for all sufficiently large n) [16]. For three-dimensional algebras, the question of whether the
exponent is integer remains open; however, it is known that either cn(A) ≥ 2n asymptotically, or this
sequence is polynomially bounded. However, for a unitary three-dimensional algebra, the PI-exponent
always exists and is integer [17]. Until recently, the least known dimension of an algebra with fractional
exponent was 5 [18], and that of a Lie superalgebra was 7 [13]. In the abstract [19], the existence of a
four-dimensional commutative algebra with fractional exponent was announced.

The question of the existence and the value of the PI-exponent of a simple finite-dimensional algebra
over an algebraically closed field occupies a special place. In most of the studied classes of algebras
(associative [20], Lie [6], Jordan, alternative, and some other classes [8], [9]), the PI-exponent of an
algebra is equal to the dimension of this algebra. The first examples of simple algebras for which the
PI-exponent is strictly less than dimension were given in [13]. The least dimension of an algebra among
those presented in [13] is 17. But the question of whether their PI-exponents are integer remains open.

In this paper, we construct an example of a four-dimensional simple unitary algebra with fractional
PI-exponent (Theorem 1).
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488 ZAITSEV, REPOVŠ

2. BASIC NOTIONS AND DEFINITIONS

Throughout the paper, F denotes a field of characteristic zero, and all algebras are considered over F .
We follow the convention of omitting parentheses from left-normed products, i.e., write abc instead of
(ab)c.

By F{X} we denote a free nonassociative algebra overF with a countable setX of generators. Recall
that, given an algebra A over F , a nonassociative polynomial f = f(x1, . . . , xn) from F{X} is called an
identity of A if

f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A.
All identities of A form an ideal in F{X}, which we denote by Id(A).

Let Pn = Pn(x1, . . . , xn) denote the subspace of F{X} consisting of all multilinear polynomials in
x1, . . . , xn. Then Pn ∩ Id(A) is the subspace of all multilinear identities of the algebra A in n variables.

Recall that the nth codimension of identities of an algebraA (or simply the nth codimension ofA)
is defined as

cn(A) = dim
Pn

Pn ∩ Id(A)
.

In a variety of cases, the sequence {cn(A)} grows no faster than the exponential of n, i.e.,

cn(A) < an

for some a > 1. In these cases, the sequence of codimensions satisfies the conditions

0 ≤ n
√
cn(A) ≤ a,

which suggests the following definition.

Definition. The lower PI-exponent of an algebra A is the lower limit

exp(A) = lim
n→∞

n
√
cn(A) .

The upper limit

exp(A) = lim
n→∞

n
√
cn(A)

is called the upper PI-exponent of A. If exp(A) and exp(A) are equal, i.e., the sequence {n
√
cn(A)} has

an ordinary limit, then this limit is called the PI-exponent of the algebraA and denoted by exp(A); thus,

exp(A) = exp(A) = exp(A).

On the space Pn, the symmetric group Sn naturally acts as

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n));

when endowed with this action, Pn becomes a module over the group ring FSn, or, briefly, an Sn-
module. The intersection Pn ∩ Id(A) is an Sn-submodule in Pn. We recall that the degree of the
character χ(M) of an Sn-module M is the dimension of M , i.e., degχ(M) = dimM . Moreover, the
irreducible characters of such a module, that is, the characters of its irreducible representations, are
uniquely determined by partitions λ � n of the number n, where

λ = (λ1, . . . , λk), λ1 ≥ · · · ≥ λk > 0, λ1 + · · · + λk = n

(all necessary information on the representation theory of symmetric groups can be found in [21] and on
its application in the theory of identities, in [1], [2]).

Any Sn-moduleM decomposes into a sum of irreducible modules; in terms of characters, this can be
written as

χ(M) =
∑

λ�n

mλχλ,
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A FOUR-DIMENSIONAL SIMPLE ALGEBRA WITH FRACTIONAL PI-EXPONENT 489

where χλ is the character of the irreducible module corresponding to λ and mλ is its multiplicity in the
decomposition of M . This implies

degχ(M) =
∑

λ�n

mλ degχλ.

In particular, for the Sn-module Pn/Pn ∩ Id(A), we obtain

χn(A) = χ

(
Pn

Pn ∩ Id(A)

)
=

∑

λ�n

mλχλ, (1)

cn(A) =
∑

λ�n

mλ degχλ. (2)

Decomposition (1) is called the nth cocharacter of A, and relation (2) makes it possible to esti-
mate cn(A). We say that the character χ(M) =

∑
λ�nmλχλ of the moduleM lies in a strip of width d

if all partitions λwith nonzero multiplicitiesmλ include at most d parts, i.e., λ = (λ1, . . . , λk) and k ≤ d.
It is known that, for such partitions, we have degχλ ≤ dn.

It is also known (see, e.g., [2, Theorem 4.6.2] and [15]) that, if A is a finite-dimensional F-algebra
with dimA = d, then its cocharacter χn(A) lies in a strip of width d and, moreover, the sum

ln(A) =
∑

λ�n

mλ

(see (1)), which is called the nth colength, in bounded by a polynomial function in n. To be more precise,
according to Theorem 1 from [15], we have

ln(A) ≤ d(n+ 1)d
2+d. (3)

This means, in particular, that, in the case of exponentially growing codimensions, a key role is played
by the maximal dimensions degχλ. They can be conveniently estimated by using the functions Φ(λ)
defined below, which depend on partitions λ � n. Let

λ = (λ1, . . . , λk) � n, where k ≤ d, λ1 + · · · + λk = n.

We set

Φ(λ) =
1

(λ1/n)λ1/n . . . (λd/n)λd/n
.

(If k is strictly less than d, then the corresponding multipliers 00 are equal to 1).

In [13], the following relationship between a value of the function Φ(λ) and the degree degχ(λ) of the
corresponding character was mentioned (see Lemma 1). Given λ = (λ1, . . . , λk) � n, where n ≥ 100
and k ≤ d, we have

Φ(λ)n

nd2+d
≤ degχλ ≤ nΦ(λ)n. (4)

Now, let A be any finite-dimensional algebra over F . Consider its nth cocharacter (1) and

let Φ(n)
max denote the maximal value of Φ(λ) over all those λ � n for which mλ �= 0 in (1). Combining

relations (2), (3), and (4), we obtain the following assertion.

Lemma 1. If dimA = d, then

1
nd2+d

(Φ(n)
max)

n ≤ cn(A) ≤ (n+ 1)d
2+d+1(Φ(n)

max)
n

for all n ≥ 100d.
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490 ZAITSEV, REPOVŠ

We also need the following property of the function Φ(λ). If λ = (λ1, . . . , λq) and μ = (μ1, . . . , μq)
are two partitions of the same integer n, then the Young diagramDλ corresponding to the partition λ is
the table whose first row contains λ1 boxes, second row contains λ2 boxes, and so on. In a similar way,
the diagram Dμ corresponding to the partition μ � n is constructed. We say Dμ is obtained from Dλ

by pushing down one box if there exist i and j, 1 ≤ i < j ≤ q, such that μi = λi − 1, μj = λj + 1, and
μp = λp for all other 1 ≤ p ≤ q. Given λ = (λ1, . . . , λq) � n and μ = (μ1, . . . , μq, 1) � n, we say thatDμ

is obtained from Dλ by pushing down one box if one of the rows in Dμ is shorter by one box than the
corresponding row in Dλ and all of the remaining rows (except the last one) are of the same length.

Lemma 2. If Dμ is obtained from Dλ by pushing down one box, then Φ(μ) ≥ Φ(λ).

Proof. Suppose that λ = (λ1, . . . , λq) and μ = (μ1, . . . , μq′) are two partitions of n and q′ = q or q + 1.
Then

Φ(λ)n =
nn

λλ1
1 · · ·λλq

q

. (5)

If q = q′, then the denominator in the analogous expression for Φ(μ)n is obtained from the denominator
in (5) by replacing one product of the form aabb, a ≥ b+ 2, by (a− 1)a−1(b+ 1)b+1. In this case, we
have Φ(μ)n ≥ Φ(λ)n, because the function f(x) = xx(c− x)c−x decreases in the interval (c/2; 0). If
q′ = q + 1, then we replace the factor aa in the denominator in (5) by (a− 1)a−1 · 11 < aa and again
obtain Φ(μ)n > Φ(λ)n. This inequality, together with Φ(λ),Φ(μ) > 0, implies the assertion of the
lemma.

3. A FOUR-DIMENSIONAL ALGEBRA AND ITS COCHARACTER

Consider a four-dimensional vector space W with basis {e−1, e0, e1, e2}. Let us define multiplication
on this space as follows:

(a) eie0 = e0ei = ei for all −1 ≤ i ≤ 2;

(b) eiej = 0 if i, j �= 0 and either one of the inequalities i > j and i+ j < −1 or the inequality
i+ j > 2 holds;

(c) eiej = ei+j otherwise.

It is easy to see that W is a simple algebra with unit e0 and that the decomposition

W = W−1 ⊕W0 ⊕W1 ⊕W2,

where Wi = 〈ei〉 for i = −1, . . . , 2, is a Z-grading on W .
Consider the cocharacter

χn(W ) =
∑

λ�n

mλχλ (6)

of the algebra W . Since dimW = 4, this cocharacter lies in a strip of width 4, i.e., λ5 = 0 for any
partition λ � n, provided that mλ �= 0 in (6).

Recall that a Young tableau Tλ is a diagram Dλ whose boxes are filled in with the numbers 1, . . . , n.
Any irreducible module over the group algebra R = FSn is isomorphic to the minimal left ideal ReTλ

,
where eTλ

is the element R defined as follows.
We refer to the subgroup of all permutations in Sn which leave the symbols 1, . . . , n in their rows as

the row stabilizer and denote this subgroup by RTλ
; to the subgroup which leaves these symbols in

their columns we refer as the column stabilizer and denote it by CTλ
. We set

R(Tλ) =
∑

σ∈RTλ

σ, C(Tλ) =
∑

τ∈CTλ

(sgn τ)τ, eTλ
= R(Tλ)C(Tλ).
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A FOUR-DIMENSIONAL SIMPLE ALGEBRA WITH FRACTIONAL PI-EXPONENT 491

The element eTλ
is a quasi-idempotent of the group ring FSn, i.e., e2Tλ

= αeTλ
, α �= 0, and FSneTλ

is an
irreducible Sn-module with character χλ. Moreover, if M is an FSn-module and

χ(M) =
∑

λ�n

mλχλ,

then mλ �= 0 if and only if eTλ
M �= 0.

Now, let f be a multilinear polynomial of degree n generating an irreducible FSn-submodule M
in Pn with character χλ. We can assume that eTλ

f �= 0 for some Young tableau Tλ. Then the polynomial
g = C(Tλ)f generates M as an R-module as well. The variables of g are divided into m disjoint subsets
as

{x1, . . . , xn} = X1 ∪ · · · ∪Xm,

where m is the number of columns in the Young diagram Dλ and each Xj is the set of variables whose
numbers are written in the jth column. Moreover, g is alternating with respect to each of the sets
X1, . . . ,Xm. In other words, any irreducible FSn-submodule of Pn with character χλ is generated
by a multilinear polynomial depending on m disjoint skew-symmetric sets of variables of cardinalities
λ′1, . . . , λ

′
m, where λ′ = (λ′1, . . . , λ

′
m) is the partition conjugate to λ (i.e., λ′1, . . . , λ

′
m are the heights of

the columns of Dλ).
To obtain stronger (than λ5 = 0) constraints on the cocharacter of W , we introduce yet another

numerical characteristic of partitions. Let λ = (λ1, . . . , λk) � n. We write −1 in all boxes of the first
row, 0 in all boxes of the second, etc., so that all boxes of the kth row are filled in with k − 2. We define
the weight of the diagram Dλ as the sum of all numbers in Dλ. We also refer to this number as the
weight of the partition λ and denote it by wt(λ). In other words,

wt(λ) =
k∑

i=1

(i− 2)λi.

Lemma 3. If mλ �= 0 in the decomposition (6), then

• λ5 = 0;

• wt(λ) ≤ 2, i.e., λ1 − λ3 − 2λ4 ≥ −2.

Proof. We have already proved the equality λ5 = 0. Let us prove the second assertion. Suppose that
mλ �= 0, i.e., there exists an irreducible FSn-submodule in Pn with character χλ which is not contained
in the ideal of identities ofW . As mentioned above, this means that there exists a multilinear polynomial
g = g(x1, . . . , xn) which is alternating with respect to the variables from each of the columns Tλ and
does not vanish identically on W . Hence there exists a permutation ϕ : X → {e−1, e0, e1, e2} for which
ϕ(g) �= 0. By virtue of the antisymmetry of g, instead of variables from one column, we must substitute
different basis elements of the algebraW . In particular, if xi1 , . . . , xi4 are variables from the same column
of height 4, then the total weight of the elements ϕ(xi1), . . . , ϕ(xi4) in the Z-grading of W is equal to
−1 + 0 + 1 + 2 = 2. Therefore, the least possible weight of ϕ(g) in the Z-grading is

wt(λ) = −λ1 + λ3 + 2λ4.

Since all components of the algebra Wk with k ≥ 3 are zero, it follows that −λ1 + λ3 + 2λ4 ≤ 2, which
proves the lemma.

In what follows, we need a sufficient condition for the multiplicity mλ to not vanish. Consider a
partition λ = (λ1, λ2, λ3, λ4). Let us rewrite it in the form

λ = (k + l +m+ t, k + l +m,k + l, k).

The diagram of this partition has the form
k l m t
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492 ZAITSEV, REPOVŠ

Here n = 4k + 3l + 2m+ t, the weight of the partition λ is equal to −m− t+ 2k, and the necessary
condition for mλ to be nonzero will be

m+ t ≥ 2k − 2.

Lemma 4. If m+ t ≥ 2k and m ≤ 2k, then mλ �= 0 in the decomposition (6).

Proof. To prove the lemma, it suffices to construct a multilinear polynomial f of degree n depending on

• k alternating sets of variables {x(i)
1 , . . . , x

(i)
4 }, 1 ≤ i ≤ k;

• l alternating sets {y(i)
1 , y

(i)
2 , y

(i)
3 }, 1 ≤ i ≤ l;

• m alternating sets {z(i)
1 , z

(i)
2 }, 1 ≤ i ≤ m;

• t variables u(i)
1 , 1 ≤ i ≤ t,

and such that the symmetrization of this polynomial with respect to the sets

{xi1
1 , y

i2
1 , z

i3
1 , u

i4
1 }, {xi1

2 , y
i2
2 , z

i3
2 }, {xi1

3 , y
i2
3 }, {xi4

1 },
where 1 ≤ i1 ≤ k, 1 ≤ i2 ≤ l, 1 ≤ i3 ≤ m, and 1 ≤ i4 ≤ t, yields a polynomial not vanishing identically
on W .

It is convenient to label variables in alternating sets by the same mark over the symbols of these
variables. For example,

x̄1x̄2x̄3 =
∑

σ∈S3

(sgnσ)xσ(1)xσ(2)xσ(3),

ā1b̃1ā2b̃2 = a1b1a2b2 − a1b2a2b1 − a2b1a1b2 + a2b2a1b1,

(x̄¯̄x)(ȳ ¯̄y) = (xx)(yy) − (yx)(xy) − (xy)(yx) + (yy)(xx).

We use this convention not only for variables but also for elements of the algebra W . For instance,

ē−1(ē1ē2) = e−1(ē1ē2) − e1(ē−1ē2) − e2(ē1ē−1) = 0 − e1(e−1e2) + e2(e−1e1)

= −e21 + e2e0 = −e2 + e2 = 0.

First, we construct an expression alternating with respect to e−1, e0, e1, and e2 and contains two
occurences of the basis element e−1. We set

f1 = e−1[ē−1((ē0e−1)(ē1ē2))].

This element is the polynomial

x−1[x̄−1((x̄0x−1)(x̄1x̄2))]

in the variables x−1, x0, x1, and x2, which is equal to

f1 = e−1[ē−1((e0e−1)(ē1ē2))] = e−1[ē−1(e−1(ē1ē2))]
= e−1[e−1(e−1(ē1ē2)) − e1(e−1(ē−1ē2)) − e2(e−1(ē1ē−1))]
= e−1[0 − e1(e−1(e−1e2)) + e2(e−1(e−1e1))]
= e−1[−e1(e−1e1) + e2(e−1e0)]
= e−1[−e1e0 + e2e−1 = e−1[−e1 + 0] = −e0.

Let

g(x−1, x0, x1, x2, y, z) = y[x̄−1((x̄0z)(x̄1x̄2))].

Then the left-normed degree fk
1 is the value of a symmetrization of the polynomial

g(x(1)
−1, x

(1)
0 , x

(1)
1 , x

(1)
2 , y

(1)
1 , z

(1)
1 ) · · · g(x(k)

−1 , x
(k)
0 , x

(k)
1 , x

(k)
2 , y

(k)
1 , z

(k)
1 ),
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A FOUR-DIMENSIONAL SIMPLE ALGEBRA WITH FRACTIONAL PI-EXPONENT 493

which is alternating with respect to {x(i)
−1, x

(i)
0 , x

(i)
1 , x

(i)
2 , }, i = 1, . . . , k. The symmetrization is over the

four sets

{x(1)
−1, . . . , x

(k)
−1 , y

(1)
1 , z

(1)
1 , . . . , y

(k)
1 , z

(k)
1 }, {x(1)

0 , . . . , x
(k)
0 },

{x(1)
1 , . . . , x

(k)
1 }, {x(1)

2 , . . . , x
(k)
2 }.

Similarly, the 3-alternated polynomial takes the value

f2 = ē−1ē0ē1 = (ē−1ē0)e1 + (ē0ē1)e−1 + (ē1ē−1)e0 = 0 + 0 − e−1e1e0 = −e0.
We also set

f3 = e−1[ē−1((ē0ẽ−1)(ē1ē2))]ẽ0.

This expression contains the alternating set e−1, e0, e1, e2 labeled by an overbar and the alternating
set e−1, e0 labeled by a tilde. Since W+e−1 = 0, where W+ = W1 ⊕W2, it follows that

f3 = f1e0 = f1 = −e0.
Finally, let

f4 = ¯̄e−1[[ē−1((ē0ẽ−1)(ē1ē2))]ẽ0 ¯̄e0].

Here we have one alternating set {e−1, e0, e1, e2} and two alternating sets {e−1, e0}. Let

a = [ē−1((ē0ẽ−1)(ē1ē2))]ẽ0.

Then the degree of a in the Z-grading is 1; therefore, it follows from the condition W+e−1 = 0 and the
calculations performed above for f1 that a = −e1 and

f4 = e−1(ae0) − e0(ae−1) = e−1a = −e0.
First, consider the special case where m = 2k, t = 0. We set

f = f(e−1, . . . , e−1︸ ︷︷ ︸
α

, e0, . . . , e0︸ ︷︷ ︸
β

, e1, . . . , e1︸ ︷︷ ︸
γ

, e2, . . . , e2︸ ︷︷ ︸
δ

) = (f l
2)(f4)k. (7)

In the expression for f , the element e−1 occurs in k alternating sets of order 4, in 2k = m alternating sets
of order 2, and in l alternating sets of order 3. There are no occurrences of e−1 of nonalterable type in f .
The total degree α of f in e−1 is equal to k + l +m. The element e0 occurs k times in 4-alternated sets,
m = 2k times in 2-alternated sets, and l times in 3-alternated sets; thus, the total number of occurrences
of e0 is k + l +m. Finally, e1 occurs in k alternating sets of order 4 and in l alternating sets of order 3,
and e2 occurs in k alternating sets of order 4. This means that f is a value of the polynomial generating
the irreducible module corresponding to the partition

λ = (k + l +m+ t, k + l +m,k + l, k), where m = 2k, t = 0.

Therefore, mλ �= 0 for this partition, because f = (−e0)k+l = ±e0.
Consider the more general case in which m = 2k and t > 0. We set n0 = n− t and construct the

polynomial f specified in (7) for the partition

λ0 = (k + l +m,k + l +m,k + l, k) � n0.

We have

g = f(e−1 + e0, . . . , e−1 + e0︸ ︷︷ ︸
α

, e0, . . . , e2) (e−1 + e0) · · · (e−1 + e0)︸ ︷︷ ︸
t

= f(e−1 + e0, . . . , e−1 + e0, e0, . . . , e2) + f ′,

where f ′ = tf(e−1, . . . , e−1, e0, . . . , e2)e−1 ∈W−1, because (W−1 ⊕W1 ⊕W2)e−1 = 0. Moreover,

f(e−1 + e0, . . . , e−1 + e0, e0, . . . , e2) = f(e−1, . . . , e−1, e0, . . . , e2) + f ′′,

where f ′′ ∈W1 ⊕W2. It follows that g = ±e0 + f ′ + f ′′ �= 0, and g is a value of the polynomial
generating the irreducible FSn-module with character χλ. Therefore, mλ �= 0 in (6).
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494 ZAITSEV, REPOVŠ

Now, suppose that m = 2q < 2k and t �= 0. Consider the product

(f1)k−q(f2)l(f4)q = f0 = f0(e−1, . . . , e−1︸ ︷︷ ︸
α

, e0, . . . , e0︸ ︷︷ ︸
β

, e1, . . . , e1︸ ︷︷ ︸
γ

, e2, . . . , e2︸ ︷︷ ︸
δ

).

As above, we have δ = k, e2 occurs in the alternating sets of order 4, γ = k + l, β = k + l +m, and e1
and e0 occur in alternating sets; moreover, e1 occurs k times in sets of order 4 and l times in sets of
order 3. The numbers of occurrences of e0 in sets of orders 4, 3, and 2 are k, l, and m, respectively.
The element e−1 occurs in alternating sets of orders 4, 3, and 2 as well, and the numbers of occurrences
are k − q + q = k, l, and 2q = m, respectively. In addition, this element e−1 also occurs 2(k − q) times
outside alternating sets at the expense of the factor fk−q

1 . In particular,

α = k + l +m+ t0,

where t0 = 2(k − q), i.e., m+ t0 = 2k.
Consider the expressions

f ′0 = f0(e−1 + e0, . . . , e−1 + e0︸ ︷︷ ︸
α

, e0, . . . , e0︸ ︷︷ ︸
β=k+l+m

, e1, . . . , e1︸ ︷︷ ︸
γ=k+l

, e2, . . . , e2︸ ︷︷ ︸
δ=k

),

and

f = f ′0 (e−1 + e0) . . . (e−1 + e0)︸ ︷︷ ︸
t−t0

.

As in the preceding case, we have

f = f0 + f ′ + f ′′,

where f0 = ±e0, f ′ ∈W−1, and f ′′ ∈W+, i.e., f �= 0. The element f is a nonzero value of the polynomial
corresponding to the partition

λ = (k + l +m+ t, k + l +m,k + l, k) with m = 2q < 2k.

Therefore, for such partitions λ, the multiplicity in (6) does not vanish either.
Finally, for odd m = 2q + 1 < 2k, we take the product

f0 = fk−q−1
1 f l

2f3f
q
4 ,

replace e−1 by e−1 + e0 in this product, and set

f = f0(e−1 + e0, . . . , e−1 + e0, e0, . . . , e0, . . . , e2, . . . e2) (e−1 + e0) . . . (e−1 + e0)︸ ︷︷ ︸
t−t0

,

where t0 = 2(k − q) − 1. In the expression for f0, the element e′−1 = e−1 + e0 occurs in k four-element
alternating sets, l three-element sets, and m = 2q + 1 two-element sets; outside the alternated sets,
this element occurs t times. For e0, e1, and e2, the same conditions as in the preceding case hold.
Since f0 = ±e0 and f = f0 + f ′, where f ′ ∈W−1 ⊕W1 ⊕W2, it follows that f �= 0. In other words, the
multiplicity mλ is also nonzero for λ = (k + l +m+ t, k + l +m,k + l, k) with odd m < 2k, provided
that m+ t ≥ 2k. This proves the lemma for k �= 0.

If k = 0, then m = 0, and the partition λ has the form λ = (l + t, l, l). For this partition, the
multilinear polynomial is constructed in a similar way. First, we take the polynomial

f = f l
2 = f(e−1, . . . , e−1, e0, . . . , e0, e1, . . . , e1)

of degree l in each of the basis elements e−1, e0, e1. Then, we set

f ′ = f(e−1 + e0, . . . , e−1 + e0, e0, . . . , e1) (e−1 + e0) . . . (e−1 + e0)︸ ︷︷ ︸
t

.

As previously, f ′ is not an identity in W and generates an Sn-module with character χλ.
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4. ESTIMATES OF THE PI-EXPONENT

The simplicity of the algebra W implies the existence of its PI-exponent (see [13, Theorem 3]). To
estimate the PI-exponent and, in particular, prove that it is noninteger, we introduce the following
quantity.

Let λ = (λ1, . . . , λ4) � n, and let mλ be the multiplicity of λ in the cocharacter (6). We set

an = max{Φ(λ) | mλ �= 0}.
By virtue of Lemma 1, we have

exp(A) = lim
n→∞an, exp(A) = lim

n→∞
an (8)

for any four-dimensional algebra.
Consider the sequence {an} for the algebra W . According to (8) and [13, Theorem 3], the

sequence {an} has a limit as n→ ∞. We need one more property of this sequence.

Lemma 5. Let an = Φ(λ(0)). Then the partition λ(0) can be chosen so that wt(λ(0)) ≥ 0 for
sufficiently large n.

Proof. Let λ(0) be one of the points of maximum of the function Φ(λ) which determine an. It can be
assumed that, for all such λ � n with Φ(λ) = an, this partition is of maximum weight. As above, we
write λ(0) in the form

λ(0) = (k + l +m+ t, k + l +m,k + l, k).

Suppose that wt(λ(0)) = −m− t+ 2k < 0, i.e., m+ t > 2k.

First, note that k �= 0 for λ(0). Indeed, it is easy to see that Φ(λ(0)) ≤ 3 for k = 0. At the same time,
for the partition λ = (3p, p, p, p), we have

Φ(λ) =
((

1
2

)1/2(1
6

)3/6)−1

=
√

12 > 3.4.

Since the sequence {an} converges and, for any n, there exists a p with |n− 6p| ≤ 5, it follows that
an > 3 for all sufficiently large n, and k �= 0.

Now, note that, transferring one box in the diagram Dλ from the second row to the third, we
obtain Dμ, where

μ = (k′ + l′ +m′ + t′, k′ + l′ +m′, k′ + l′, k′) with k′ = k, t′ = t+ 1, m′ = m− 2.

Therefore, either m′ − 2k′ > 0 (in which case m′ + t′ − 2k′ > 0), m′ − 2k′ = 0, or −1. In the last
two cases, we have m′ + t′ − 2k′ ≥ 0. Thus, for m ≥ 2, pushing down one or several boxes, we
obtain a partition μ of higher weight for which Φ(μ) ≥ Φ(λ(0)) by Lemma 2. Moreover, μ satisfies the
assumptions of Lemma 4 and, therefore, mμ �= 0 in (6). The maximality of the weight of λ(0) implies
m ≤ 1.

Thus, t ≥ 2k ≥ 2, and, moving one box of Dλ(0) from the first row to the second, we obtain a
diagramDμ for which Φ(μ) ≥ Φ(λ(0)) and wt(μ) > wt(λ(0)). Moreover, μ again satisfies the conditions
of Lemma 4, and mμ �= 0. It follows that m+ t− 2k ≤ 0 for λ(0), which completes the proof of the
lemma.

We have already mentioned that if a diagram Dμ is obtained from a diagramDλ by pushing down one
box, then Φ(μ) ≥ Φ(λ). Now we estimate this deviation.

Lemma 6. Let λ = (λ1, . . . , λq) and μ = (μ1, . . . , μq′) be two partitions of n with q′ = q or q + 1.
Suppose that Dμ is obtained from Dλ by pushing down one box. Then

Φ(λ) ≥ 1
n(q2+3q+4)/n

Φ(μ).
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Proof. The procedure of pushing down a box can be performed in two steps. First, we cut out a box
from Dλ and obtain Dλ′ , where λ′ � n− 1; then, attaching one box to Dλ′ , we obtain Dμ. According to
Lemma 6.2.4 in [2], we have

degχλ′ ≤ degχλ ≤ n degχλ′ , degχλ′ ≤ degχμ ≤ n degχλ′ ,

which readily implies

degχλ ≥ 1
n

degχμ. (9)

Using (9) and (4), we obtain

Φ(λ)n ≥ 1
n

degχλ ≥ 1
n2

degχμ ≥ 1
n(q+1)2+q+1+2

Φ(μ)n,

which proves the lemma.

Below we prove yet another relation between the values of the function Φ at various partitions.

Lemma 7. Suppose that the Young diagram of a partition

λ = (λ1, . . . , λd) � (n− 1)

is obtained from a diagram Dμ by deleting one box. Then

Φ(λ) ≤ n(d2+d+2)/nΦ(μ)

for n ≥ d.

Proof. By virtue of (4), we have

Φ(λ)n−1 ≤ (n− 1)d
2+d degχλ ≤ nd2+d degχλ, degχμ ≤ nΦ(μ)n.

On the other hand, degχλ ≤ degχμ according to [2, Lemma 6.2.4]. Since the maximum value of Φ(λ)
is d, it follows that

Φ(λ) ≤ n(d2+d+2)/nΦ(μ).

Let us define one more sequence related to W . For n ≥ 6, we set

bn = max{Φ(λ) | λ = (λ1, . . . , λ4) � n, mλ �= 0, λ1 − λ3 = 2λ4}
if n has a partition λwith λ1 −λ3 = 2λ4 for whichmλ �= 0 in (6). Otherwise, we set bn = min{bn−1, an}.
Note that, according to Lemma 4, if n = 6k, then the partition λ = (3k, k, k, k) satisfies the required
conditions.

Lemma 8. The following relations hold:

lim
n→∞ bn = lim

n→∞an = exp(W ).

Proof. According to [13, Theorem 3], the PI-exponent of any finite-dimensional simple algebra exists;
therefore, the limit limn→∞ an = exp(W ) exists as well, as follows from (8). Thus, to prove the lemma,
it suffices to find a function ψ = ψ(n) such that limn→∞ ψ(n) = 1 and

ψ(n)an ≤ bn ≤ an (10)

for all sufficiently large n.
Fix n and take a partition λ � n for which Φ(λ) = an. By Lemma 5, we can choose λ so that

wt(λ) ≥ 0; by Lemma 3, wt(λ) is then equal to 0, 1, or 2.
If wt(λ) = 0, then bn = an. Suppose that wt(λ) = 1. Let us write λ as

λ = (k + l +m+ t, k + l +m,k + l, k).
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Then m+ t = 2k − 1. If m �= 0, then we can transfer one box from the second to the first row in
the diagram Dλ and obtain a diagram Dμ for μ = (k + l +m′ + t′, k + l +m′, k + l, k), m′ = m− 1,
t′ = t+ 2, with wt(μ) = 0. Then, by Lemma 4, the multiplicity of μ in χn(W ) is nonzero. As mentioned
in the proof of Lemma 5, the partition λ has a nonzero component k. Therefore, by virtue of Lemma 6,
we have

bn ≥ Φ(μ) ≥ Φ(λ)
n32/n

=
an

n32/n
. (11)

If m = 0 but l > 0 and t > 0, then a partition μ with weight zero can be obtained by moving one box
ofDλ from the third to the second row, and we again obtain inequality (11) for bn. The case wherem = 0,
l > 0, and t = 0 is impossible, because m+ t = 2k − 1.

The only partition λ with wt(λ) = 1 for which the transfers specified above cannot be done is
(3k − 1, k, k, k). But Lemma 7 implies that, for this λ, we have

Φ(λ) ≤ n22/nΦ(μ), (12)

where μ = (3k, k, k, k). Since Φ(μ) =
√

12 < 3.48, we obtain

Φ(λ) < n22/n · 3.48.
Note that any partition of the form ρ = (3q, 3q, q, q) satisfies the assumptions of Lemma 4, and

Φ(ρ) =
8

4
√

27
> 3.5;

hence Φ(λ) cannot satisfy inequality (12) for sufficiently large n, i.e., λ �= (3k − 1, k, k, k), and if
wt(λ) = 1, then inequality (11) holds.

Now, suppose that wt(λ) = 2. Then we twice move a box one row upward in the diagram Dλ.
This cannot be done only if either λ = (3k − 2, k, k, k), λ = (q, q, q, 1), or the first transfer of one box
upward results in the partition μ = (3k − 1, k, k, k). The first and the third possibility are excluded for
the same reason as in the case of wt(λ) = 1, namely, because such partitions cannot maximize Φ(λ);
the second possibility cannot occur because if λ = (q, q, q, 1) � n, μ = (q, q, q) � (n− 1), and Φ(μ) = 3,
then degχλ ≤ n degχμ.

In the remaining cases, twice applying Lemma 6, we obtain

bn ≥ an

n64/n
. (13)

Relations (11) and (13) imply the required condition (10), which proves the lemma.

To state and prove the main results of this paper, we extend the domain of the function Φ. For any
0 ≤ x1, . . . , x4 ≤ 1, we set

Φ(x1, . . . , x4) =
1

xx1
1 · · · xx4

4

. (14)

Inside the domain of Φ, consider the closed subset T determined by the conditions
⎧
⎪⎨

⎪⎩

x1 ≥ x2 ≥ x3 ≥ x4,

x1 + x2 + x3 + x4 = 1,
x1 − x3 = 2x4.

(15)

Theorem 1. The PI-exponent of the algebra W exists and is equal to

exp(W ) = max{Φ(x1, . . . , x4) | (x1, . . . , x4) ∈ T}. (16)

In particular, exp(W ) ≈ 3.610718614.
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Proof. The existence of the exponent has already been mentioned and follows from the simplicity ofW .
We have

exp(W ) = b = lim
n→∞ bn

by Lemma 8. It remains to show that b = M , where

M = max{Φ(x1, . . . , x4) | (x1, . . . , x4) ∈ T}.

Let Z = (z1, . . . , z4) be a point of maximum of Φ on T . Clearly, we can choose a point A =
(a1, . . . , a4) ∈ T with rational coefficients arbitrarily close to Z. Letm denote the common denominator
of the rational numbers a1, . . . , a4. Then λ1 = a1m, . . . , λ4 = a4m are nonnegative integers, and λ1 ≥
· · · ≥ λ4. In other words, λ = (λ1, . . . , λ4) is a partition of m satisfying the condition λ1 − λ3 = 2λ4.
Moreover, for any t = 1, 2, . . . , the partition tλ = (tλ1, . . . , tλ4) of nt = tm satisfies the same condition.
It follows that

bnt ≥ Φ(tλ) = Φ(λ). (17)

Since the sequence {bi} converges and Φ(λ) in (17) can be made arbitrarily close to M , it follows that
b ≥M . The reverse inequality is obvious. Thus, we have proved the relation b = M .

To fully complete the proof, we must justify the approximate estimate of exp(W ). In [11], an example
of an infinite-dimensional Lie algebra L for which

3.1 < exp(L) ≤ exp(L) < 3.9

was constructed. In the recent paper [12], it was proved that the ordinary PI-exponent of L exists, i.e.,
exp(L) = exp(L). Moreover, it turned out that

exp(L) = max{Φ(x1, . . . , x4) | (x1, . . . , x4) ∈ T},
where Φ is the function defined by (14) and the domain T is determined by (15). It was also shown in [12]
that

M = Φ(β1, . . . , β4),

where β4 is a positive root of the equation 16t3 − 24t2 + 11t− 1 = 0, β4 ≈ 0.276953179, and

β3 = 2β4 − 4β2
4 , β2 =

β2
3

β4
, β1 =

β3
3

β2
4

.

This implies

exp(W ) = exp(L) ≈ 3.610718614,

which completes the proof of the theorem.

Corollary 1. There exist finite-dimensional simple unitary algebras with fractional exponent
strictly less than their dimension.

Corollary 2. The least dimension of a unitary algebra with fractional PI-exponent is 4.

Proof. Theorem 1 implies the existence of four-dimensional unitary algebras with fractional PI-expo-
nent. The nonexistence of such algebras in dimensions 2 and 3 follows from results of [17].
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