Graded Identities of Some Simple Lie Superalgebras

Dušan Repovš · Mikhail Zaicev

Received: 7 March 2013 / Accepted: 24 September 2013 / Published online: 24 October 2013 © Springer Science+Business Media Dordrecht 2013

Abstract We study \mathbb{Z}_2 -graded identities of Lie superalgebras of the type $b(t), t \ge 2$, over a field of characteristic zero. Our main result is that the *n*-th codimension is strictly less than $(\dim b(t))^n$ asymptotically. As a consequence we obtain an upper bound for ordinary (non-graded) PI-exponent for each simple Lie superalgebra $b(t), t \ge 3$.

Keywords Polynomial identity · Lie superalgebra · Codimensions · Exponential growth · Fractional PI-exponent

Mathematics Subject Classifications (2010) Primary 17B01, 16P90; Secondary 16R10

1 Introduction

In this paper we study numerical invariants of identities of Lie superalgebras. One of the main numerical characteristics of the identities of an algebra A over a field F of characteristic zero is the sequence of codimensions $\{c_n(A)\}, n = 1, 2, ...,$ and

D. Repovš (⊠)

M. Zaicev

Presented by Susan Montgomery.

The first author was supported by the Slovenian Research Agency grants P1-0292-0101 and J1-4144-0101. The second author was partially supported by RFBR, grant 13-01-00234a. We thank the referee for comments and suggestions.

Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, P. O. B. 2964, Ljubljana 1001, Slovenia e-mail: dusan.repovs@guest.arnes.si

Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119992, Russia e-mail: zaicevmv@mail.ru

its asymptotic behaviour. Many deep and interesting results in this area were proved during the last few decades (see, for example, [1]) both in the associative and the nonassociative cases. In particular, in many classes of algebras (associative [2], Lie [3–5], Jordan, alternative and some others [6]) it was proved that if A is a finite dimensional algebra, dim A = d, and F is algebraically closed then PI-exponent exp(A) is equal to d if and only if A is simple. In general $exp(A) \leq \dim A$ as it was observed in [7, 8]. Recently (see [9]) it was shown that $exp(L) < \dim L$ provided that L is a simple Lie superalgebra of the type $b(t), t \geq 3$, (we use notations from [10] for simple Lie superalgebras). Unfortunately, an upper bound $\alpha = \alpha(t) < \dim b(t)$ was not found for exp(b(t)) in [9].

Since any Lie superalgebra L is \mathbb{Z}_2 -graded, one can consider graded codimensions $c_n^{gr}(L)$ and graded PI-exponent $exp^{gr}(L)$. Graded codimensions and graded PI-exponents of Lie superalgebras were studied earlier in several papers (see, for example, [11–13]). Existence and integrality of graded exponents were proved for some classes of Lie superalgebras. On the other hand, there are no known examples where $exp^{gr}(L)$ is fractional.

There are some relations between graded and non-graded identities, codimensions and PI-exponents. In particular,

$$c_n(A) \le c_n^{gr}(A) \tag{1}$$

(see [14] or [7]) for any finite dimensional *G*-graded algebra *A* where *G* is a finite group. Hence when *A* is finite dimensional and simple and $exp(A) = \dim A$ it follows from Eq. 1 and [7] that $exp^{gr}(A)$ exists and is equal to dim *A*.

First series of examples with $exp(A) \neq \dim A$ where A is a finite dimensional simple algebra is given by simple Lie superalgebras $b(t), t \ge 3$, of the dimension $\dim b(t) = 2t^2 - 1$ [9]. It is important to study asymptotics of $c_n^{gr}(b(t))$ and to compare it with the asymptotics of $c_n(b(t))$. The main result of this paper says that the (upper) graded PI-exponent of b(t) is less than or equal to $t^2 - 1 + t\sqrt{t^2 - 1}$. As a consequence of this result and Eq. 1 we obtain an upper bound for ordinary PI-exponent of $b(t), exp(b(t)) \le t^2 - 1 + t\sqrt{t^2 - 1}$. In particular, the difference dim b(t) - exp(b(t)) is at leasi $t^2 - t\sqrt{t^2 - 1}$ which is a decreasing function of t with limit $\frac{1}{2}$.

2 Preliminaries

Let A be an algebra over a field F of characteristic zero. Recall that A is said to be \mathbb{Z}_2 -graded algebra if A has a vector space decomposition $A = A_0 \oplus A_1$ such that $A_0A_0 + A_1A_1 \subseteq A_0$, $A_0A_1 + A_1A_0 \subseteq A_1$. Usually elements of A_0 are called even while elements of A_1 are called odd. Any element of $A_0 \cup A_1$ is called homogeneous. In particular, a Lie superalgebra L is a \mathbb{Z}_2 -graded algebra $L = L_0 \oplus L_1$ satisfying the following two relations

$$xy - (-1)^{|x||y|} yx = 0,$$

$$x(yz) = (xy)z + (-1)^{|x||y|}y(xz)$$

where x, y, z are homogeneous elements and |x| = 0 if x is even while |x| = 1 if x is odd.

Denote by $\mathcal{L}(X, Y)$ a free Lie superalgebra with infinite sets of even generators X and odd generators Y. A polynomial $f = f(x_1, \ldots, x_m, y_1, \ldots, y_n) \in \mathcal{L}(X, Y)$ is said to be a graded identity of Lie superalgebra $L = L_0 \oplus L_1$ if $f(a_1, \ldots, a_m, b_1, \ldots, b_n) = 0$ whenever $a_1, \ldots, a_m \in L_0, b_1, \ldots, b_n \in L_1$.

Given positive integers $0 \le k \le n$, denote by $P_{k,n-k}$ the subspace of all multilinear polynomials $f = f(x_1, \ldots, x_k, y_1, \ldots, y_{n-k}) \in \mathcal{L}(X, Y)$ of degree k in even variables and of degree n - k in odd variables. Denote by $Id^{gr}(L)$ an ideal of $\mathcal{L}(X, Y)$ of all graded identities of L. Then $P_{k,n-k} \cap Id^{gr}(L)$ is the subspace of all multilinear graded identities of L of total degree n depending on k even variables and n - k odd variables. Denote also by $P_{k,n-k}(L)$ the quotient

$$P_{k,n-k}(L) = \frac{P_{k,n-k}}{P_{k,n-k} \cap Id^{gr}(L)}$$

Then the graded (k, n - k)-codimension of L is

$$c_{k,n-k}(L) = \dim P_{k,n-k}(L)$$

and the total graded codimension of L is

$$c_n^{gr}(L) = \sum_{k=0}^n \binom{n}{k} c_{k,n-k}(L).$$
 (2)

If the sequence $\{c_n^{gr}(L)\}_{n\geq 1}$ is exponentially bounded then one can consider the related bounded sequence $\sqrt[n]{c_n^{gr}(L)}$. The latter sequence has the following lower and upper limits

$$\underline{exp}^{gr}(L) = \liminf_{n \to \infty} \sqrt[n]{c_n^{gr}(L)}, \qquad \overline{exp}^{gr}(L) = \limsup_{n \to \infty} \sqrt[n]{c_n^{gr}(L)}$$

called the lower and upper PI-exponents of L, respectively. If an ordinary limit exists, it is called an (ordinary) graded PI-exponent of L,

$$exp^{gr}(L) = \lim_{n \to \infty} \sqrt[n]{c_n^{gr}(L)}$$

Symmetric groups and their representations play an important role in the theory of codimensions. In particular, in the case of graded identities one can consider the $S_k \times S_{n-k}$ -action on multilinear graded polynomials. Namely, the subspace $P_{k,n-k} \subseteq \mathcal{L}(X, Y)$ has a natural structure of $S_k \times S_{n-k}$ - module where S_k acts on even variables x_1, \ldots, x_k while S_{n-k} acts on odd variables y_1, \ldots, y_{n-k} . Clearly, $P_{k,n-k} \cap Id^{gr}(L)$ is the submodule under this action and we get an induced $S_k \times S_{n-k}$ -action on $P_{k,n-k}(L)$. The character $\chi_{k,n-k}(L) = \chi(P_{k,n-k}(L))$ is called (k, n-k) cocharacter of L. By Maschke's Theorem this character can be decomposed into the sum of irreducible characters

$$\chi_{k,n-k}(L) = \sum_{\lambda \vdash k \atop \mu \vdash n-k} m_{\lambda,\mu} \chi_{\lambda,\mu}$$
(3)

where λ and μ are partitions of k and n - k, respectively (all details concerning representations of symmetric groups can be found in [15]).

Recall that an irreducible $S_k \times S_{n-k}$ -module with the character $\chi_{\lambda,\mu}$ is the tensor product of S_k -module with the character χ_{λ} and S_{n-k} -module with the character

 χ_{μ} . In particular, the dimension deg $\chi_{\lambda,\mu}$ of this module is the product $d_{\lambda}d_{\mu}$ where $d_{\lambda} = \deg \chi_{\lambda}, d_{\mu} = \deg \chi_{\mu}$. Taking into account multiplicities $m_{\lambda,\mu}$ in Eq. 3 we get the relation

$$c_{k,n-k}(L) = \sum_{\lambda \vdash k \atop \mu \vdash n-k} m_{\lambda,\mu} d_{\lambda} d_{\mu}.$$
 (4)

A number of irreducible components in the decomposition of $\chi_{k,n-k}(L)$, i.e. the sum

$$l_{k,n-k}(L) = \sum_{\lambda \vdash k \atop \mu \vdash n-k} m_{\lambda,\mu}$$

is called the (k, n - k)-colength of L. If dim $L < \infty$ then by Ado Theorem (see [10, Theorem 1.4.1]), L has a faithful finite dimensional graded representation. Hence L has an embedding $L \subset A = A_0 \oplus A_1$ as a Lie superalgebra where A is a finite dimensional associative superalgebra. Given $0 \le k \le n$, consider the graded (k, n - k)-cocharacter of A:

$$\chi_{k,n-k}(A) = \sum_{\lambda \vdash k \atop \mu \vdash n-k} \overline{m}_{\lambda,\mu} \chi_{\lambda,\mu}.$$

Then by [16],

$$\sum_{k=0}^n \sum_{\lambda \vdash k top \mu \vdash n-k} \overline{m}_{\lambda,\mu} \leq q(n)$$

for some polynomial q(n). Following the argument of the proof of [3, Lemma 3.2] we obtain that

$$m_{\lambda,\mu} \leq \overline{m}_{\lambda,\mu}.$$

Hence in the finite dimensional case the total colength is polynomially bounded, that is, for any L, dim $L < \infty$, there exists a polynomial f(n) such that

$$\sum_{k=0}^{n} l_{k,n-k}(L) \le f(n).$$

It follows that

$$c_{k,n-k}(L) \le f(n)d_{\lambda}^{\max}d_{\mu}^{\max}$$
(5)

where d_{λ}^{\max} , d_{μ}^{\max} are maximal possible dimensions of S_k - and S_{n-k} -representations, respectively, such that $m_{\lambda,\mu} \neq 0$. We will use relation (5) for finding an upper bound for $\overline{exp}^{gr}(L)$.

3 Dimensions of some *S_m*-Representations

In this section we prove some technical results which we will use later. Fix an integer $t \ge 2$ and consider an irreducible S_m -representation with the character χ_{μ} , $\mu = (\mu_1, \ldots, \mu_d)$, $d \le t^2$. For convenience we will write $\mu = (\mu_1, \ldots, \mu_{t^2})$ even in the case $d < t^2$ assuming $\mu_{d+1} = \ldots = \mu_{t^2} = 0$.

We define the following function of a partition $\mu \vdash m$

$$\Phi(\mu) = \frac{1}{\left(\frac{\mu_1}{m}\right)^{\frac{\mu_1}{m}} \cdots \left(\frac{\mu_{\ell^2}}{m}\right)^{\frac{\mu_{\ell^2}}{m}}}$$
(6)

In Eq. 6 we assume that $0^0 = 1$ if some of μ_j are equal to zero. The value of $\Phi(\mu)^m$ is equal to d_{μ} up to a polynomial factor. More precisely, we have the following relation:

Lemma 1 [9, Lemma 1] Let $m \ge 100$. Then

$$\frac{\Phi(\mu)^m}{m^{t^4+t^2}} \le d_\mu \le m\Phi(\mu)^m.$$

Now let λ and μ be two partitions of *m* with the corresponding Young diagrams D_{λ} , D_{μ} . We say that D_{μ} is obtained from D_{λ} by pushing down one box if there exist $1 \le i < j \le t^2$ such that $\mu_i = \lambda_i - 1$, $\mu_j = \lambda_j + 1$ and $\mu_k = \lambda_k$ for all remaining *k*.

Lemma 2 (see [9, Lemma 3], [17, Lemma 2]) Let D_{μ} be obtained from D_{λ} by pushing down one box. Then $\Phi(\mu) \ge \Phi(\lambda)$.

Now we define the weight of partition $\mu = (\mu_1, \dots, \mu_{t^2})$ as follows:

$$wt \ \mu = -\left(\mu_1 + \dots + \mu_{\frac{t^2 - t}{2}}\right) + \left(\mu_{\frac{t^2 - t}{2} + 1} + \dots + \mu_{t^2}\right)$$

Recall (see [1]) that the hook partition h(d, l, k) is a partition with the Young diagram of the shape

Here the first *d* rows have length l + k and remaining *k* rows have length *l*. We slightly modify this notion and say that a partition $\mu = (\mu_1, \ldots, \mu_{t^2}) \vdash m$ is a hook h(s, r) if $\mu_1 = \ldots = \mu_{\frac{t^2-t}{2}} = s$ and $\mu_{\frac{t^2-t}{2}+1} = \cdots = \mu_{t^2} = r < s$.

The following observation is elementary.

Lemma 3 Let *m* be a multiple of $t(t^2 - 1)$. Then there exists a hook partition $\mu = h(s, r)$ of *m* with $s = r\frac{t+1}{t-1}$ and wt $\mu = 0$.

Proof Let $m = it(t^2 - 1)$. If we take $\mu = h(r, s)$ with s = (t + 1)i, r = (t - 1)i then the number of boxes in the first $\frac{t^2 - t}{2}$ rows, that is $\mu_1 + \dots + \mu_{\frac{t^2 - t}{2}}$, equals to

$$s\frac{t^2-t}{2} = it\frac{(t-1)(t+1)}{2} = \frac{m}{2}$$

Deringer

Similarly, the number of boxes in all remaining rows of D_{μ} equals to

$$r\frac{t^2+t}{2} = it\frac{(t-1)(t+1)}{2} = \frac{m}{2}$$

Hence $wt \mu = 0$ and we are done.

Lemma 4 Let *m* be a multiple of $t(t^2 - 1)$ and let $\mu = h(s, r)$ be the hook partition with zero weight as in Lemma 3. Then $\Phi(\mu) = t\sqrt{t^2 - 1}$.

Proof Since

$$\frac{\mu_1}{m} = \dots = \frac{\mu_{\frac{t^2-t}{2}}}{m} = \frac{s}{m}, \qquad \frac{\mu_{\frac{t^2-t}{2}+1}}{m} = \dots = \frac{\mu_{t^2}}{m} = \frac{r}{m}$$

and $m = rt(t + 1), s = r\frac{t+1}{t-1}$, we have

$$\frac{r}{m} = \frac{1}{t(t+1)}, \qquad \frac{s}{m} = \frac{1}{t(t-1)},$$

Hence

$$\Phi(\mu) = \frac{1}{\left(\frac{1}{t(t+1)}\right)^{\frac{t^2+t}{2t(t+1)}} \left(\frac{1}{t(t-1)}\right)^{\frac{t^2-t}{2t(t-1)}}} = \left(t^2(t+1)(t-1)\right)^{\frac{1}{2}} = t\sqrt{t^2-1}.$$

For an arbitrary partition of weight zero we have the following.

Lemma 5 Let *m* be a multiple of $t(t^2 - 1)$ and let v be a partition of *m* with wt v = 0. Then $\Phi(v) \le t\sqrt{t^2 - 1}$.

Proof The Young diagram D_{ν} of ν consists of two parts. The first one $\overline{\nu}$ contains first $\frac{t^2-t}{2}$ rows and the second part $\overline{\nu}$ contains all remaining rows. Pushing down boxes inside $\overline{\nu}$ and $\overline{\nu}$ separately we get new partition $\nu' \vdash m$ with $\omega t \nu' = 0$ maximally close to hook partition. That is, first $0 < i \le \frac{t^2-t}{2}$ rows of $D_{\nu'}$ have the length a and rows $i+1, \ldots, \frac{t^2-t}{2}$ (in case $i < \frac{t^2-t}{2}$) have the length a - 1. Similarly,

$$v'_{\frac{t^2-t}{2}+1} = \dots = v'_{\frac{t^2-t}{2}+j} = b, \quad v'_{\frac{t^2-t}{2}+j+1} = \dots = v'_{t^2} = b-1$$

for some *j*. But under our assumption *m* admits a hook partition by Lemma 3, hence $\frac{m}{2}$ is a multiple of $\frac{t^2-t}{2}$. It follows that $i = \frac{t^2-t}{2}$. Similarly, $j = \frac{t^2+t}{2}$ and v' = h(a, b). Finally note that if *m* admits a hook partition $\mu = h(r, s)$ of weight zero then μ is uniquely defined. Hence $a = b \frac{t+1}{t-1}$ and $\Phi(v') = t\sqrt{t^2 - 1}$ by Lemma 4. By applying Lemma 2 we complete the proof.

The main goal of this section is to get a similar upper bound for $\Phi(\mu)$ for any $\mu \vdash m$ without any restriction on *m* and with $wt(\mu) \leq 1$.

First we prove an easy technical result.

Lemma 6 Let $\lambda = (\lambda_1, ..., \lambda_s)$ be a partition of n such that $\lambda_1 - \lambda_s \ge 2s$. Then by pushing down one or more boxes in D_{λ} one can get a partition $\mu = (\mu_1, ..., \mu_s) \vdash n$ with $\mu_s = \lambda_s + 1$ and $\mu_1 > \lambda_1 - s$. Similarly, one can get $\nu = (\nu_1, ..., \nu_s) \vdash n$ with $\nu_1 = \lambda_1 - 1$ and $\nu_s < \lambda_s + s$.

Proof First we find μ . If s = 2 then the statement is obvious. Suppose s > 2. Then we push down boxes in D_{λ} using only rows 2, 3, ..., s. If we get on some step the diagram D_{μ} with $\mu_s = \lambda_s + 1$ then we proof is completed. Otherwise we will get a diagram $D_{\bar{\mu}}$ where $\bar{\mu}_1 = \lambda_1$, $\bar{\mu}_2 = \cdots = \bar{\mu}_t = p + 1$, $\bar{\mu}_{t+1} = \cdots = \bar{\mu}_s = p$ for some pand some $2 \le t \le s$. Moreover, $p = \lambda_s$ if t < s or $p + 1 = \lambda_s$ if t = s. In this case we can cut s - 1 boxes from the first row of $D_{\bar{\mu}}$ and the glue one box to each row 2, ..., s in $D_{\bar{\mu}}$. Then the partition $\mu = (\mu_1, \ldots, \mu_s)$, $\mu_1 = \bar{\mu}_1 - s + 1$, $\mu_j = \bar{\mu}_j + 1$, $j = 2, \ldots, s$, satisfies all conditions and we are done.

Similarly, if we push down boxes only in rows $1, \ldots, s-1$ in D_{λ} then either we will get a partition $\nu = (\nu_1, \ldots, \nu_s)$ with $\nu_1 = \lambda_1 - 1$, $\nu_s = \lambda_s$ on some step or we will get a partition $\bar{\nu} = (\bar{\nu}_1, \ldots, \bar{\nu}_s)$ such that $\bar{\nu}_1 = \cdots = \bar{\nu}_t = p + 1$, $\bar{\nu}_{t+1} = \cdots = \bar{\nu}_{s-1} = p$, $\bar{\nu}_s = \lambda_s$ for some $1 \le t \le s - 1$. In the latter case we push down one box from each row $1, \ldots, s - 1$ to the last row of $D_{\bar{\nu}}$. Then we get the required $\nu \vdash n$ and the proof is completed.

Now we consider partitions with t^2 components whose weight cannot be increased by pushing down boxes in the Young diagram.

Lemma 7 Let $\mu = (\mu_1, ..., \mu_{t^2})$ be a partition whose weight cannot be increased by pushing down boxes. Then $\mu_1 - \mu_{t^2} \le 4t^2$ and $wt(\mu) \ge -2t^4$.

Proof Denote $p = \frac{t^2+t}{2}$, $q = \frac{t^2-t}{2}$ for brevity. Clearly, $\mu_q \le \mu_{q+1} + 1$. If $\mu_1 - \mu_q \ge 3q$ then by pushing down boxes we can get a partition $\mu' = (\mu'_1, \dots, \mu'_q)$ with $\mu'_q = \mu_q + 2$ by Lemma 6. Hence $\mu_1 - \mu_q < 3q$. Similarly, we can get $(\mu''_{q+1}, \dots, \mu''_{q+p})$ with $\mu''_{q+1} = \mu_{q+1} - 2$ provided that $\mu_{q+1} - \mu_{q+p} \ge 3p$. Therefore $\mu_{q+1} - \mu_{q+p} < 3p$. Finally we obtain

$$\mu_1 - \mu_{q+p} < 3p + 3q + 1 = 3t^2 + 1 < 4t^2.$$

For proving the second part of our lemma we split D_{μ} into two parts D_1 and D_2 where D_1 consists of the first q rows of D_{μ} while D_2 consists of the last p rows of D_{μ} . By our assumption we cannot cut one box from D_1 and glue it to D_2 . Denote by a and b the number of boxes in D_1 , D_2 , respectively. Denote also $\mu_{p+q} = x$. By the first part of the lemma $\mu_1 \le 4t^2 + x$. Hence $a \le (4t^2 + x)q$. Obviously, $b \ge px$. Hence

$$wt(\mu) = b - a \ge x(p - q) - 4t^2q \ge -4t^2\frac{t^2 - t}{2} \ge -2t^4$$

and we complete the proof.

Next lemma shows how to reduce this problem to the case $wt \ \mu = 0$ and $m = jt(t^2 - 1)$.

Lemma 8 Let $\mu = (\mu_1, ..., \mu_{l^2})$ be a partition of m and let $wt \mu \le 1$. Then there exist an integer $m_0 \ge m$ and a partition $v \vdash m_0$ such that

(1) $m_0 - m \le 6t^6$, (2) wt v = 0, (3) m_0 is a multiple of $t^2(t-1)$, (4)

$$\Phi(\mu) \le (m + 6t^6)^{\left(\frac{t^4 + t^2 + 2}{m}\right)^{6t^6}} \Phi(\nu)$$

Proof First we reduce the question to the case $wt \mu = 0$. If $wt \mu = 1$ then we can add one extra box to the first row of D_{μ} and get a partition of zero weight.

Let $wt(\mu) < 0$. By Lemmas 2 and 7 we can suppose that $wt(\mu) \ge -2t^4$. If we add one box to each of rows $1, 2, ..., t^2 - t + 1$ of D_{μ} we get the Young diagram D_{ρ} of partition $\rho \vdash m + t^2 - t + 1$ with $wt(\rho) = wt(\mu) + 1$. Applying this procedure at most $2t^4$ times we get $\rho' \vdash m'_0$ with $wt(\rho') = 0$ where

$$m'_0 \le m + (t^2 - t + 1) \cdot 2t^4 \le m + 4t^6.$$

If m'_0 is a multiple of $t(t^2 - 1)$ then there is nothing to do. Otherwise there exists $0 < i < t(t^2 - 1)$ such that $m'_0 + i$ is a multiple of $t(t^2 - 1)$. Note that m'_0 is even since it admits a partition of weight zero. Hence *i* is also even.

First we enlarge $D_{\rho'}$ to $D_{\mu'}$ by adding $\frac{t^2-1}{2}$ boxes to all $t^2 - t$ first rows. Then also $wt \ \mu' = 0$. Since $\mu'_{t^2-t} - \mu'_{t^2-t+1} \ge \frac{t^2-1}{2}$, we can glue $\frac{i}{2} < t\frac{t^2-1}{2}$ boxes to the last *t* rows of $D_{\mu'}$ and get $D_{\mu''}$. Finally, we glue $\frac{i}{2}$ boxes to the first row of $D_{\mu''}$ and obtain the diagram D_{ν} such that $wt \ \nu = 0$. Denote by m_0 the number of boxes of D_{ν} . As follows from our procedure, an upper bound for m_0 is

$$m + 4t^{6} + (t^{2} - t)\frac{t^{2} - 1}{2} + t(t^{2} - 1) < 6t^{6} + m.$$

It is shown in [17, Lemma 7] that if $\lambda \vdash n - 1, \lambda = (\lambda_1, \dots, \lambda_d), \lambda' \vdash n, \lambda' = (\lambda'_1, \dots, \lambda'_d)$ and D_{λ} is obtained from $D_{\lambda'}$ by cutting one box then

$$\Phi(\lambda) \leq n^{\frac{d^2+d+2}{n}} \Phi(\lambda').$$

Hence

$$\Phi(\mu) \le (m + 6t^6)^{(\frac{t^4 + t^2 + 2}{m})^{6t^6}} \Phi(\nu)$$

and we complete the proof.

As a corollary of Lemmas 5 and 8 we immediately obtain

Lemma 9 Let $\mu = (\mu_1, ..., \mu_{t^2})$ be a partition of *m* and let $wt \mu \le 1$. Then there exists a polynomial g(m) such that $\Phi(\mu) \le g(m)^{\frac{1}{m}} t \sqrt{t^2 - 1}$.

4 Graded Codimensions of Lie Superalgebras of Type b(t)

In this section we use notations from [10]. Recall that $L = b(t), t \ge 2$, is a Lie superalgebra of $2t \times 2t$ matrices of the type

$$\begin{pmatrix} A & B \\ C & -A^T \end{pmatrix},$$

where $A, B, C \in M_t(F), B^T = B, C^T = -C$ and trA = 0. Here the map $X \to X^T$ is the transpose involution. Decomposition $L = L_0 \oplus L_1$ is defined by setting

$$L_0 = \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^T \end{pmatrix} \mid A \in M_t(F), tr(A) = 0 \right\},\$$

and

$$L_1 = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \mid B^T = B, C^T = -C \in M_t(F) \right\}.$$

Super-Lie product on L is given by

$$[x, y] = xy - (-1)^{|x||y|} yx$$

for homogeneous $x, y \in L_0 \cup L_1$.

It is not difficult to see that also L has \mathbb{Z} -grading

$$L = L^{(-1)} \oplus L^{(0)} \oplus L^{(1)}$$
(7)

where $L^{(0)} = L_0$,

$$L^{(-1)} = \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \mid C^{T} = -C \in M_{t}(F) \right\},$$
(8)

$$L^{(1)} = \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \mid B^T = B \in M_t(F) \right\}$$
(9)

and $L^{(n)} = 0$ for all $n \neq 0, \pm 1$. In particular, $L^{(-1)} \oplus L^{(1)} = L_1$ and dim $L^{(0)} = t^2 - 1$, dim $L^{(-1)} = \frac{t(t-1)}{2}$, dim $L^{(1)} = \frac{t(t+1)}{2}$.

Let $\chi_{k,n-k}(L)$ be (k, n-k)-cocharacter of L. Consider its decomposition (3) into irreducible components.

Lemma 10 Let $m_{\lambda,\mu} \neq 0$ in Eq. 3. Then D_{λ} lies in the strip of width $t^2 - 1$, that is, $\lambda = (\lambda_1, \ldots, \lambda_d)$ with $d \leq t^2 - 1$. In particular, $d_{\lambda} \leq \alpha(k)(t^2 - 1)^k$ for some polynomial $\alpha(k)$.

Proof Denote $A = FS_k$. Recall that, given a partition $\lambda = (\lambda_1, \dots, \lambda_d) \vdash k$, the irreducible S_k -module corresponding to λ is isomorphic to the minimal left ideal generated by an essential idempotent $e_{T_{\lambda}}$ constructed in the following way.

Let T_{λ} be Young tableau, that is Young diagram D_{λ} filled up by integers $1, \ldots, k$. Denote by $R_{T_{\lambda}}$ and $C_{T_{\lambda}}$ row and column stabilizers in S_k of T_{λ} , respectively. Then

$$R(T_{\lambda}) = \sum_{\sigma \in R_{T_{\lambda}}} \sigma , \quad C(T_{\lambda}) = \sum_{\tau \in C_{T_{\lambda}}} (\operatorname{sgn} \tau) \tau$$

and

$$e_{T_{\lambda}} = R(T_{\lambda})C(T_{\lambda}).$$

It is known that $e_{T_{\lambda}}^2 = \alpha e_{T_{\lambda}}, 0 \neq \alpha \in \mathbb{Q}$, and an irreducible FS_k -module M has the character χ_{λ} if and only if $e_{T_{\lambda}}M \neq 0$. In particular, if M is an irreducible $FS_k \times FS_{n-k}$ -submodule in $P_{k,n-k}(L)$ with the character $\chi_{\lambda,\mu}$ then M can be generated by a multilinear polynomial of the type $e_{T_{\lambda}}\varphi(x_1, \ldots, x_k, y_1, \ldots, y_{n-k})$ with even x_1, \ldots, x_k and odd y_1, \ldots, y_{n-k} (since M is the direct sum of isomorphic irreducible S_k -modules with characters χ_{λ}). From the relation $e_{T_{\lambda}}^2 = \alpha e_{T_{\lambda}} \neq 0$ it follows that the polynomial

$$\psi(x_1,\ldots,x_k,y_1,\ldots,y_{n-k})=C(T_{\lambda})e_{T_{\lambda}}\varphi(x_1,\ldots,x_k,y_1,\ldots,y_{n-k})$$

also generates M.

Suppose now that $d > t^2 - 1$. Then D_{λ} contains at least one column of height d greater than $t^2 - 1 = \dim L_0$. In this case ψ depends on at least one alternating set of even variables of order greater than dim L_0 . Standard arguments show that in this case ψ is an identity of L, a contradiction. Hence $d \le t^2 - 1$. Now by [1, Lemma 6.2.5] there exists a polynomial $\alpha(k)$ such that $d_{\lambda} \le \alpha(k)(t^2 - 1)^k$ and we complete the proof.

Lemma 11 Let $m_{\lambda,\mu} \neq 0$ in Eq. 3. Then wt $\mu \leq 1$.

Proof As in the previous lemma an irreducible $FS_k \times FS_{n-k}$ -submodule M of $P_{k,n-k}(L)$ with the character $\chi_{\lambda,\mu}$ can be generated by

$$\psi = \psi(x_1, \dots, x_k, y_1, \dots, y_{n-k}) = C(T_{\mu})e_{T_{\mu}}\varphi$$

for some multilinear polynomial φ . The set of variables $\{y_1, \ldots, y_{n-k}\}$ can be split into disjoint union

$$\{y_1,\ldots,y_{n-k}\}=Y_1\cup\ldots\cup Y_p$$

where $p = \mu_1$, every set Y_j consists of odd indeterminates with the indices from the *j*-th column of T_{μ} . In particular, ψ is alternating on any subset Y_j , $1 \le j \le p$, and we cannot substitute the same basis elements of L instead of distinct variables from the same column of T_{μ} , otherwise the value of ψ will be zero. Hence the minimal degree in \mathbb{Z} -grading Eqs. 7, 8 and 9 of the value of ψ on L is equal to $q = wt \mu$. So, if q > 1 then ψ is an identity of L since $L^{(q)} \oplus L^{(q+1)} \oplus \cdots = 0$, a contradiction.

Now we are ready to prove the main result of the paper.

Theorem 1 Let *L* be a Lie superalgebra of the type $b(t), t \ge 2$, over a field *F* of characteristic zero. Then there exists a polynomial h = h(n) such that

$$c_n^{gr}(L) \le h(n) \left(t^2 - 1 + t\sqrt{t^2 - 1}\right)^n$$
.

1410

🖉 Springer

In particular,

$$\overline{exp}^{gr}(L) \le t^2 - 1 + t\sqrt{t^2 - 1} < 2t^2 - 1 = \dim L.$$

Proof Consider the inequality (5) for $c_{k,n-k}(L)$. By Lemma 10, $d_{\lambda}^{\max} \leq \alpha(k)(t^2 - 1)^k$ and by Lemma 11 we have $wt \mu \leq 1$ where $d_{\mu} = d_{\mu}^{\max}$. Then by Lemmas 1 and 9,

$$d_{\mu}^{\max} \leq (n-k)g(n-k)\left(t\sqrt{t^2-1}\right)^{n-k}$$

Hence

$$c_{k,n-k}(L) \le f(n)(n-k)\alpha(k)g(n-k)(t^2-1)^k \left(t\sqrt{t^2-1}\right)^{n-k}$$

Clearly one can take a polynomial h' = h'(n) such that $\alpha(k)g(n-k) \le h'(n)$ for all k = 0, ..., n. Then

$$c_{k,n-k}(L) \le h(n)(t^2-1)^k \left(t\sqrt{t^2-1}\right)^{n-k}$$

where h(n) = nf(n)h'(n). Now by Eq. 2

$$c_n^{gr}(L) \le h(n) \sum_{k=0}^n \binom{n}{k} (t^2 - 1)^k (t\sqrt{t^2 - 1})^{n-k} = h(n) (t^2 - 1 + t\sqrt{t^2 - 1})^n.$$

Obviously,

$$\overline{exp}^{gr}(L) = \limsup_{n \to \infty} \sqrt[n]{c_n^{gr}(L)} \le t^2 - 1 + t\sqrt{t^2 - 1}$$

and we complete the proof of Theorem 1.

As a consequence of Theorem 1 we get an upper bound for ordinary PI-exponent of $L = b(t), t \ge 2$.

Theorem 2 Let *L* be a Lie superalgebra of the type L = b(t), $t \ge 2$, over a field of characteristic zero. Then $exp(L) \le t^2 - 1 + t\sqrt{t^2 - 1}$.

Proof The statement easily follows from Theorem 1, the inequality $c_n^{gr} \le c_n(L)$ [7, 14] and from the existence of exp(L) [9].

References

- Giambruno, A., Zaicev, M.: Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, vol. 122. American Mathematical Society, Providence, RI (2005)
- Giambruno, A., Zaicev, M.: On codimension growth of finitely generated associative algebras. Adv. Math. 140, 145–155 (1998)
- Giambruno, A., Regev, A., Zaicev, M.V.: Simple and semisimple Lie algebras and codimension growth. Trans. Am. Math. Soc. 352(4), 1935–1946 (2000)
- Giambruno, A., Regev, A., Zaicev, M.V.: On the codimension growth of finite-dimensional Lie algebras. J. Algebra 220(2), 466–474 (1999)
- Zaicev, M.V.: Integrality of exponents of codimension growth of identities of finite-dimensional Lie algebras, (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 66, 23–48 (2002). Translation in: Izv. Math. 66, 463–487 (2002)

- Giambruno, A., Shestakov, I., Zaicev, M.: Finite dimensional nonassociative algebras and codimension growth. Adv. Appl. Math. 47, 125–139 (2011)
- Bahturin, Yu., Drensky, V.: Graded polynomial identities of matrices. Linear Algebra Appl. 357, 15–34 (2002)
- Giambruno, A., Zaicev, M.: Codimension growth of special simple Jordan algebras. Trans. Am. Math. Soc. 362, 3107–3123 (2010)
- Giambruno, A., Zaicev, M.: On codimension growth of finite dimensional Lie superalgebras. J. Lond. Math. Soc. 95, 534–548 (2012)
- Scheunert, M.: The theory of Lie superalgebras; An introduction. Lecture Notes in Math., vol. 716. Springer-Verlag, Berlin-Heidelberg-New York (1979)
- Zaitsev, M.V., Mishchenko, S.P.: A criterion for polynomial growth of varieties of Lie superalgebras. Izv. RAN Ser. Mat. 62(5), 103–116 (1998). Translated in: Izv. Math. 62(5), 953–967 (1998)
- Zaicev, M.V., Mishchenko, S.P.: Growth of some varieties of Lie superalgebras. Izv. RAN Ser. Mat. 71(4), 3–18 (2007). Translated in: Izv. Math. 71(4), 657–672 (2007)
- Zaitsev, M.V., Mishchenko, S.P.: Identities for Lie superalgebras with a nilpotent commutator subalgebra. Algebra i Logika 47(5), 617–645 (2008). Translated in: Algebra and Logic 47(5), 348–364 (2008)
- Giambruno, A., Regev, A.: Wreath products and P.I. algebras. J. Pure Appl. Algebra 35, 133–149 (1985)
- James, G., Kerber, A.: The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, vol. 16. Addison-Wesley, London (1981)
- Berele, A.: Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra 185, 869– 885 (1996)
- Zaitsev, M., Repovš, D.: Four dimensional simple algebra with the fractional PI-exponent. arxiv:1310.5471 (2013). Accessed 22 Oct 2013