Graded Identities of Some Simple Lie Superalgebras

Dušan Repovš•Mikhail Zaicev

Received: 7 March 2013 / Accepted: 24 September 2013 / Published online: 24 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract

We study \mathbb{Z}_{2}-graded identities of Lie superalgebras of the type $b(t), t \geq 2$, over a field of characteristic zero. Our main result is that the n-th codimension is strictly less than $(\operatorname{dim} b(t))^{n}$ asymptotically. As a consequence we obtain an upper bound for ordinary (non-graded) PI-exponent for each simple Lie superalgebra $b(t), t \geq 3$.

Keywords Polynomial identity • Lie superalgebra • Codimensions • Exponential growth • Fractional PI-exponent

Mathematics Subject Classifications (2010) Primary 17B01, 16P90;
Secondary 16R10

1 Introduction

In this paper we study numerical invariants of identities of Lie superalgebras. One of the main numerical characteristics of the identities of an algebra A over a field F of characteristic zero is the sequence of codimensions $\left\{c_{n}(A)\right\}, n=1,2, \ldots$, and

Presented by Susan Montgomery.

The first author was supported by the Slovenian Research Agency grants P1-0292-0101 and J1-4144-0101. The second author was partially supported by RFBR, grant 13-01-00234a. We thank the referee for comments and suggestions.

[^0]its asymptotic behaviour. Many deep and interesting results in this area were proved during the last few decades (see, for example, [1]) both in the associative and the nonassociative cases. In particular, in many classes of algebras (associative [2], Lie [3-5], Jordan, alternative and some others [6]) it was proved that if A is a finite dimensional algebra, $\operatorname{dim} A=d$, and F is algebraically closed then PI - exponent $\exp (A)$ is equal to d if and only if A is simple. In general $\exp (A) \leq \operatorname{dim} A$ as it was observed in [7, 8]. Recently (see [9]) it was shown that $\exp (L)<\operatorname{dim} L$ provided that L is a simple Lie superalgebra of the type $b(t), t \geq 3$, (we use notations from [10] for simple Lie superalgebras). Unfortunately, an upper bound $\alpha=\alpha(t)<\operatorname{dim} b(t)$ was not found for $\exp (b(t))$ in [9].

Since any Lie superalgebra L is \mathbb{Z}_{2}-graded, one can consider graded codimensions $c_{n}^{g r}(L)$ and graded PI-exponent $\exp ^{g r}(L)$. Graded codimensions and graded PIexponents of Lie superalgebras were studied earlier in several papers (see, for example, [11-13]). Existence and integrality of graded exponents were proved for some classes of Lie superalgebras. On the other hand, there are no known examples where $\exp ^{g r}(L)$ is fractional.

There are some relations between graded and non-graded identities, codimensions and PI-exponents. In particular,

$$
\begin{equation*}
c_{n}(A) \leq c_{n}^{g r}(A) \tag{1}
\end{equation*}
$$

(see [14] or [7]) for any finite dimensional G-graded algebra A where G is a finite group. Hence when A is finite dimensional and simple and $\exp (A)=\operatorname{dim} A$ it follows from Eq. 1 and [7] that $\exp ^{g r}(A)$ exists and is equal to $\operatorname{dim} A$.

First series of examples with $\exp (A) \neq \operatorname{dim} A$ where A is a finite dimensional simple algebra is given by simple Lie superalgebras $b(t), t \geq 3$, of the dimension $\operatorname{dim} b(t)=2 t^{2}-1$ [9]. It is important to study asymptotics of $c_{n}^{g r}(b(t))$ and to compare it with the asymptotics of $c_{n}(b(t))$. The main result of this paper says that the (upper) graded PI-exponent of $b(t)$ is less than or equal to $t^{2}-1+t \sqrt{t^{2}-1}$. As a consequence of this result and Eq. 1 we obtain an upper bound for ordinary PI-exponent of $b(t), \exp (b(t)) \leq t^{2}-1+t \sqrt{t^{2}-1}$. In particular, the difference $\operatorname{dim} b(t)-\exp (b(t))$ is at leasi $t^{2}-t \sqrt{t^{2}-1}$ which is a decreasing function of t with limit $\frac{1}{2}$.

2 Preliminaries

Let A be an algebra over a field F of characteristic zero. Recall that A is said to be \mathbb{Z}_{2}-graded algebra if A has a vector space decomposition $A=A_{0} \oplus A_{1}$ such that $A_{0} A_{0}+A_{1} A_{1} \subseteq A_{0}, A_{0} A_{1}+A_{1} A_{0} \subseteq A_{1}$. Usually elements of A_{0} are called even while elements of A_{1} are called odd. Any element of $A_{0} \cup A_{1}$ is called homogeneous. In particular, a Lie superalgebra L is a \mathbb{Z}_{2}-graded algebra $L=L_{0} \oplus L_{1}$ satisfying the following two relations

$$
\begin{gathered}
x y-(-1)^{|x||y|} y x=0 \\
x(y z)=(x y) z+(-1)^{|x||y|} y(x z)
\end{gathered}
$$

where x, y, z are homogeneous elements and $|x|=0$ if x is even while $|x|=1$ if x is odd.

Denote by $\mathcal{L}(X, Y)$ a free Lie superalgebra with infinite sets of even generators X and odd generators Y. A polynomial $f=f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \in \mathcal{L}(X, Y)$ is said to be a graded identity of Lie superalgebra $L=L_{0} \oplus L_{1}$ if $f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots\right.$, $\left.b_{n}\right)=0$ whenever $a_{1}, \ldots, a_{m} \in L_{0}, b_{1}, \ldots, b_{n} \in L_{1}$.

Given positive integers $0 \leq k \leq n$, denote by $P_{k, n-k}$ the subspace of all multilinear polynomials $f=f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right) \in \mathcal{L}(X, Y)$ of degree k in even variables and of degree $n-k$ in odd variables. Denote by $I d^{g r}(L)$ an ideal of $\mathcal{L}(X, Y)$ of all graded identities of L. Then $P_{k, n-k} \cap I d^{g r}(L)$ is the subspace of all multilinear graded identities of L of total degree n depending on k even variables and $n-k$ odd variables. Denote also by $P_{k, n-k}(L)$ the quotient

$$
P_{k, n-k}(L)=\frac{P_{k, n-k}}{P_{k, n-k} \cap I d^{g r}(L)} .
$$

Then the graded $(k, n-k)$-codimension of L is

$$
c_{k, n-k}(L)=\operatorname{dim} P_{k, n-k}(L)
$$

and the total graded codimension of L is

$$
\begin{equation*}
c_{n}^{g r}(L)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}(L) . \tag{2}
\end{equation*}
$$

If the sequence $\left\{c_{n}^{g r}(L)\right\}_{n \geq 1}$ is exponentially bounded then one can consider the related bounded sequence $\sqrt[n]{c_{n}^{g r}(L)}$. The latter sequence has the following lower and upper limits

$$
\underline{\exp }^{g r}(L)=\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}, \quad \overline{\exp }^{g r}(L)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

called the lower and upper PI-exponents of L, respectively. If an ordinary limit exists, it is called an (ordinary) graded PI-exponent of L,

$$
\exp ^{g r}(L)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)}
$$

Symmetric groups and their representations play an important role in the theory of codimensions. In particular, in the case of graded identities one can consider the $S_{k} \times S_{n-k}$-action on multilinear graded polynomials. Namely, the subspace $P_{k, n-k} \subseteq$ $\mathcal{L}(X, Y)$ has a natural structure of $S_{k} \times S_{n-k}$ - module where S_{k} acts on even variables x_{1}, \ldots, x_{k} while S_{n-k} acts on odd variables y_{1}, \ldots, y_{n-k}. Clearly, $P_{k, n-k} \cap I d^{g r}(L)$ is the submodule under this action and we get an induced $S_{k} \times S_{n-k}$-action on $P_{k, n-k}(L)$. The character $\chi_{k, n-k}(L)=\chi\left(P_{k, n-k}(L)\right)$ is called $(k, n-k)$ cocharacter of L. By Maschke's Theorem this character can be decomposed into the sum of irreducible characters

$$
\begin{equation*}
\chi_{k, n-k}(L)=\sum_{\substack{\lambda \dashv k \\ \mu \vdash n-k}} m_{\lambda, \mu} \chi_{\lambda, \mu} \tag{3}
\end{equation*}
$$

where λ and μ are partitions of k and $n-k$, respectively (all details concerning representations of symmetric groups can be found in [15]).

Recall that an irreducible $S_{k} \times S_{n-k}$-module with the character $\chi_{\lambda, \mu}$ is the tensor product of S_{k}-module with the character χ_{λ} and S_{n-k}-module with the character
χ_{μ}. In particular, the dimension $\operatorname{deg} \chi_{\lambda, \mu}$ of this module is the product $d_{\lambda} d_{\mu}$ where $d_{\lambda}=\operatorname{deg} \chi_{\lambda}, d_{\mu}=\operatorname{deg} \chi_{\mu}$. Taking into account multiplicities $m_{\lambda, \mu}$ in Eq. 3 we get the relation

$$
\begin{equation*}
c_{k, n-k}(L)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} m_{\lambda, \mu} d_{\lambda} d_{\mu} . \tag{4}
\end{equation*}
$$

A number of irreducible components in the decomposition of $\chi_{k, n-k}(L)$, i.e. the sum

$$
l_{k, n-k}(L)=\sum_{\substack{\lambda \vdash-k \\ \mu \vdash-n-k}} m_{\lambda, \mu}
$$

is called the $(k, n-k)$-colength of L. If $\operatorname{dim} L<\infty$ then by Ado Theorem (see [10, Theorem 1.4.1]), L has a faithful finite dimensional graded representation. Hence L has an embedding $L \subset A=A_{0} \oplus A_{1}$ as a Lie superalgebra where A is a finite dimensional associative superalgebra. Given $0 \leq k \leq n$, consider the graded ($k, n-$ $k)$-cocharacter of A :

$$
\chi_{k, n-k}(A)=\sum_{\substack{\lambda \vdash k \\ \mu \vdash n-k}} \bar{m}_{\lambda, \mu} \chi_{\lambda, \mu} .
$$

Then by [16],

$$
\sum_{k=0}^{n} \sum_{\substack{\lambda \dashv-\\ \mu \vdash n-k}} \bar{m}_{\lambda, \mu} \leq q(n)
$$

for some polynomial $q(n)$. Following the argument of the proof of [3, Lemma 3.2] we obtain that

$$
m_{\lambda, \mu} \leq \bar{m}_{\lambda, \mu} .
$$

Hence in the finite dimensional case the total colength is polynomially bounded, that is, for any $L, \operatorname{dim} L<\infty$, there exists a polynomial $f(n)$ such that

$$
\sum_{k=0}^{n} l_{k, n-k}(L) \leq f(n)
$$

It follows that

$$
\begin{equation*}
c_{k, n-k}(L) \leq f(n) d_{\lambda}^{\max } d_{\mu}^{\max } \tag{5}
\end{equation*}
$$

where $d_{\lambda}^{\max }, d_{\mu}^{\max }$ are maximal possible dimensions of S_{k} - and S_{n-k}-representations, respectively, such that $m_{\lambda, \mu} \neq 0$. We will use relation (5) for finding an upper bound for $\overline{\exp }^{g r}(L)$.

3 Dimensions of some S_{m}-Representations

In this section we prove some technical results which we will use later. Fix an integer $t \geq 2$ and consider an irreducible S_{m}-representation with the character $\chi_{\mu}, \mu=$ $\left(\mu_{1}, \ldots, \mu_{d}\right), d \leq t^{2}$. For convenience we will write $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right)$ even in the case $d<t^{2}$ assuming $\mu_{d+1}=\ldots=\mu_{t^{2}}=0$.

We define the following function of a partition $\mu \vdash m$

$$
\begin{equation*}
\Phi(\mu)=\frac{1}{\left(\frac{\mu_{1}}{m}\right)^{\frac{\mu_{1}}{m}} \cdots\left(\frac{\mu_{t},}{m}\right)^{\frac{\mu_{t} 2^{2}}{m}}} \tag{6}
\end{equation*}
$$

In Eq. 6 we assume that $0^{0}=1$ if some of μ_{j} are equal to zero. The value of $\Phi(\mu)^{m}$ is equal to d_{μ} up to a polynomial factor. More precisely, we have the following relation:

Lemma 1 [9, Lemma 1] Let $m \geq 100$. Then

$$
\frac{\Phi(\mu)^{m}}{m^{t^{4}+t^{2}}} \leq d_{\mu} \leq m \Phi(\mu)^{m}
$$

Now let λ and μ be two partitions of m with the corresponding Young diagrams D_{λ}, D_{μ}. We say that D_{μ} is obtained from D_{λ} by pushing down one box if there exist $1 \leq i<j \leq t^{2}$ such that $\mu_{i}=\lambda_{i}-1, \mu_{j}=\lambda_{j}+1$ and $\mu_{k}=\lambda_{k}$ for all remaining k.

Lemma 2 (see [9, Lemma 3], [17, Lemma 2]) Let D_{μ} be obtained from D_{λ} by pushing down one box. Then $\Phi(\mu) \geq \Phi(\lambda)$.

Now we define the weight of partition $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right)$ as follows:

$$
w t \mu=-\left(\mu_{1}+\cdots+\mu_{\frac{t 2-t}{2}}\right)+\left(\mu_{\frac{t 2-t}{2}+1}+\cdots+\mu_{t^{2}}\right) .
$$

Recall (see [1]) that the hook partition $h(d, l, k)$ is a partition with the Young diagram of the shape

Here the first d rows have length $l+k$ and remaining k rows have length l. We slightly modify this notion and say that a partition $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right) \vdash m$ is a hook $h(s, r)$ if $\mu_{1}=\ldots=\mu_{\frac{t 2-t}{2}}=s$ and $\mu_{\frac{t 2-t}{2}+1}=\cdots=\mu_{t^{2}}=r<s$.

The following observation is elementary.
Lemma 3 Let m be a multiple of $t\left(t^{2}-1\right)$. Then there exists a hook partition $\mu=$ $h(s, r)$ of m with $s=r \frac{t+1}{t-1}$ and wt $\mu=0$.

Proof Let $m=i t\left(t^{2}-1\right)$. If we take $\mu=h(r, s)$ with $s=(t+1) i, r=(t-1) i$ then the number of boxes in the first $\frac{t^{2}-t}{2}$ rows, that is $\mu_{1}+\cdots+\mu_{\frac{t^{2}-t}{2}}$, equals to

$$
s \frac{t^{2}-t}{2}=i t \frac{(t-1)(t+1)}{2}=\frac{m}{2} .
$$

Similarly, the number of boxes in all remaining rows of D_{μ} equals to

$$
r \frac{t^{2}+t}{2}=i t \frac{(t-1)(t+1)}{2}=\frac{m}{2} .
$$

Hence $w t \mu=0$ and we are done.
Lemma 4 Let m be a multiple of $t\left(t^{2}-1\right)$ and let $\mu=h(s, r)$ be the hook partition with zero weight as in Lemma 3. Then $\Phi(\mu)=t \sqrt{t^{2}-1}$.

Proof Since

$$
\frac{\mu_{1}}{m}=\ldots=\frac{\mu_{\frac{t^{2}-t}{2}}^{2}}{m}=\frac{s}{m}, \quad \frac{\mu_{\frac{t^{2}-t}{2}+1}}{m}=\ldots=\frac{\mu_{t^{2}}}{m}=\frac{r}{m}
$$

and $m=r t(t+1), s=r \frac{t+1}{t-1}$, we have

$$
\frac{r}{m}=\frac{1}{t(t+1)}, \quad \frac{s}{m}=\frac{1}{t(t-1)} .
$$

Hence

$$
\Phi(\mu)=\frac{1}{\left(\frac{1}{t(t+1)}\right)^{\frac{t^{2}+t}{2(t+1)}}\left(\frac{1}{t(t-1)}\right)^{\frac{t^{2}-t}{2(t-1)}}}=\left(t^{2}(t+1)(t-1)\right)^{\frac{1}{2}}=t \sqrt{t^{2}-1} .
$$

For an arbitrary partition of weight zero we have the following.
Lemma 5 Let m be a multiple of $t\left(t^{2}-1\right)$ and let v be a partition of m with $w t v=0$. Then $\Phi(v) \leq t \sqrt{t^{2}-1}$.

Proof The Young diagram D_{v} of v consists of two parts. The first one \bar{v} contains first $\frac{t^{2}-t}{2}$ rows and the second part $\overline{\bar{v}}$ contains all remaining rows. Pushing down boxes inside \bar{v} and $\overline{\bar{v}}$ separately we get new partition $\nu^{\prime} \vdash m$ with $w t \nu^{\prime}=0$ maximally close to hook partition. That is, first $0<i \leq \frac{t^{2}-t}{2}$ rows of $D_{v^{\prime}}$ have the length a and rows $i+1, \ldots, \frac{t^{2}-t}{2}$ (in case $i<\frac{t^{2}-t}{2}$) have the length $a-1$. Similarly,

$$
v_{\frac{t 2-t}{2}+1}^{\prime}=\ldots=v_{\frac{t 2-t}{2}+j}^{\prime}=b, \quad v_{\frac{t 2-t}{2}+j+1}^{\prime}=\ldots=v_{t^{2}}^{\prime}=b-1
$$

for some j. But under our assumption m admits a hook partition by Lemma 3, hence $\frac{m}{2}$ is a multiple of $\frac{t^{2}-t}{2}$. It follows that $i=\frac{t^{2}-t}{2}$. Similarly, $j=\frac{t^{2}+t}{2}$ and $v^{\prime}=h(a, b)$. Finally note that if m admits a hook partition $\mu=h(r, s)$ of weight zero then μ is uniquely defined. Hence $a=b \frac{t+1}{t-1}$ and $\Phi\left(v^{\prime}\right)=t \sqrt{t^{2}-1}$ by Lemma 4. By applying Lemma 2 we complete the proof.

The main goal of this section is to get a similar upper bound for $\Phi(\mu)$ for any $\mu \vdash m$ without any restriction on m and with $w t(\mu) \leq 1$.

First we prove an easy technical result.

Lemma 6 Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition of n such that $\lambda_{1}-\lambda_{s} \geq 2 s$. Then by pushing down one or more boxes in D_{λ} one can get a partition $\mu=\left(\mu_{1}, \ldots \mu_{s}\right) \vdash n$ with $\mu_{s}=\lambda_{s}+1$ and $\mu_{1}>\lambda_{1}-s$. Similarly, one can get $v=\left(\nu_{1}, \ldots v_{s}\right) \vdash n$ with $\nu_{1}=$ $\lambda_{1}-1$ and $v_{s}<\lambda_{s}+s$.

Proof First we find μ. If $s=2$ then the statement is obvious. Suppose $s>2$. Then we push down boxes in D_{λ} using only rows $2,3, \ldots, s$. If we get on some step the diagram D_{μ} with $\mu_{s}=\lambda_{s}+1$ then we proof is completed. Otherwise we will get a diagram $D_{\bar{\mu}}$ where $\bar{\mu}_{1}=\lambda_{1}, \bar{\mu}_{2}=\cdots=\bar{\mu}_{t}=p+1, \bar{\mu}_{t+1}=\cdots=\bar{\mu}_{s}=p$ for some p and some $2 \leq t \leq s$. Moreover, $p=\lambda_{s}$ if $t<s$ or $p+1=\lambda_{s}$ if $t=s$. In this case we can cut $s-1$ boxes from the first row of $D_{\bar{\mu}}$ and the glue one box to each row $2, \ldots, s$ in $D_{\bar{\mu}}$. Then the partition $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right), \mu_{1}=\bar{\mu}_{1}-s+1, \mu_{j}=\bar{\mu}_{j}+1, j=2, \ldots, s$, satisfies all conditions and we are done.

Similarly, if we push down boxes only in rows $1, \ldots, s-1$ in D_{λ} then either we will get a partition $v=\left(v_{1}, \ldots, v_{s}\right)$ with $\nu_{1}=\lambda_{1}-1, v_{s}=\lambda_{s}$ on some step or we will get a partition $\bar{v}=\left(\bar{v}_{1}, \ldots, \bar{v}_{s}\right)$ such that $\bar{v}_{1}=\cdots=\bar{v}_{t}=p+1, \bar{v}_{t+1}=\cdots=\bar{v}_{s-1}=p$, $\bar{\nu}_{s}=\lambda_{s}$ for some $1 \leq t \leq s-1$. In the latter case we push down one box from each row $1, \ldots, s-1$ to the last row of $D_{\bar{v}}$. Then we get the required $v \vdash n$ and the proof is completed.

Now we consider partitions with t^{2} components whose weight cannot be increased by pushing down boxes in the Young diagram.

Lemma 7 Let $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right)$ be a partition whose weight cannot be increased by pushing down boxes. Then $\mu_{1}-\mu_{t^{2}} \leq 4 t^{2}$ and $\operatorname{wt}(\mu) \geq-2 t^{4}$.

Proof Denote $p=\frac{t^{2}+t}{2}, q=\frac{t^{2}-t}{2}$ for brevity. Clearly, $\mu_{q} \leq \mu_{q+1}+1$. If $\mu_{1}-\mu_{q} \geq 3 q$ then by pushing down boxes we can get a partition $\mu^{\prime}=\left(\mu_{1}^{\prime}, \ldots, \mu_{q}^{\prime}\right)$ with $\mu_{q}^{\prime}=$ $\mu_{q}+2$ by Lemma 6. Hence $\mu_{1}-\mu_{q}<3 q$. Similarly, we can get $\left(\mu_{q+1}^{\prime \prime}, \ldots, \mu_{q+p}^{\prime \prime}\right)$ with $\mu_{q+1}^{\prime \prime}=\mu_{q+1}-2$ provided that $\mu_{q+1}-\mu_{q+p} \geq 3 p$. Therefore $\mu_{q+1}-\mu_{q+p}<3 p$. Finally we obtain

$$
\mu_{1}-\mu_{q+p}<3 p+3 q+1=3 t^{2}+1<4 t^{2} .
$$

For proving the second part of our lemma we split D_{μ} into two parts D_{1} and D_{2} where D_{1} consists of the first q rows of D_{μ} while D_{2} consists of the last p rows of D_{μ}. By our assumption we cannot cut one box from D_{1} and glue it to D_{2}. Denote by a and b the number of boxes in D_{1}, D_{2}, respectively. Denote also $\mu_{p+q}=x$. By the first part of the lemma $\mu_{1} \leq 4 t^{2}+x$. Hence $a \leq\left(4 t^{2}+x\right) q$. Obviously, $b \geq p x$. Hence

$$
w t(\mu)=b-a \geq x(p-q)-4 t^{2} q \geq-4 t^{2} \frac{t^{2}-t}{2} \geq-2 t^{4}
$$

and we complete the proof.

Next lemma shows how to reduce this problem to the case $w t \mu=0$ and $m=$ $j t\left(t^{2}-1\right)$.

Lemma 8 Let $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right)$ be a partition of m and let $w t \mu \leq 1$. Then there exist an integer $m_{0} \geq m$ and a partition $v \vdash m_{0}$ such that
(1) $m_{0}-m \leq 6 t^{6}$,
(2) $w t v=0$,
(3) m_{0} is a multiple of $t^{2}(t-1)$,

$$
\begin{equation*}
\Phi(\mu) \leq\left(m+6 t^{6}\right)^{\left(\frac{t^{4}+t^{2}+2}{m}\right)^{6 t^{6}}} \Phi(v) . \tag{4}
\end{equation*}
$$

Proof First we reduce the question to the case $w t \mu=0$. If $w t \mu=1$ then we can add one extra box to the first row of D_{μ} and get a partition of zero weight.

Let $\omega t(\mu)<0$. By Lemmas 2 and 7 we can suppose that $w t(\mu) \geq-2 t^{4}$. If we add one box to each of rows $1,2, \ldots, t^{2}-t+1$ of D_{μ} we get the Young diagram D_{ρ} of partition $\rho \vdash m+t^{2}-t+1$ with $\operatorname{wt}(\rho)=w t(\mu)+1$. Applying this procedure at most $2 t^{4}$ times we get $\rho^{\prime} \vdash m_{0}^{\prime}$ with $w t\left(\rho^{\prime}\right)=0$ where

$$
m_{0}^{\prime} \leq m+\left(t^{2}-t+1\right) \cdot 2 t^{4} \leq m+4 t^{6}
$$

If m_{0}^{\prime} is a multiple of $t\left(t^{2}-1\right)$ then there is nothing to do. Otherwise there exists $0<i<t\left(t^{2}-1\right)$ such that $m_{0}^{\prime}+i$ is a multiple of $t\left(t^{2}-1\right)$. Note that m_{0}^{\prime} is even since it admits a partition of weight zero. Hence i is also even.

First we enlarge $D_{\rho^{\prime}}$ to $D_{\mu^{\prime}}$ by adding $\frac{t^{2}-1}{2}$ boxes to all $t^{2}-t$ first rows. Then also wt $\mu^{\prime}=0$. Since $\mu_{t^{2}-t}^{\prime}-\mu_{t^{2}-t+1}^{\prime} \geq \frac{t^{2}-1}{2}$, we can glue $\frac{i}{2}<t \frac{t^{2}-1}{2}$ boxes to the last t rows of $D_{\mu^{\prime}}$ and get $D_{\mu^{\prime \prime}}$. Finally, we glue $\frac{i}{2}$ boxes to the first row of $D_{\mu^{\prime \prime}}$ and obtain the diagram D_{v} such that $w t v=0$. Denote by m_{0} the number of boxes of D_{v}. As follows from our procedure, an upper bound for m_{0} is

$$
m+4 t^{6}+\left(t^{2}-t\right) \frac{t^{2}-1}{2}+t\left(t^{2}-1\right)<6 t^{6}+m
$$

It is shown in [17, Lemma 7] that if $\lambda \vdash n-1, \lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right), \lambda^{\prime} \vdash n, \lambda^{\prime}=$ ($\lambda_{1}^{\prime}, \ldots, \lambda_{d}^{\prime}$) and D_{λ} is obtained from $D_{\lambda^{\prime}}$ by cutting one box then

$$
\Phi(\lambda) \leq n^{\frac{d^{2}+d+2}{n}} \Phi\left(\lambda^{\prime}\right) .
$$

Hence

$$
\Phi(\mu) \leq\left(m+6 t^{6}\right)^{\left(\frac{4^{4}+t^{2}+2}{m}\right)^{6 t^{6}}} \Phi(v)
$$

and we complete the proof.

As a corollary of Lemmas 5 and 8 we immediately obtain
Lemma 9 Let $\mu=\left(\mu_{1}, \ldots, \mu_{t^{2}}\right)$ be a partition of m and let $w t \mu \leq 1$. Then there exists a polynomial $g(m)$ such that $\Phi(\mu) \leq g(m)^{\frac{1}{m}} t \sqrt{t^{2}-1}$.

4 Graded Codimensions of Lie Superalgebras of Type b(t)

In this section we use notations from [10]. Recall that $L=b(t), t \geq 2$, is a Lie superalgebra of $2 t \times 2 t$ matrices of the type

$$
\left(\begin{array}{cc}
A & B \\
C & -A^{T}
\end{array}\right),
$$

where $A, B, C \in M_{t}(F), B^{T}=B, C^{T}=-C$ and $\operatorname{tr} A=0$. Here the map $X \rightarrow X^{T}$ is the transpose involution. Decomposition $L=L_{0} \oplus L_{1}$ is defined by setting

$$
L_{0}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & -A^{T}
\end{array}\right) \right\rvert\, A \in M_{t}(F), \operatorname{tr}(A)=0\right\},
$$

and

$$
L_{1}=\left\{\left.\left(\begin{array}{cc}
0 & B \\
C & 0
\end{array}\right) \right\rvert\, B^{T}=B, C^{T}=-C \in M_{t}(F)\right\} .
$$

Super-Lie product on L is given by

$$
[x, y]=x y-(-1)^{|x||y|} y x
$$

for homogeneous $x, y \in L_{0} \cup L_{1}$.
It is not difficult to see that also L has \mathbb{Z}-grading

$$
\begin{equation*}
L=L^{(-1)} \oplus L^{(0)} \oplus L^{(1)} \tag{7}
\end{equation*}
$$

where $L^{(0)}=L_{0}$,

$$
\begin{align*}
L^{(-1)} & =\left\{\left.\left(\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right) \right\rvert\, C^{T}=-C \in M_{t}(F)\right\}, \tag{8}\\
L^{(1)} & =\left\{\left.\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right) \right\rvert\, B^{T}=B \in M_{t}(F)\right\} \tag{9}
\end{align*}
$$

and $L^{(n)}=0$ for all $n \neq 0$, ± 1. In particular, $L^{(-1)} \oplus L^{(1)}=L_{1}$ and $\operatorname{dim} L^{(0)}=t^{2}-$ $1, \operatorname{dim} L^{(-1)}=\frac{t(t-1)}{2}, \operatorname{dim} L^{(1)}=\frac{t(t+1)}{2}$.

Let $\chi_{k . n-k}(L)$ be $(k, n-k)$-cocharacter of L. Consider its decomposition (3) into irreducible components.

Lemma 10 Let $m_{\lambda, \mu} \neq 0$ in Eq. 3. Then D_{λ} lies in the strip of width $t^{2}-1$, that is, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $d \leq t^{2}-1$. In particular, $d_{\lambda} \leq \alpha(k)\left(t^{2}-1\right)^{k}$ for some polynomial $\alpha(k)$.

Proof Denote $A=F S_{k}$. Recall that, given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right) \vdash k$, the irreducible S_{k}-module corresponding to λ is isomorphic to the minimal left ideal generated by an essential idempotent $e_{T_{\lambda}}$ constructed in the following way.

Let T_{λ} be Young tableau, that is Young diagram D_{λ} filled up by integers $1, \ldots, k$. Denote by $R_{T_{\lambda}}$ and $C_{T_{\lambda}}$ row and column stabilizers in S_{k} of T_{λ}, respectively. Then

$$
R\left(T_{\lambda}\right)=\sum_{\sigma \in R_{T_{\lambda}}} \sigma, \quad C\left(T_{\lambda}\right)=\sum_{\tau \in C_{T_{\lambda}}}(\operatorname{sgn} \tau) \tau
$$

and

$$
e_{T_{\lambda}}=R\left(T_{\lambda}\right) C\left(T_{\lambda}\right)
$$

It is known that $e_{T_{\lambda}}^{2}=\alpha e_{T_{\lambda}}, 0 \neq \alpha \in \mathbb{Q}$, and an irreducible $F S_{k}$-module M has the character χ_{λ} if and only if $e_{T_{\lambda}} M \neq 0$. In particular, if M is an irreducible $F S_{k} \times$ $F S_{n-k}$-submodule in $P_{k, n-k}(L)$ with the character $\chi_{\lambda, \mu}$ then M can be generated by a multilinear polynomial of the type $e_{T_{\lambda}} \varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)$ with even x_{1}, \ldots, x_{k} and odd y_{1}, \ldots, y_{n-k} (since M is the direct sum of isomorphic irreducible S_{k}-modules with characters χ_{λ}). From the relation $e_{T_{\lambda}}^{2}=\alpha e_{T_{\lambda}} \neq 0$ it follows that the polynomial

$$
\psi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)=C\left(T_{\lambda}\right) e_{T_{\lambda}} \varphi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)
$$

also generates M.
Suppose now that $d>t^{2}-1$. Then D_{λ} contains at least one column of height d greater than $t^{2}-1=\operatorname{dim} L_{0}$. In this case ψ depends on at least one alternating set of even variables of order greater than $\operatorname{dim} L_{0}$. Standard arguments show that in this case ψ is an identity of L, a contradiction. Hence $d \leq t^{2}-1$. Now by [1, Lemma 6.2.5] there exists a polynomial $\alpha(k)$ such that $d_{\lambda} \leq \alpha(k)\left(t^{2}-1\right)^{k}$ and we complete the proof.

Lemma 11 Let $m_{\lambda, \mu} \neq 0$ in Eq. 3. Then wt $\mu \leq 1$.
Proof As in the previous lemma an irreducible $F S_{k} \times F S_{n-k}$-submodule M of $P_{k, n-k}(L)$ with the character $\chi_{\lambda, \mu}$ can be generated by

$$
\psi=\psi\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right)=C\left(T_{\mu}\right) e_{T_{\mu}} \varphi
$$

for some multilinear polynomial φ. The set of variables $\left\{y_{1}, \ldots, y_{n-k}\right\}$ can be split into disjoint union

$$
\left\{y_{1}, \ldots, y_{n-k}\right\}=Y_{1} \cup \ldots \cup Y_{p}
$$

where $p=\mu_{1}$, every set Y_{j} consists of odd indeterminates with the indices from the j-th column of T_{μ}. In particular, ψ is alternating on any subset $Y_{j}, 1 \leq j \leq p$, and we cannot substitute the same basis elements of L instead of distinct variables from the same column of T_{μ}, otherwise the value of ψ will be zero. Hence the minimal degree in \mathbb{Z}-grading Eqs. 7, 8 and 9 of the value of ψ on L is equal to $q=w t \mu$. So, if $q>1$ then ψ is an identity of L since $L^{(q)} \oplus L^{(q+1)} \oplus \cdots=0$, a contradiction.

Now we are ready to prove the main result of the paper.
Theorem 1 Let L be a Lie superalgebra of the type $b(t), t \geq 2$, over a field F of characteristic zero. Then there exists a polynomial $h=h(n)$ such that

$$
c_{n}^{g r}(L) \leq h(n)\left(t^{2}-1+t \sqrt{t^{2}-1}\right)^{n} .
$$

In particular,

$$
\overline{e x p}^{g r}(L) \leq t^{2}-1+t \sqrt{t^{2}-1}<2 t^{2}-1=\operatorname{dim} L .
$$

Proof Consider the inequality (5) for $c_{k, n-k}(L)$. By Lemma 10, $d_{\lambda}^{\max } \leq \alpha(k)\left(t^{2}-1\right)^{k}$ and by Lemma 11 we have $w t \mu \leq 1$ where $d_{\mu}=d_{\mu}^{\max }$. Then by Lemmas 1 and 9 ,

$$
d_{\mu}^{\max } \leq(n-k) g(n-k)\left(t \sqrt{t^{2}-1}\right)^{n-k} .
$$

Hence

$$
c_{k, n-k}(L) \leq f(n)(n-k) \alpha(k) g(n-k)\left(t^{2}-1\right)^{k}\left(t \sqrt{t^{2}-1}\right)^{n-k} .
$$

Clearly one can take a polynomial $h^{\prime}=h^{\prime}(n)$ such that $\alpha(k) g(n-k) \leq h^{\prime}(n)$ for all $k=0, \ldots, n$. Then

$$
c_{k, n-k}(L) \leq h(n)\left(t^{2}-1\right)^{k}\left(t \sqrt{t^{2}-1}\right)^{n-k}
$$

where $h(n)=n f(n) h^{\prime}(n)$. Now by Eq. 2

$$
c_{n}^{g r}(L) \leq h(n) \sum_{k=0}^{n}\binom{n}{k}\left(t^{2}-1\right)^{k}\left(t \sqrt{t^{2}-1}\right)^{n-k}=h(n)\left(t^{2}-1+t \sqrt{t^{2}-1}\right)^{n} .
$$

Obviously,

$$
\overline{\exp ^{g r}}(L)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}^{g r}(L)} \leq t^{2}-1+t \sqrt{t^{2}-1}
$$

and we complete the proof of Theorem 1.
As a consequence of Theorem 1 we get an upper bound for ordinary PI-exponent of $L=b(t), t \geq 2$.

Theorem 2 Let L be a Lie superalgebra of the type $L=b(t), t \geq 2$, over a field of characteristic zero. Then $\exp (L) \leq t^{2}-1+t \sqrt{t^{2}-1}$.

Proof The statement easily follows from Theorem 1, the inequality $c_{n}^{g r} \leq c_{n}(L)$ [7, 14] and from the existence of $\exp (L)$ [9].

References

1. Giambruno, A., Zaicev, M.: Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, vol. 122. American Mathematical Society, Providence, RI (2005)
2. Giambruno, A., Zaicev, M.: On codimension growth of finitely generated associative algebras. Adv. Math. 140, 145-155 (1998)
3. Giambruno, A., Regev, A., Zaicev, M.V.: Simple and semisimple Lie algebras and codimension growth. Trans. Am. Math. Soc. 352(4), 1935-1946 (2000)
4. Giambruno, A., Regev, A., Zaicev, M.V.: On the codimension growth of finite-dimensional Lie algebras. J. Algebra 220(2), 466-474 (1999)
5. Zaicev, M.V.: Integrality of exponents of codimension growth of identities of finite-dimensional Lie algebras, (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 66, 23-48 (2002). Translation in: Izv. Math. 66, 463-487 (2002)
6. Giambruno, A., Shestakov, I., Zaicev, M.: Finite dimensional nonassociative algebras and codimension growth. Adv. Appl. Math. 47, 125-139 (2011)
7. Bahturin, Yu., Drensky, V.: Graded polynomial identities of matrices. Linear Algebra Appl. 357, 15-34 (2002)
8. Giambruno, A., Zaicev, M.: Codimension growth of special simple Jordan algebras. Trans. Am. Math. Soc. 362, 3107-3123 (2010)
9. Giambruno, A., Zaicev, M.: On codimension growth of finite dimensional Lie superalgebras. J. Lond. Math. Soc. 95, 534-548 (2012)
10. Scheunert, M.: The theory of Lie superalgebras; An introduction. Lecture Notes in Math., vol. 716. Springer-Verlag, Berlin-Heidelberg-New York (1979)
11. Zaitsev, M.V., Mishchenko, S.P.: A criterion for polynomial growth of varieties of Lie superalgebras. Izv. RAN Ser. Mat. 62(5), 103-116 (1998). Translated in: Izv. Math. 62(5), 953-967 (1998)
12. Zaicev, M.V., Mishchenko, S.P.: Growth of some varieties of Lie superalgebras. Izv. RAN Ser. Mat. 71(4), 3-18 (2007). Translated in: Izv. Math. 71(4), 657-672 (2007)
13. Zaitsev, M.V., Mishchenko, S.P.: Identities for Lie superalgebras with a nilpotent commutator subalgebra. Algebra i Logika 47(5), 617-645 (2008). Translated in: Algebra and Logic 47(5), 348-364 (2008)
14. Giambruno, A., Regev, A.: Wreath products and P.I. algebras. J. Pure Appl. Algebra 35, 133-149 (1985)
15. James, G., Kerber, A.: The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, vol. 16. Addison-Wesley, London (1981)
16. Berele, A.: Cocharacter sequences for algebras with Hopf algebra actions. J. Algebra 185, 869885 (1996)
17. Zaitsev, M., Repovš, D.: Four dimensional simple algebra with the fractional PI-exponent. arxiv:1310.5471 (2013). Accessed 22 Oct 2013

[^0]: D. Repovš (\boxtimes)

 Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, P. O. B. 2964, Ljubljana 1001, Slovenia
 e-mail: dusan.repovs@guest.arnes.si
 M. Zaicev

 Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow 119992, Russia
 e-mail: zaicevmv@mail.ru

