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Abstract We study Z2-graded identities of Lie superalgebras of the type b (t), t ≥ 2,
over a field of characteristic zero. Our main result is that the n-th codimension is
strictly less than (dimb (t))n asymptotically. As a consequence we obtain an upper
bound for ordinary (non-graded) PI-exponent for each simple Lie superalgebra
b (t), t ≥ 3.
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1 Introduction

In this paper we study numerical invariants of identities of Lie superalgebras. One
of the main numerical characteristics of the identities of an algebra A over a field
F of characteristic zero is the sequence of codimensions {cn(A)},n = 1, 2, . . . , and
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its asymptotic behaviour. Many deep and interesting results in this area were proved
during the last few decades (see, for example, [1]) both in the associative and the non-
associative cases. In particular, in many classes of algebras (associative [2], Lie [3–5],
Jordan, alternative and some others [6]) it was proved that if A is a finite dimensional
algebra, dim A = d, and F is algebraically closed then PI-exponent exp(A) is equal
to d if and only if A is simple. In general exp(A) ≤ dim A as it was observed in [7, 8].
Recently (see [9]) it was shown that exp(L) < dim L provided that L is a simple
Lie superalgebra of the type b (t), t ≥ 3, (we use notations from [10] for simple Lie
superalgebras). Unfortunately, an upper bound α = α(t) < dimb (t) was not found
for exp(b (t)) in [9].

Since any Lie superalgebra L is Z2-graded, one can consider graded codimensions
cgrn (L) and graded PI-exponent expgr(L). Graded codimensions and graded PI-
exponents of Lie superalgebras were studied earlier in several papers (see, for
example, [11–13]). Existence and integrality of graded exponents were proved for
some classes of Lie superalgebras. On the other hand, there are no known examples
where expgr(L) is fractional.

There are some relations between graded and non-graded identities, codimensions
and PI-exponents. In particular,

cn(A) ≤ cgrn (A) (1)

(see [14] or [7]) for any finite dimensional G-graded algebra A where G is a finite
group. Hence when A is finite dimensional and simple and exp(A) = dim A it follows
from Eq. 1 and [7] that expgr(A) exists and is equal to dim A.

First series of examples with exp(A) �= dim A where A is a finite dimensional
simple algebra is given by simple Lie superalgebras b (t), t ≥ 3, of the dimension
dimb (t) = 2t2 − 1 [9]. It is important to study asymptotics of cgrn (b (t)) and to compare
it with the asymptotics of cn(b (t)). The main result of this paper says that the (upper)
graded PI-exponent of b (t) is less than or equal to t2 − 1 + t

√
t2 − 1. As a conse-

quence of this result and Eq. 1 we obtain an upper bound for ordinary PI-exponent of
b (t), exp(b (t)) ≤ t2 − 1 + t

√
t2 − 1. In particular, the difference dimb (t)− exp(b (t))

is at leasi t2 − t
√
t2 − 1 which is a decreasing function of t with limit 1

2 .

2 Preliminaries

Let A be an algebra over a field F of characteristic zero. Recall that A is said to
be Z2-graded algebra if A has a vector space decomposition A = A0 ⊕ A1 such that
A0A0 + A1A1 ⊆ A0, A0A1 + A1A0 ⊆ A1. Usually elements of A0 are called even
while elements of A1 are called odd. Any element of A0 ∪ A1 is called homogeneous.
In particular, a Lie superalgebra L is a Z2-graded algebra L = L0 ⊕ L1 satisfying the
following two relations

xy− (−1)|x||y|yx = 0,

x(yz) = (xy)z+ (−1)|x||y|y(xz)

where x, y, z are homogeneous elements and |x| = 0 if x is even while |x| = 1 if
x is odd.
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Denote by L(X,Y) a free Lie superalgebra with infinite sets of even generators
X and odd generators Y. A polynomial f = f (x1, . . . , xm, y1, . . . , yn) ∈ L(X,Y) is
said to be a graded identity of Lie superalgebra L = L0 ⊕ L1 if f (a1, . . . , am, b 1, . . . ,
bn) = 0 whenever a1, . . . , am ∈ L0,b 1, . . . ,bn ∈ L1.

Given positive integers 0 ≤ k ≤ n, denote by Pk,n−k the subspace of all multilinear
polynomials f = f (x1, . . . , xk, y1, . . . , yn−k) ∈ L(X,Y) of degree k in even variables
and of degree n− k in odd variables. Denote by Idgr(L) an ideal of L(X,Y) of
all graded identities of L. Then Pk,n−k ∩ Idgr(L) is the subspace of all multilinear
graded identities of L of total degree n depending on k even variables and n− k odd
variables. Denote also by Pk,n−k(L) the quotient

Pk,n−k(L) = Pk,n−k

Pk,n−k ∩ Idgr(L)
.

Then the graded (k,n− k)-codimension of L is

ck,n−k(L) = dim Pk,n−k(L)

and the total graded codimension of L is

cgrn (L) =
n∑

k=0

(
n
k

)
ck,n−k(L). (2)

If the sequence {cgrn (L)}n≥1 is exponentially bounded then one can consider the
related bounded sequence n

√
cgrn (L). The latter sequence has the following lower and

upper limits

expgr(L) = lim inf
n→∞

n

√
cgrn (L), expgr(L) = lim sup

n→∞
n

√
cgrn (L)

called the lower and upper PI-exponents of L, respectively. If an ordinary limit exists,
it is called an (ordinary) graded PI-exponent of L,

expgr(L) = lim
n→∞

n

√
cgrn (L)

Symmetric groups and their representations play an important role in the theory
of codimensions. In particular, in the case of graded identities one can consider the
Sk × Sn−k-action on multilinear graded polynomials. Namely, the subspace Pk,n−k ⊆
L(X,Y) has a natural structure of Sk × Sn−k- module where Sk acts on even variables
x1, . . . , xk while Sn−k acts on odd variables y1, . . . , yn−k. Clearly, Pk,n−k ∩ Idgr(L)
is the submodule under this action and we get an induced Sk × Sn−k-action on
Pk,n−k(L). The character χk,n−k(L) = χ(Pk,n−k(L)) is called (k,n− k) cocharacter
of L. By Maschke’s Theorem this character can be decomposed into the sum of
irreducible characters

χk,n−k(L) =
∑

λ
k
μ
n−k

mλ,μχλ,μ (3)

where λ and μ are partitions of k and n− k, respectively (all details concerning
representations of symmetric groups can be found in [15]).

Recall that an irreducible Sk × Sn−k-module with the character χλ,μ is the tensor
product of Sk-module with the character χλ and Sn−k-module with the character
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χμ. In particular, the dimension degχλ,μ of this module is the product dλdμ where
dλ = degχλ, dμ = degχμ. Taking into account multiplicities mλ,μ in Eq. 3 we get the
relation

ck,n−k(L) =
∑

λ
k
μ
n−k

mλ,μdλdμ. (4)

A number of irreducible components in the decomposition of χk,n−k(L), i.e. the sum

lk,n−k(L) =
∑

λ
k
μ
n−k

mλ,μ

is called the (k,n− k)-colength of L. If dim L < ∞ then by Ado Theorem (see [10,
Theorem 1.4.1]), L has a faithful finite dimensional graded representation. Hence
L has an embedding L ⊂ A = A0 ⊕ A1 as a Lie superalgebra where A is a finite
dimensional associative superalgebra. Given 0 ≤ k ≤ n, consider the graded (k,n−
k)-cocharacter of A:

χk,n−k(A) =
∑

λ
k
μ
n−k

mλ,μχλ,μ.

Then by [16],

n∑

k=0

∑

λ
k
μ
n−k

mλ,μ ≤ q(n)

for some polynomial q(n). Following the argument of the proof of [3, Lemma 3.2] we
obtain that

mλ,μ ≤ mλ,μ.

Hence in the finite dimensional case the total colength is polynomially bounded, that
is, for any L, dim L < ∞, there exists a polynomial f (n) such that

n∑

k=0

lk,n−k(L) ≤ f (n).

It follows that

ck,n−k(L) ≤ f (n)dmax
λ dmax

μ (5)

where dmax
λ , dmax

μ are maximal possible dimensions of Sk- and Sn−k-representations,
respectively, such thatmλ,μ �= 0. We will use relation (5) for finding an upper bound
for expgr(L).

3 Dimensions of some Sm-Representations

In this section we prove some technical results which we will use later. Fix an integer
t ≥ 2 and consider an irreducible Sm-representation with the character χμ, μ =
(μ1, . . . , μd),d ≤ t2. For convenience we will write μ = (μ1, . . . , μt 2) even in the case
d < t2 assuming μd+1 = . . . = μt 2 = 0.
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We define the following function of a partition μ 
 m

�(μ) = 1
(
μ1

m

) μ1
m · · · (μt 2

m

) μ
t 2
m

(6)

In Eq. 6 we assume that 00 = 1 if some of μ j are equal to zero. The value of�(μ)m is
equal to dμ up to a polynomial factor. More precisely, we have the following relation:

Lemma 1 [9, Lemma 1] Let m ≥ 100. Then

�(μ)m

mt 4+t 2 ≤ dμ ≤ m�(μ)m.

Now let λ and μ be two partitions of m with the corresponding Young diagrams
Dλ, Dμ. We say that Dμ is obtained from Dλ by pushing down one box if there exist
1 ≤ i < j ≤ t2 such that μi = λi − 1, μ j = λ j + 1 and μk = λk for all remaining k.

Lemma 2 (see [9, Lemma 3], [17, Lemma 2])Let Dμ be obtained from Dλ by pushing
down one box. Then �(μ) ≥ �(λ).

Now we define the weight of partition μ = (μ1, . . . , μt 2) as follows:

wt μ = −
(
μ1 + · · · + μ t 2− t

2

)
+

(
μ t 2− t

2 +1
+ · · · + μt 2

)
.

Recall (see [1]) that the hook partition h(d, l,k) is a partition with the Young
diagram of the shape

Here the first d rows have length l + k and remaining k rows have length l. We
slightly modify this notion and say that a partition μ = (μ1, . . . , μt 2 ) 
 m is a hook
h(s, r) if μ1 = . . . = μ t 2− t

2
= s and μ t 2− t

2 +1
= · · · = μt 2 = r < s.

The following observation is elementary.

Lemma 3 Let m be a multiple of t(t2 − 1). Then there exists a hook partition μ =
h(s, r) of m with s = r t+1

t−1 and wt μ = 0.

Proof Letm = it(t2 − 1). If we take μ = h(r, s) with s = (t + 1)i, r = (t − 1)i then the
number of boxes in the first t 2− t

2 rows, that is μ1 + · · · + μ t 2− t
2
, equals to

s
t2 − t

2
= it

(t − 1)(t+ 1)

2
= m

2
.
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Similarly, the number of boxes in all remaining rows of Dμ equals to

r
t2 + t

2
= it

(t − 1)(t+ 1)

2
= m

2
.

Hence wt μ = 0 and we are done. ��

Lemma 4 Let m be a multiple of t(t2 − 1) and let μ = h(s, r) be the hook partition
with zero weight as in Lemma 3. Then �(μ) = t

√
t2 − 1.

Proof Since

μ1

m
= . . . =

μ t 2− t
2

m
= s

m
,

μ t 2− t
2 +1

m
= . . . = μt 2

m
= r

m

andm = rt(t+ 1), s = r t+1
t−1 , we have

r
m

= 1

t(t + 1)
,

s
m

= 1

t(t − 1)
.

Hence

�(μ) = 1
(

1
t(t+1)

) t 2+ t
2t(t+1)

(
1

t(t−1)

) t 2− t
2t(t−1)

= (
t2(t + 1)(t− 1)

) 1
2 = t

√
t2 − 1.

��

For an arbitrary partition of weight zero we have the following.

Lemma 5 Let m be a multiple of t(t2 − 1) and let ν be a partition of m with wt ν = 0.
Then �(ν) ≤ t

√
t2 − 1.

Proof The Young diagram Dν of ν consists of two parts. The first one ν contains first
t 2− t

2 rows and the second part ν contains all remaining rows. Pushing down boxes
inside ν and ν separately we get new partition ν ′ 
 m with wt ν ′ = 0 maximally close
to hook partition. That is, first 0 < i ≤ t 2− t

2 rows of Dν′ have the length a and rows
i+ 1, . . . , t 2− t

2 (in case i < t 2− t
2 ) have the length a− 1. Similarly,

ν ′t 2− t
2 +1

= . . . = ν ′t 2− t
2 + j

= b , ν ′t 2− t
2 + j+1

= . . . = ν ′t 2 = b − 1

for some j. But under our assumptionm admits a hook partition by Lemma 3, hence
m
2 is a multiple of t 2− t

2 . It follows that i = t 2− t
2 . Similarly, j = t 2+ t

2 and ν ′ = h(a,b ).
Finally note that if m admits a hook partition μ = h(r, s) of weight zero then μ is
uniquely defined. Hence a = b t+1

t−1 and �(ν ′) = t
√
t2 − 1 by Lemma 4. By applying

Lemma 2 we complete the proof. ��

The main goal of this section is to get a similar upper bound for �(μ) for any
μ 
 m without any restriction onm and with wt(μ) ≤ 1.

First we prove an easy technical result.
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Lemma 6 Let λ = (λ1, . . . , λs) be a partition of n such that λ1 − λs ≥ 2s. Then by
pushing down one or more boxes in Dλ one can get a partition μ = (μ1, . . . μs) 
 n
with μs = λs + 1 and μ1 > λ1 − s. Similarly, one can get ν = (ν1, . . . νs) 
 n with ν1 =
λ1 − 1 and νs < λs + s.

Proof First we find μ. If s = 2 then the statement is obvious. Suppose s > 2. Then
we push down boxes in Dλ using only rows 2, 3, . . . , s. If we get on some step the
diagram Dμ with μs = λs + 1 then we proof is completed. Otherwise we will get a
diagram Dμ̄ where μ̄1 = λ1, μ̄2 = · · · = μ̄t = p+ 1, μ̄t+1 = · · · = μ̄s = p for some p
and some 2 ≤ t ≤ s. Moreover, p = λs if t < s or p+ 1 = λs if t = s. In this case we can
cut s− 1 boxes from the first row of Dμ̄ and the glue one box to each row 2, . . . , s in
Dμ̄. Then the partition μ = (μ1, . . . , μs), μ1 = μ̄1 − s+ 1, μ j = μ̄ j + 1, j = 2, . . . , s,
satisfies all conditions and we are done.

Similarly, if we push down boxes only in rows 1, . . . , s− 1 in Dλ then either we
will get a partition ν = (ν1, . . . , νs) with ν1 = λ1 − 1, νs = λs on some step or we will
get a partition ν̄ = (ν̄1, . . . , ν̄s) such thatν̄1 = · · · = ν̄t = p+ 1, ν̄t+1 = · · · = ν̄s−1 = p,
ν̄s = λs for some 1 ≤ t ≤ s− 1. In the latter case we push down one box from each
row 1, . . . , s− 1 to the last row of Dν̄ . Then we get the required ν 
 n and the proof
is completed. ��

Now we consider partitions with t2 components whose weight cannot be increased
by pushing down boxes in the Young diagram.

Lemma 7 Let μ = (μ1, . . . , μt 2 ) be a partition whose weight cannot be increased by
pushing down boxes. Then μ1 − μt 2 ≤ 4t2 and wt(μ) ≥ −2t4.

Proof Denote p = t 2+ t
2 ,q = t 2− t

2 for brevity. Clearly,μq ≤ μq+1 + 1. Ifμ1 − μq ≥ 3q
then by pushing down boxes we can get a partition μ′ = (μ′

1, . . . , μ
′
q) with μ′

q =
μq + 2 by Lemma 6. Hence μ1 − μq < 3q. Similarly, we can get (μ′′

q+1, . . . , μ
′′
q+p)

withμ′′
q+1 = μq+1 − 2 provided thatμq+1 − μq+p ≥ 3p. Thereforeμq+1 − μq+p < 3p.

Finally we obtain

μ1 − μq+p < 3p+ 3q+ 1 = 3t2 + 1 < 4t2.

For proving the second part of our lemma we split Dμ into two parts D1 and D2

where D1 consists of the first q rows of Dμ while D2 consists of the last p rows of
Dμ. By our assumption we cannot cut one box from D1 and glue it to D2. Denote
by a and b the number of boxes in D1, D2, respectively. Denote also μp+q = x. By
the first part of the lemma μ1 ≤ 4t2 + x. Hence a ≤ (4t2 + x)q. Obviously, b ≥ px.
Hence

wt(μ) = b − a ≥ x(p− q)− 4t2q ≥ −4t2 t
2 − t

2
≥ −2t4

and we complete the proof. ��

Next lemma shows how to reduce this problem to the case wt μ = 0 and m =
jt(t2 − 1).
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Lemma 8 Let μ = (μ1, . . . , μt 2 ) be a partition of m and let wt μ ≤ 1. Then there exist
an integer m0 ≥ m and a partition ν 
 m0 such that

(1) m0 −m ≤ 6t6,
(2) wt ν = 0,
(3) m0 is a multiple of t2(t− 1),
(4)

�(μ) ≤ (m+ 6t6)

(
t 4+t 2+2

m

)6t 6

�(ν).

Proof First we reduce the question to the casewt μ = 0. If wt μ = 1 then we can add
one extra box to the first row of Dμ and get a partition of zero weight.

Let wt(μ) < 0. By Lemmas 2 and 7 we can suppose that wt(μ) ≥ −2t4. If we add
one box to each of rows 1, 2, . . . , t2 − t + 1 of Dμ we get the Young diagram Dρ

of partition ρ 
 m+ t2 − t + 1 with wt(ρ) = wt(μ)+ 1. Applying this procedure at
most 2t4 times we get ρ ′ 
 m′

0 with wt(ρ ′) = 0 where

m′
0 ≤ m+ (t2 − t + 1) · 2t4 ≤ m+ 4t6.

If m′
0 is a multiple of t(t2 − 1) then there is nothing to do. Otherwise there exists

0 < i < t(t2 − 1) such thatm′
0 + i is a multiple of t(t2 − 1). Note thatm′

0 is even since
it admits a partition of weight zero. Hence i is also even.

First we enlarge Dρ′ to Dμ′ by adding t 2−1
2 boxes to all t2 − t first rows. Then also

wt μ′ = 0. Since μ′
t 2− t − μ′

t 2− t+1 ≥ t 2−1
2 , we can glue i

2 < t t
2−1
2 boxes to the last t rows

of Dμ′ and get Dμ′′ . Finally, we glue i
2 boxes to the first row of Dμ′′ and obtain the

diagram Dν such that wt ν = 0. Denote bym0 the number of boxes of Dν. As follows
from our procedure, an upper bound for m0 is

m+ 4t6 + (t2 − t)
t2 − 1

2
+ t(t2 − 1) < 6t6 +m.

It is shown in [17, Lemma 7] that if λ 
 n− 1, λ = (λ1, . . . , λd), λ′ 
 n, λ′ =
(λ′1, . . . , λ

′
d) and Dλ is obtained from Dλ′ by cutting one box then

�(λ) ≤ n
d2+d+2

n �(λ′).

Hence

�(μ) ≤ (m+ 6t6)(
t 4+ t 2+2

m )6t 6

�(ν)

and we complete the proof. ��

As a corollary of Lemmas 5 and 8 we immediately obtain

Lemma 9 Let μ = (μ1, . . . , μt 2 ) be a partition of m and let wt μ ≤ 1. Then there exists
a polynomial g(m) such that �(μ) ≤ g(m)

1
m t
√
t2 − 1.
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4 Graded Codimensions of Lie Superalgebras of Type b(t)

In this section we use notations from [10]. Recall that L = b (t), t ≥ 2, is a Lie
superalgebra of 2t × 2t matrices of the type

(
A B
C −AT

)
,

where A, B,C ∈ Mt(F), BT = B,CT = −C and trA = 0. Here the map X → XT is
the transpose involution. Decomposition L = L0 ⊕ L1 is defined by setting

L0 =
{(

A 0
0 −AT

)
| A ∈ Mt(F), tr(A) = 0

}
,

and

L1 =
{(

0 B
C 0

)
| BT = B,CT = −C ∈ Mt(F)

}
.

Super-Lie product on L is given by

[x, y] = xy− (−1)|x||y|yx

for homogeneous x, y ∈ L0 ∪ L1.
It is not difficult to see that also L has Z-grading

L = L(−1) ⊕ L(0) ⊕ L(1) (7)

where L(0) = L0,

L(−1) =
{(

0 0
C 0

)
| CT = −C ∈ Mt(F)

}
, (8)

L(1) =
{(

0 B
0 0

)
| BT = B ∈ Mt(F)

}
(9)

and L(n) = 0 for all n �= 0,±1. In particular, L(−1) ⊕ L(1) = L1 and dim L(0) = t2 −
1, dim L(−1) = t(t−1)

2 , dim L(1) = t(t+1)
2 .

Let χk.n−k(L) be (k,n− k)-cocharacter of L. Consider its decomposition (3) into
irreducible components.

Lemma 10 Let mλ,μ �= 0 in Eq. 3. Then Dλ lies in the strip of width t2 − 1, that is,
λ = (λ1, . . . , λd) with d ≤ t2 − 1. In particular, dλ ≤ α(k)(t2 − 1)k for some polyno-
mial α(k) .

Proof Denote A = FSk. Recall that, given a partition λ = (λ1, . . . , λd) 
 k, the
irreducible Sk-module corresponding to λ is isomorphic to the minimal left ideal
generated by an essential idempotent eTλ

constructed in the following way.
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Let Tλ be Young tableau, that is Young diagram Dλ filled up by integers 1, . . . , k.
Denote by RTλ

and CTλ
row and column stabilizers in Sk of Tλ, respectively. Then

R(Tλ) =
∑

σ∈RTλ

σ , C(Tλ) =
∑

τ∈CTλ

(sgnτ)τ

and

eTλ
= R(Tλ)C(Tλ).

It is known that e2
Tλ

= αeTλ
, 0 �= α ∈ Q, and an irreducible FSk-module M has the

character χλ if and only if eTλ
M �= 0. In particular, if M is an irreducible FSk ×

FSn−k-submodule in Pk,n−k(L) with the character χλ,μ then M can be generated by a
multilinear polynomial of the type eTλ

ϕ(x1, . . . , xk, y1, . . . , yn−k) with even x1, . . . , xk
and odd y1, . . . , yn−k (since M is the direct sum of isomorphic irreducible Sk-modules
with characters χλ). From the relation e2

Tλ
= αeTλ

�= 0 it follows that the polynomial

ψ(x1, . . . , xk, y1, . . . , yn−k) = C(Tλ)eTλ
ϕ(x1, . . . , xk, y1, . . . , yn−k)

also generates M.
Suppose now that d > t2 − 1. Then Dλ contains at least one column of height d

greater than t2 − 1 = dim L0. In this case ψ depends on at least one alternating set
of even variables of order greater than dim L0. Standard arguments show that in this
case ψ is an identity of L, a contradiction. Hence d ≤ t2 − 1. Now by [1, Lemma
6.2.5] there exists a polynomial α(k) such that dλ ≤ α(k)(t2 − 1)k and we complete
the proof. ��

Lemma 11 Let mλ,μ �= 0 in Eq. 3. Then wt μ ≤ 1.

Proof As in the previous lemma an irreducible FSk × FSn−k-submodule M of
Pk,n−k(L) with the character χλ,μ can be generated by

ψ = ψ(x1, . . . , xk, y1, . . . , yn−k) = C(Tμ)eTμ
ϕ

for some multilinear polynomial ϕ. The set of variables {y1, . . . , yn−k} can be split
into disjoint union

{y1, . . . , yn−k} = Y1 ∪ . . . ∪Yp

where p = μ1, every set Yj consists of odd indeterminates with the indices from the
j-th column of Tμ. In particular, ψ is alternating on any subset Yj, 1 ≤ j ≤ p, and we
cannot substitute the same basis elements of L instead of distinct variables from the
same column of Tμ, otherwise the value of ψ will be zero. Hence the minimal degree
in Z-grading Eqs. 7, 8 and 9 of the value of ψ on L is equal to q = wt μ. So, if q > 1
then ψ is an identity of L since L(q) ⊕ L(q+1) ⊕ · · · = 0, a contradiction. ��

Now we are ready to prove the main result of the paper.

Theorem 1 Let L be a Lie superalgebra of the type b(t), t ≥ 2, over a f ield F of
characteristic zero. Then there exists a polynomial h = h(n) such that

cgrn (L) ≤ h(n)
(
t2 − 1 + t

√
t2 − 1

)n
.
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In particular,

expgr(L) ≤ t2 − 1 + t
√
t2 − 1 < 2t2 − 1 = dim L.

Proof Consider the inequality (5) for ck,n−k(L). By Lemma 10, dmax
λ ≤ α(k)(t2 − 1)k

and by Lemma 11 we have wt μ ≤ 1 where dμ = dmax
μ . Then by Lemmas 1 and 9,

dmax
μ ≤ (n− k)g(n− k)

(
t
√
t2 − 1

)n−k
.

Hence

ck,n−k(L) ≤ f (n)(n− k)α(k)g(n− k)(t2 − 1)k
(
t
√
t2 − 1

)n−k
.

Clearly one can take a polynomial h′ = h′(n) such that α(k)g(n− k) ≤ h′(n) for all
k = 0, . . . , n. Then

ck,n−k(L) ≤ h(n)(t2 − 1)k
(
t
√
t2 − 1

)n−k

where h(n) = nf (n)h′(n). Now by Eq. 2

cgrn (L) ≤ h(n)
n∑

k=0

(
n
k

)
(t2 − 1)k

(
t
√
t2 − 1

)n−k = h(n)
(
t2 − 1 + t

√
t2 − 1

)n
.

Obviously,

expgr(L) = lim sup
n→∞

n

√
cgrn (L) ≤ t2 − 1 + t

√
t2 − 1

and we complete the proof of Theorem 1. ��

As a consequence of Theorem 1 we get an upper bound for ordinary PI-exponent
of L = b (t), t ≥ 2.

Theorem 2 Let L be a Lie superalgebra of the type L = b (t), t ≥ 2, over a f ield of
characteristic zero. Then exp(L) ≤ t2 − 1 + t

√
t2 − 1.

Proof The statement easily follows from Theorem 1, the inequality cgrn ≤ cn(L) [7,
14] and from the existence of exp(L) [9]. ��
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