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ABSTRACT 

We present a short  and direct proof (based on the Pont ryagin-Thom 

construction) of the following Pontryagin-Steenrod-Wu theorem: (a) Let 

M be a connected orientable closed smooth (n + 1)-manifold, n > 3. 
Define the degree map deg: ~rn(M) --+ Hn(M; Z) by the formula deg f = 
f* [Sn], where IS n] E Hn(M; Z) is the fundamental  class. The degree map 

is bijective, if there exists /3 E H2(M, Z/2Z)  such that  ~ • w2(M) ~ O. 
If such fl does not exist, then deg is a 2-1 map; and (b) Let M be an 

orientable closed smooth (n + 2)-manifold, n _> 3. An element a lies 

in the image of the degree map if and only if p2a • w2(M) -- 0, where 

P2: g -+ Z / 2 Z  is reduction modulo 2. 
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1. I n t r o d u c t i o n  

Throughout this paper let M be a connected orientable closed smooth manifold 

of dimension m = n + k. Denote by Lk (M) the set of k-dimensional framed links 

in M up to framed cobordism. By the Pontryagin-Thom construction, the set 

Lk(M) is in 1-1 correspondence with the set 7rn(M) = [M; S n] of continuous 

maps M -+ S n up to homotopy. The main purpose of this paper is to describe 

LI(M) = 7on(M) for k = 1 and in the 'stable range' n _> 3. The description of 

7rn(M) was reduced in [Pon39] [Ste47] (see also [FoFu89; §30.3]) to a calculation 

with Steenrod squares, which was done by Wu (cf. [FoFu89; §30.2.D]). 

In this paper we present a short proof of this Pontryagin-Steenrod-Wu classi- 

fication theorem. There are reasons to believe that  this is Pontryagin's original 

proof, which he never published, because he went straight ahead to the general 

case - -  when M is an arbitrary polyhedron (cf. Theorem 1.2 below and the 

remark after its formulation). 

This classification is based on the notions of natural orientation on a framed 

link and degree of a framed link, defined as follows. Take a point x on a framed 

link L and let f l , . . . ,  fn be the frame at this point. The basis e l , . . . ,  ek of Tx (L) 

is said to be posi t ive ,  if the basis e l , .  • . ,  ek, f l , .  • . ,  fn of Tx(M) is positive. The 

deg ree  deg L of L is the homology class (with integral coefficients) of positively 

oriented L. So we have a map 

deg: Lk(M) -+ Hk(M;Z).  

The Hopf-Whitney theorem (1932-35) asserts that  this map is bijective for 

k = 0 and surjective for k = 1. 

THEOREM 1.1: (a) Let M be a connected orientable closed smooth (n + 1)- 

manifold, n _> 3. The degree map deg : L1 (M) --+ H1 (M; Z) is bijective, if there 

exists ~ E H2(M,Z/2Z) such that I~ .w2(M) ~ O. If  such/~ does not exist, then 

deg is a 2-1 map (i.e., each a E Hi(M; Z) has exactly two preimages). 

(b) Let M be an orientable closed smooth (n + 2)-manifold, n >_ 3. Then 

an element a lies in the image of deg: L2(M) -~ H2(M;Z)  if and only if 

p2a" w2(M) = 0. 

Here • is the multiplication Hk(M;Z/2Z)  × Hk(M;Z/2Z)  --+ Z/2Z  and 

p2: Z -+ Z /2Z  is reduction modulo 2. However, in the proof of Theorem 1.1 

it is convenient to replace the cohomological Stiefel-Whitney classes by their 

homological duals. These classes are denoted by the same letters wi and ~ ,  

and their geometric definition (equivalent to other definitions) is recalled below. 
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Then • in the above (and in all the subsequent) formulae is to be understood as 

the intersection product Hi(M) × Hj (M)  -~ Hi+j-m(M).  

THEOREM 1.2 (Pontryagin): (a) Let M be a connected orientable dosed 

smooth 3-manifold. Then for each a E Hi(M; Z), deg -1 a is in a one-to-one 

correspondence with Z /2a ;3 H2(M; Z). 

(b) Let M be an orientable dosed smooth 4-manifold. Then an element a 

lies in the image of deg : L2(M) --+ H2(M; Z) if and only if a .  a = O. 

Theorem 1.2(b) can be proved analogously to our proof of Theorem 1.1(b) 

below. Our methods can perhaps be used to prove Theorem 1.2(a) which was 

stated without proof in [Pon39]. In fact, Theorem 1.2(a) was not included in 

[Pon39] (published in English), but only in the abstract (published in Russian), 

without any indication of its proof. This makes it even more important to have 

a published proof of this result. 

2. Geometric definition of homology St iefe l -Whitney classes 

Take a general position system of s tangent vector fields on M. Let E C M be 

the set of points at which these vector fields are not linearly independent. 

By transversality [DNF79; §10.3], E is a submanifold of M. The Stiefel- 

Whitney class wm+l-s(L) E Hs-I (M;  Z/2Z) is the class of the submanifold E 

(this is the first obstruction to existence of a linear independent system of s 

tangent vector fields on M). 

This definition can be easily generalized to the case when tangent vector fields 

in T M  are replaced by vector fields in an arbitrary vector bundle with the base 

M. If L C M is a submanifold, then such classes for the normal bundle of L 

in M and for the restriction of T M  to L are denoted by ~2(L) and w2(M)IL , 

respectively. 

We will also use relative versions of these classes. For example, suppose that  

L C M is an/-submanifold with boundary and a system f of m - l - 1 linearly 

independent normal vector fields is given on cOL. Then we can extend f to an 

arbitrary general position system of normal vector fields on L. 

Define ~2(L, f )  E H~_2(L; Z/2Z) to be the class of the (l -2)-submanifold,  

on which these extended vector fields are not linearly independent (this is the 

first obstruction to extension of f to a linear independent system on L). We 

will omit f from the notation, if no confusion could arise. 
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3. P r o o f  of Theorem 1.1(b) 

Take any a E H2(M;Z). The class a can be realized by an orientable 2- 

submanifold L C M. Clearly, a E I m  deg if and only if some such L can be 

framed. 

We can consider only connected L. Indeed, if some disconnected L can be 

framed, then the submanifold, which is the connected sum of all connected 

components of L, can also be framed and realizes the same homological class 

(this argument can be easily modified also for disconnected M). 

In this paragraph we show that L can be framed if and only if ~2 (L) = 0. 

By the definition of ~2(L) this condition is necessary. In order to prove the 

sufficiency assume that ~2(L) = 0. Since n _> 3 and dimL = 2, it follows that 

there is an orthonormal system of vector fields f l , . . .  , f n -1  which are normal 

to L. 

Since L 2 and M ~+2 are orientable, it follows that the normal bundle to L 

is orientable. Fix an orientation of this bundle. Taking a unit vector field fn 

orthogonal to f l , . . .  ,fn-1 and such that the basis f l , . . .  , fn  is positive (with 

respect to the specified orientation of the bundle), we obtain the required fram- 

ing. 

Now the theorem follows from the equalities 

~2(L) = w2(M)IL = w2(M) . [L] = w2(M) . p2a. 

Here the first equality follows by the Wu formula of Stiefel-Whitney classes 

of the sum of two bundles: w2(M)ln ---- w2(L) + wl(L) • ~I(L) + ~2(L), in 

which w:(L) = wl(L)  = 0 because L is an orientable 2-manifold (the first 

equality can also be proved directly). The second equality follows by the above 

geometric definition because L is connected (we identify H0(L; Z/2Z) ~ Z/2Z 

H0(M; Z/2Z)). | 

4. P r o o f  of Theo rem 1.1(a) 

Take an element a E HI(M;Z) .  Let L1,L2 C M be a pair of framed 1- 

submanifolds such that deg L1 -- deg L2. Denote by [LI], [L2] E LI(M) their 

classes. Since L1 and L2 are homologous, it follows by general position that 

there is an embedded 2-dimensional cobordism L C M × I (not framed) be- 

tween them: cOL = L 1 u L 2. Clearly, [L1] = [L2] if and only if for some L 

the framing of OL extends to L. Since M is connected, it follows that we can 

consider only connected L. 
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Let us show that  the framing of OL extends to that  of L if and only if 

~2(L) = 0. By definition of the relative Stiefel-Whitney classes this condi- 

tion is necessary. Let us prove the sufficiency. Assume that  w2 (L) = 0. Since 

n >_ 3 and dim L = 2, it follows that  the orthonormal system of the first n - 1 

vector fields of the framing of OL extends to L. 

Since L and M × I are orientable, and L1, L2 are naturally orientable, it 

follows that  there is an orientation of the normal bundle of L in M x I restricted 

to the given orientations on L1 and L2. So we can add one more unit vector 

field to the constructed orthonormal system on L to obtain a positive basis at 

each point of L (with respect to the specified orientation of L). So the required 

extension of the framing of OL to L has been constructed. | 

COMPLETION OF THE PROOF OF THEOREM 1.1(a) IN THE CASE WHEN THERE 

EXISTS ~ E H2(M,Z/2Z) SUCH THAT /3 .w2(M) ~ O. If ~2(L) = 0 then there 

is nothing to prove. Assume now that  v02(L) = 1. Here ~2(L) E H0(L; Z/2Z) 

Z/2Z,  because L is connected. Further, we identify all groups H0(X; Z/2Z) 

isomorphic to Z /2Z  with Z/2Z.  

Let us construct a new cobordism L' between L1 and L2 such that  ffJ2(L') = O. 

Let K be a connected orientable general position 2-submanifold realizing the 
1 Then class ~. We may assume that  K C M × ~. 

~2(K) = t E x  I n K }  = IE N KI = w2(M) . 8 = l m o d 2 .  

Here E C M x ½ is a submanifold realizing the class w2(M); the first equality 

follows from geometric definition above. Put  L I = L~K (L N K = 0 by general 

position). By Claim 4.1 below z02(L') = ~2(L) + ~2(K) = 0, and this case of 

the theorem is proved. | 

CLAIM 4.1: Suppose that K2, L 2 C M n+2 is a pair of disjoint connected 

orientable submanifolds and a frame of K and L is given on OK and OL, 

respectively. Then ffJ2(K~L) = ~2(K) + ~2(L), where the groups Ho(X; Z/2Z) 

are identified with Z/2Z  for X = K~L, K and L. 

Proof of Claim 4.1: Take a pair of small 2-disks k C K and l C L. Let 

kt ~- S 1 x I be a narrow tube such that  Okl = Ok H Ol and kl is tangent to both 

disks k and I. Fix a trivial frame of k and ! (and, consequently, of Ok and Of). 

By the above geometric definition it follows easily that  ffJ2(K~L) = 

~2(K - k) + ~02(k/) + ~2(L - l). On the other hand, one can check analo- 

gously that  w2(K) = w2(g  - k) + ~2(k) and ~2(L) = ~ ( L  - l) + w2(/). Since 

~2(k/) = w2(k)  = w2(/ )  = 0, it follows that  ~ 2 ( K ~ L )  = w 2 ( K )  + ~ ( L ) .  | 
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COMPLETION OF THE PROOF OF THEOREM 1.1(a) IN THE CASE WHEN FOR 

EACH fl E H2(M,Z/2Z)  WE HAVE /~ . w 2 ( M )  = 0. I t  suffices to show t h a t  for 

fixed [L1] the map [L2] ~+ w2(L) is well-defined and is a bijection deg -1 a --+ 
z/2z. 

Let us prove that the map is well-defined. Let L~ and L~ be a pair of framed 

submanifolds of M framed cobordant to Li and L2, respectively. Let L' be a 

(not framed) cobordism between them. It suffices to prove that w2 (L) = w2 (L') 

in case when L1 and L~, L2 and L~, L and L' are in general position. 

Assume that L1, L~ C M × 1, L2, L~ C M x 0 and L, L' C M × [0, 1]. Change 

the sign of the first vector field belonging to the framings of L~ and L~. Denote 

the obtained framed submanifolds by -L~ and -L~, respectively. 

Denote by ~2 ( -L ' )  the relative Stiefel-Whitney class of L with the reversed 

framing of OL'. Then ~2(-L ' )  = -~2(L') .  Further, both Li U (-L~) and L2 U 

(-L~) are framed cobordant to zero, i.e., to an empty submanifold. Let L+ C 

M × [1, +oc) and L_ C M × (-oc,  0] be the corresponding framed cobordisms. 

Then ~2(L+) = ~2(L-) = 0. 

By general position L R L' = 0. Denote K = L U L+ U L' U L_. By the above 

geometric definition it follows easily that 

~22(K) = +2(L) + +2(L+) + +2(-L ' )  + +2(L-) = +2(L) - +2(L'). 

It suffices to show that &2 (K) = 0. Let/~ be the cohomological class of image of 

K under the projection M × R --+ M. Analogously to the proof of the previous 

case of the theorem we see that ~2(K) = ~2(M)./]  = 0, hence w2(L) = w2(L') 

and our map deg - i  c~ -+ Z/2Z is well-defined. 

Now let us prove that our map is injective. It suffices to show that if L~ is a 

framed 1-submanifold and L' is a connected 2-dimensional embedded cobordism 

(not framed) between Li and L~ such that ~2(L) = ~2(n'), then [L2] = [L~]. 

Indeed, we may assume that Li C M × 0, L2 C M × 1, L~ C M × (-1), 

L C M × [0,1] and L' C M × [-1,0]. Then L U L '  is a cobordism between 

L2 and L~. By the above geometric definition it follows that ~2(L U L') = 

&2(L) + ~02(L') = 0, hence L U L' can be framed. So our map deg -1 c~ --+ Z/2Z 

is injective. 

Let us prove that our map is surjective. It suffices to show that some [L2] is 

mapped to 1. Since M is orientable, it follows there exists a framing fi  of L1. 

Fix a homeomorphism L1 ~ S 1. 

Denote by f i (x )  the choice of the framing at the point x E S 1. Take a map 

~: S 1 ~ SO(n) realizing a nonzero element of 7ri(SO(n)) ~- Z/2Z (which is 
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true because n > 3). Define a new framing f2 of L1 by the formula f2(x) = 

:(x)yl(x). 
The obtained framed submanifold is the required submanifold L2. Indeed, 

take L = L1 × I. Then zD2 (L) = 1. Indeed, assume the converse. Then the 

frames of L1 and L~ can be extended to the frame of L~ x I. This frame gives 

the homotopy between ~ and the constant map in SO(n), which contradicts the 

choice of ~. This contradiction completes the proof of Theorem 1.1(a). | 
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