COLLOQUIUM MATHEMATICUM

VOL. LXIX	1995	FASC. 2

on uncountable collections of continua AND THEIR SPAN

BY

```
DUŠAN REPOVŠ (TRIESTE and LJUBLJANA),
    ARKADIJ B. SKOPENKOV (MOSCOW)
        and EVGENIJ V. ŠC̆EPIN (MOSCOW)
```

We prove that if the Euclidean plane \mathbb{R}^{2} contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, $s X=0$. We also construct a modification of the Oversteegen-Tymchatyn example: for each $\varepsilon>0$ there exists a tree $X \subset \mathbb{R}^{2}$ such that $\sigma X<\varepsilon$ but X cannot be covered by any 1 -chain. These are partial solutions of some well-known problems in continua theory.

1. Introduction. It is well known that the plane \mathbb{R}^{2} does not contain uncountably many pairwise disjoint triods [14]. This result has been generalized in various directions [1], [3], [4], [16], [19], [21] and [22]. In the present paper we obtain further strengthenings of some of these results.

Consider the following conditions on a planar tree-like continuum X :
(C) X is chainable;
(U) The plane contains uncountably many disjoint copies of X;
(इ) $\quad \sigma X=0$; and
(S) $s X=0$.

Let $\widetilde{X}_{\varepsilon}^{*}=\left\{(x, y) \in X^{2} \mid \operatorname{dist}(x, y) \geq \varepsilon\right\}$ be the deleted product of X. Consider the involution $t(x, y)=(y, x)$ on $\widetilde{X}_{\varepsilon}^{*}$. Then the span of X is defined as follows [12]:

[^0]\[

$$
\begin{aligned}
& \sigma X=\sup \left\{\varepsilon \geq 0 \mid \text { there is a subcontinuum } Z \subset \widetilde{X}_{\varepsilon}^{*}\right. \\
& \text { such that } \left.\operatorname{pr}_{1}(Z)=\operatorname{pr}_{2}(Z)\right\}
\end{aligned}
$$
\]

and the symmetric span of X is defined [8] by
$s X=\sup \left\{\varepsilon \geq 0 \mid\right.$ there is a subcontinuum $Z \subset \widetilde{X}_{\varepsilon}^{*}$ such that $\left.Z=t(Z)\right\}$.
The implication $(\mathrm{C}) \Rightarrow(\mathrm{U})$ was proved in $[20]$ and $(\mathrm{C}) \Rightarrow(\Sigma)$ in [12]. Clearly, $(\Sigma) \Rightarrow(\mathrm{S})$ is obvious. It is an open problem in continua theory whether $(\mathrm{U}) \Rightarrow(\mathrm{C})[10]$ or $(\mathrm{U}) \Rightarrow(\Sigma)[7,430]$, or $(\mathrm{S}) \Rightarrow(\Sigma)[7,434]$, or $(\Sigma) \Rightarrow(\mathrm{C})$ [7, 435] (see [13], [15]).

$$
\begin{array}{lll}
\mathrm{C} & \Rightarrow & \Sigma \\
\Downarrow \\
\mathrm{U} & \Rightarrow & \Downarrow
\end{array}
$$

We prove a theorem which provides us with a tool for evaluation of the symmetric span (compare [2, 1.1.2], [16, I, Th. 2.6], [16, II, Th. 4]).

Theorem (1.1). (a) If $X \subset \mathbb{R}^{2}$ is a tree-like continuum and $f: X \rightarrow \mathbb{R}^{2}$ is a map ε-close to an inclusion and such that $X \cap f(X)=\emptyset$, then $s X \leq \varepsilon$. Moreover, if there is a vector $\vec{\varepsilon} \in \mathbb{R}^{2}$ such that $f(x)=x+\vec{\varepsilon}$, then $\sigma X \leq$ $\varepsilon=|\vec{\varepsilon}|$.
(b) If $f, g: X \rightarrow \mathbb{R}^{2}$ are ε-close maps with disjoint images from a tree-like continuum, then $s f \leq \varepsilon$.

Here,
$s f=\sup \left\{\varepsilon>0 \mid\right.$ there is a subcontinuum $Z \subset X^{2}$ such that $Z=t(Z)$

$$
\text { and } \operatorname{dist}(f(x), f(y)) \geq \varepsilon \text { for each }(x, y) \in Z\} .
$$

Let $\chi:\left(\widetilde{\mathbb{R}^{2}}\right)_{\varepsilon}^{*} \rightarrow S^{1}$ be the map defined by $\chi(x, y)=(x-y) /\|x-y\|$. The proof of Theorem (1.1)(a) is based on the fact that under the assumptions of the theorem, $\left.\chi\right|_{\tilde{X}_{\varepsilon}^{*}}$ is an inessential equivariant mapping. Take a covering $\widetilde{\chi}$: $\widetilde{X}_{\varepsilon}^{*} \rightarrow \mathbb{R}$ of $\left.\chi\right|_{\tilde{X}_{\varepsilon}^{*}} ^{*}$ and for $(x, y) \in \widetilde{X}_{\varepsilon}^{*}$ define that $x<y$ if $\widetilde{\chi}(x, y)<\widetilde{\chi}(y, x)$. Evidently, " $<$ " is a continuous relation (in general it is not transitive). Hence $\widetilde{X}_{\varepsilon}^{*}$ cannot contain a subcontinuum Z such that $Z=t(Z)$, so $s X \leq \varepsilon$. If $X \cap(X+\vec{\varepsilon})=\emptyset$, then each subcontinuum of X has a $<-$ minimal point. Hence $\widetilde{X}_{\varepsilon}^{*}$ cannot contain a subcontinuum Z such that $\operatorname{pr}_{1} Z=\operatorname{pr}_{2} Z$, so $\sigma X \leq \varepsilon$.

Conjecture (1.2). The condition " $f(x)=x+\vec{\varepsilon}$ " is unnecessary for the existence of a <-minimal point in every subcontinuum of X (Conjecture (1.2) implies that $(\mathrm{U}) \Rightarrow(\Sigma)$).

Corollary (1.3). (a) $((\mathrm{U}) \Rightarrow(\mathrm{S}))$ If the plane contains an uncountable collection of disjoint copies of a tree-like continuum X (or even the product
of X with a convergent sequence), then $s X=0$. Moreover, if these copies are obtained by parallel transfers from one another, then $\sigma X=0$.
(b) If $f_{\alpha}: X \rightarrow \mathbb{R}^{2}$ is a collection of maps from a tree-like continuum X with disjoint images, then $s f_{\alpha}=0$ for all but countably many α.

Since from $s X=0$ it follows that X is atriodic $[8],(\mathrm{U}) \Rightarrow(\mathrm{S})$ generalizes Moore's and Burgess' [4] theorems.

Ingram has constructed in [10] an uncountable collection of pairwise disjoint, nonhomeomorphic, tree-like continua with the positive symmetric span in the plane. This shows that the implication $(\mathrm{U}) \Rightarrow(\mathrm{S})$ does not extend to the case of nonhomeomorphic compacta. From $(\mathrm{U}) \Rightarrow(\mathrm{S})$ it follows that Ingram's continuum K [10], satisfying $s K>0$, yields an example of an atriodic continuum K such that the plane does not contain an uncountable collection of pairwise disjoint copies of K (this answers a question from [5]).

We also construct an example which is a modification of [16, I, Fig. 1]. The proof that $\sigma K<\varepsilon$ is based on the "moreover" part of Theorem (1.1)(a) and is shorter than in [16].

Example (1.4). For each $\varepsilon>0$, there is a tree $K \subset \mathbb{R}^{2}$ such that $\sigma K<\varepsilon$, but K cannot be covered by any chain with link diameters less than 1.

2. Proofs

Proof of Theorem (1.1)(a). Suppose, to the contrary, that $s X>\varepsilon$. Then there is a subcontinuum $Z \subset \widetilde{X}_{\varepsilon}^{*}$ such that $Z=t(Z)$. Let $\chi^{\prime}: X^{2} \rightarrow$ S^{1} be the map defined by $\chi^{\prime}(x, y)=\chi(x, f(y))$. For each $(x, y) \in Z$, since $\operatorname{dist}(x, y) \geq \varepsilon$ and $\operatorname{dist}(y, f(y))<\varepsilon$, it follows that $\chi(x, y)$ and $\chi^{\prime}(x, y)$ are not antipodal points of S^{1}. Hence $\left.\chi\right|_{z}$ and $\left.\chi^{\prime}\right|_{Z}$ are homotopic. Since X is tree-like, X^{2} is acyclic and so χ^{\prime} is inessential. Therefore $\left.\chi\right|_{Z}$ is also inessential.

By the following lemma (which is an improvement of [6, (3.1.2)] for the case $n=1$), Z is not connected, which is a contradiction (compare [11, proof of Corollary 1]).

Lemma (2.1). If there exists an inessential equivariant mapping $\chi: Z \rightarrow$ S^{1} (with respect to some involution t on Z and antipodal involution on S^{1}), then there exists an equivariant mapping $Z \rightarrow S^{0}$ (in particular, Z is not connected).

Proof. Denote the universal covering of S^{1} by $p: \mathbb{R} \rightarrow S^{1}$. Since χ is inessential, it follows that there is a lifting $\widetilde{\chi}: Z \rightarrow \mathbb{R}$ of χ :

Define $\chi_{1}: Z \rightarrow S^{0}$ as

$$
\chi_{1}(z)= \begin{cases}1, & \widetilde{\chi}(z)>\widetilde{\chi}(t(z)), \\ -1, & \widetilde{\chi}(z)<\widetilde{\chi}(t(z)) .\end{cases}
$$

Since χ is equivariant, it follows that for each $x \in Z, \chi(x) \neq \chi(t(x))$, hence $\widetilde{\chi}(x) \neq \widetilde{\chi}(t(x))$. Therefore χ_{1} is well defined. Evidently, χ_{1} is equivariant. Since $\{x \in Z \mid \widetilde{\chi}(x)>\widetilde{\chi}(t(x))\}$ and $\{x \in Z \mid \widetilde{\chi}(x)<\widetilde{\chi}(t(x))\}$ are open, χ_{1} is continuous.

Now, suppose that $f(x)=x+\vec{\varepsilon}$ and $\sigma X>\varepsilon$. Then there is a subcontinuum $Z \subset \widetilde{X}_{\varepsilon}^{*}$ such that $\operatorname{pr}_{1} Z=\operatorname{pr}_{2} Z$. For each $(x, y) \in \widetilde{X}_{\varepsilon}^{*}$ write $x<y$ if $\widetilde{\chi}(x, y)<\widetilde{\chi}(y, x)$ (we use the notation of Lemma (2.1)). By the following lemma there is a $<$-minimal point $u \in \operatorname{pr}_{1} Z=\operatorname{pr}_{2} Z$. Then there are $v, w \in X$ such that $(u, v),(w, u) \in Z$. Since Z is connected and " $<$ " is continuous, either $v<u<w$ or $w<u<v$. This is a contradiction to the $<-$ minimality of u.

Lemma (2.2). Every subcontinuum of X has $a<-$ minimal point (i.e. a point u such that $u<x$ whenever $\left.(u, x) \in X_{\varepsilon}^{*}\right)$.

Proof. We may assume that the given subcontinuum is X itself. Let $O x y$ be a Cartesian coordinate system such that the directions of $O x$ and $\vec{\varepsilon}$ are the same and the orientation on S^{1} induced by this system coincides with the one induced by $p(t)$. Hence we may assume that $\chi((0,0)$, $(\cos 2 \pi t, \sin 2 \pi t))=p(t)$. Let us prove that every point $a \in X$ with the minimal y-projection is <-minimal.

Since $\operatorname{dist}\left(\chi,\left.\chi^{\prime}\right|_{\tilde{X}_{\varepsilon}^{*}}\right)<1 / 4$, there is a covering $\tilde{\chi}^{\prime}: X^{2} \rightarrow \mathbb{R}$ of χ^{\prime} which is $(1 / 4)$-close to $\widetilde{\chi}$ on $\widetilde{X}_{\varepsilon}^{*}$. Since $|\widetilde{\chi}(u, z)-\widetilde{\chi}(z, u)|=1 / 2$, the inequality $\widetilde{\chi}(u, z)>\widetilde{\chi}(z, u)$ holds if and only if $\widetilde{\chi}^{\prime}(u, z)>\widetilde{\chi}^{\prime}(z, u)$. By the choice of u, $\chi^{\prime}(u \times X) \subset p[0,1 / 2]$. If $\chi^{\prime}(u, z)=p(1 / 2)$ for some $z \in X$, then on the line going through u and parallel to $\vec{\varepsilon}$, the points $z, z+\vec{\varepsilon}, u, u+\vec{\varepsilon}$ are situated in this order. But u and z and $z+\vec{\varepsilon}$ and $u+\vec{\varepsilon}$ are joined by the nonintersecting continua X and $\vec{\varepsilon}+X$ lying in the upper half-plane with respect to the line. This is a contradiction, hence $\chi^{\prime}(u \times X) \subset p[0,1 / 2)$. Analogously, $\chi^{\prime}(X \times u) \subset p(-1 / 2,0]$. Because of this and since $\chi^{\prime}(u, u)=p(0)$, we have $\widetilde{\chi}^{\prime}(u, z) \geq \widetilde{\chi}^{\prime}(u, u) \geq \widetilde{\chi}^{\prime}(z, u)$ for each $z \in X$. Therefore $\widetilde{\chi}(u, z)>\widetilde{\chi}(z, u)$ whenever $(u, z) \in \widetilde{X}_{\varepsilon}^{*}$.

Proof of Theorem (1.1)(b). Suppose that $\varepsilon<s f$. Then there is a subcontinuum $Z \subset X^{2}$ such that $Z=t(Z)$ and $\operatorname{dist}(f(x), f(y)) \geq \varepsilon$ for each $(x, y) \in Z$. Then, as in the proof of (a), the map $\left.\chi \circ(f \times f)\right|_{Z}$ is inessential and equivariant. Hence Z is not connected, which is a contradiction.

Proof of Corollary (1.3). (a) By [9], the product of X with the Cantor set embeds in \mathbb{R}^{2}. We obtain the conclusion with a weaker assump-
tion that $X \times C$ embeds in \mathbb{R}^{2}. Here $C=c_{0} \cup \bigcup_{m=1}^{\infty} c_{m}$ is a convergent sequence such that $c_{0}=\lim _{m \rightarrow \infty} c_{m}$. If $X \times C \subset \mathbb{R}^{2}$, then for each $\varepsilon>0$, there is a map $f: X \times c_{0} \cong X \times c_{m} \hookrightarrow \mathbb{R}^{2}$ which is ε-close to the inclusion $X \times c_{0} \hookrightarrow \mathbb{R}^{2}$ and such that $X \times c_{0} \cap f\left(X \times c_{0}\right)=X \times c_{0} \cap X \times c_{m}=\emptyset$. By Theorem (1.1)(a), $s\left(X \times c_{0}\right)<\varepsilon$ for each $\varepsilon>0$, therefore $s X=0$.

The "moreover" part is proved analogously.
(b) Clearly, it suffices to prove that there exists α such that $s f_{\alpha}=0$. Similarly to (a), it suffices to prove that if $f: X \times X \rightarrow \mathbb{R}^{2}$ is a map such that $f_{m}(X) \cap f_{n}(X)=\emptyset$ for $m \neq n$, then $s f_{0}=0$ (here $f_{m}(X)=f\left(X, c_{m}\right)$). As in the proof of (a), sfore for each $\varepsilon>0$, therefore $s f_{0}=0$.

Construction of Example (1.4). Fix an integer n. Let

$$
\begin{aligned}
K= & \{0\} \times[2,3] \cup \bigcup_{l=1}^{n}\left([0, l] \times\left\{a_{2 l-1}\right\} \cup\{l\} \times\left[a_{2 l-1}, a_{2 l}\right]\right. \\
& \left.\cup[0, l+1] \times\left\{a_{2 l}\right\} \cup\{0\} \times\left[a_{2 l+1}, a_{2 l}\right]\right),
\end{aligned}
$$

where

$$
a_{2 l-1}=2-\frac{2 l-2}{n} \quad \text { and } \quad a_{2 l}=2-\frac{2 l-2}{n}-\frac{2 l-1}{n^{2}}
$$

(see Fig. 1 for $n=4$). Let $\vec{\varepsilon}=(-c,-2 / n-b)$, where $c>0$ and $0<b<2 / n^{2}$. Then $K \cap(K+\vec{\varepsilon})=\emptyset$. By Theorem (1.1)(a),

$$
\sigma K \leq \inf _{c, b} \sqrt{c^{2}+(2 / n+b)^{2}}=2 / n
$$

Let us prove that for each chain covering K, the diameter of at least one of its links is greater than 1 , provided $n \geq 5$. This property was claimed without proof in [16] for their example. Suppose, on the contrary, that $K=C_{1} \cup \ldots \cup C_{m}$, where the C_{i} are closed subsets of K of diameter less than 1 , and $C_{i} \cap C_{j} \neq 0$ if and only if $|i-j| \leq 1$. Without loss of generality, we may assume that the intersection of each C_{i} with any straight line segment contained in K is connected. Let us fix some notation. Let $x_{i}=\left(n+1-i, a_{2(n-i)}\right), 0 \leq i \leq n-2, u_{i}=\left(n+1-i, a_{2(n-i-1)}\right), 1 \leq i \leq n-2$, $z=(0,3), t=(0,0), v=\left(1,1 / n^{2}\right), y_{i}=\left(2, a_{2 n+1-i}\right), 2 \leq i \leq 2 n-2$ (see Fig. 1). For $p, q \in K$, we denote by $\langle p q\rangle$ the closure of the connected component of $K \backslash\{p, q\}$ which contains both p and q.

Evidently, x_{0} and z are contained in the first and in the last link of the chain $\left\{C_{i}\right\}$. Without loss of generality, we may assume that $x_{0} \in C_{1}$ and $z \in C_{m}$. Let k be the greatest integer such that $C_{k} \cap\left\langle x_{0} y_{2}\right\rangle \neq \emptyset$. Since $\left\langle x_{0} y_{2}\right\rangle$ is connected, for each $s=1, \ldots, k, C_{s} \cap\left\langle x_{0} y_{2}\right\rangle \neq \emptyset$ (if $C_{i} \cap\left\langle x_{0} y_{2}\right\rangle=\emptyset$ for some $i=2, \ldots, k-1$, then $\left(C_{1} \cup \ldots \cup C_{i-1}\right) \cap\left\langle x_{0} y_{2}\right\rangle$ and $\left\langle C_{i+1} \cup \ldots \cup C_{k}\right\rangle \cap\left\langle x_{0} y_{2}\right\rangle$ are disjoint nonempty subsets of $\left\langle x_{0} y_{2}\right\rangle$ whose union is $\left\langle x_{0} y_{2}\right\rangle$, which is a contradiction).

Fig. 1

Also, $C_{k} \cap\langle t v\rangle \neq \emptyset$. Indeed, in the opposite case there is a point $p \in C_{k} \cap$ $\left\langle v y_{2}\right\rangle$. As in the previous paragraph, since $\left\langle p u_{1}\right\rangle \cup\left\langle u_{1} x_{0}\right\rangle$ (when $p \in\left\langle v u_{1}\right\rangle$) or $\left\langle p x_{0}\right\rangle$ (when $p \in\left\langle u_{1} x_{0}\right\rangle$) is connected, it follows that each C_{1}, \ldots, C_{k} intersects $\left\langle p u_{1}\right\rangle \cup\left\langle u_{1} x_{0}\right\rangle$ or $\left\langle p x_{0}\right\rangle$, respectively. Hence the link containing t intersects $\left\langle v y_{2}\right\rangle$. Therefore it has diameter greater than $\operatorname{dist}\left(t,\left\langle v y_{2}\right\rangle\right)>1$, which is a contradiction.

Let $C=C_{1} \cup \ldots \cup C_{k}$. Then $x_{1} \in C$. Indeed, take an integer i such that $x \in C_{i}$. Since $\operatorname{dist}\left(x_{1}, x_{0}\right)>1$, we have $C_{i} \cap\left(\left\langle z u_{2}\right\rangle \cup\left\langle y_{2} u_{2}\right\rangle\right)=\emptyset$ and by our assumption, $C_{i} \cap\left\langle x_{1} v\right\rangle$ is a segment. Therefore $C_{i} \cap\left\langle x_{0} y_{2}\right\rangle \neq \emptyset$ and so $x_{1} \in C$.

Next, $\left\langle y_{3} y_{4}\right\rangle \in C$. Indeed, in the opposite case take a point $q \in\left\langle y_{3} y_{4}\right\rangle$ closest to y_{4} such that $\left\langle q u_{2}\right\rangle \cup\left\langle u_{2} x_{1}\right\rangle \subset C$ (if $q \notin\left\langle u_{2} x_{1}\right\rangle$) or $\left\langle q x_{1}\right\rangle \subset C$ (if $\left.q \in\left\langle u_{2} x_{1}\right\rangle\right)$. Then $q \in C_{l} \cap C_{i}$, where $l>k \geq i$. Since $C_{i} \cap C_{j}=\emptyset$ when $|i-j|>1$, it follows that $i=k$ and $l=k+1$. Since $C_{k} \cap\langle v t\rangle \neq \emptyset$ and $q \in C_{k} \cap\left\langle y_{3} y_{4}\right\rangle$, it follows that $\operatorname{diam} C_{k}>\operatorname{dist}\left(\langle v t\rangle,\left\langle y_{3} y_{4}\right\rangle\right)>1$, which is a contradiction.

Analogously, $x_{2} \in C$, then $\left\langle y_{5} y_{6}\right\rangle \in C$ and so on. Hence $x_{n-2} \in C$. Since each C_{1}, \ldots, C_{k} intersects $\left\langle x_{0} y_{2}\right\rangle$, the diameter of the link $C_{i} \subset C$ containing x_{n-2} is greater than $\operatorname{dist}\left(x_{n-2},\left\langle x_{0} y_{2}\right\rangle\right)=2-4 / n-3 / n^{2}>1$ when $n \geq 5$, which is a contradiction.

Acknowledgements. This research was initiated during the visit by the first author to the Steklov Mathematical Institute in 1993, on the basis of the long term joint research program of the Slovenian Academy of Sciences and Arts and the Russian Academy of Sciences (1991-1995). The authors wish to acknowledge remarks from the referee.

REFERENCES

[1] R. D. Anderson, Continuous collections of continuous curves, Duke Math. J. 21 (1954), 363-367.
[2] V. I. Arnold, Ordinary Differential Equations, Nauka, Moscow, 1971 (in Russian).
[3] B. J. Baker and M. Laidacker, Embedding uncountably many mutually exclusive continua into Euclidean space, Canad. Math. Bull. 32 (1989), 207-214.
[4] C. E. Burgess, Collections and sequences of continua in the plane I, II, Pacific J. Math. 5 (1955), 325-333; 11 (1961), 447-454.
[5] -, Continua which have width zero, Proc. Amer. Math. Soc. 13 (1962), 477-481.
[6] P. E. Conner and E. E. Floy d, Fixed points free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441.
[7] H. Cook, W. T. Ingram and A. Lelek, Eleven annotated problems about continua, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 295-302.
[8] J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138.
[9] E. K. van Douwen, Uncountably many pairwise disjoint copies of one metrizable compactum in another, Topology Appl. 51 (1993), 87-91.
[10] W. T. Ingram, An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span, Fund. Math. 85 (1974), 73-78.
[11] H. Kato, A. Koyama and E. D. Tymchatyn, Mappings with zero surjective span, Houston J. Math. 17 (1991), 325-333.
[12] A. Lelek, Disjoint mappings and the span of the spaces, Fund. Math. 55 (1964), 199-214.
[13] P. Minc, On simplicial maps and chainable continua, Topology Appl. 57 (1994), 1-21.
[14] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88.
[15] L. G. Oversteegen, On span and chainability of continua, Houston J. Math. 15 (1989), 573-593.
[16] L. Oversteegen and E. D. Tymchatyn, Plane strips and the span of continua $I, I I$, ibid. 8 (1982), 129-142; 10 (1984), 255-266.
[17] C. R. Pittman, An elementary proof of the triod theorem, Proc. Amer. Math. Soc. 25 (1970), 919.
[18] D. Repovš and E. V. Ščepin, On the symmetric span of continua, Abstracts Amer. Math. Soc. 14 (1993), 319, No. 93T-54-42.
[19] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of $X \times I$ into Euclidean space, Houston J. Math. 21 (1995), 199-204.
[20] J. H. Roberts, Concerning atriodic continua, Monatsh. Math. 37 (1930), 223-230.
[21] K. Sieklucki, A generalization of a theorem of K. Borsuk concerning the dimension of ANR-sets, Bull. Acad. Polon. Sci. 10 (1962), 433-463; Erratum, 12 (1964), 695.
[22] G. S. Young, Jr., A generalization of Moore's theorem on simple triods, Bull. Amer. Math. Soc. 5 (1944), 714.

Dušan Repovš
UNIVERSITY OF TRIESTE
1, PIAZZALE EUROPA
34100 TRIESTE, ITALY

Permanent address of Dušan Repovš
INSTITUTE FOR MATHEMATICS, PHYSICS AND MECHANICS UNIVERSITY OF LJUBLJANA P.O. BOX 64

LJUBLJANA 61111, SLOVENIA
E-mail: DUSAN.REPOVS@UNI-LJ.SI

Arkadij B. Skopenkov FACULTY OF MECHANICS AND MATHEMATICS MOSCOW STATE UNIVERSITY
vorobyovy hills 117899 MOSCOW, RUSSIA

Evgenij V. Ščepin
STEKLOV MATHEMATICAL INSTITUTE RUSSIAN ACADEMY OF SCIENCES

42, VAVILOVA STREET 117966 MOSCOW, RUSSIA

[^0]: 1991 Mathematics Subject Classification: Primary 54F50; Secondary 54G20, 55S15.
 Key words and phrases: equivariant maps, uncountable collection of compacta, symmetric span, span, chainable continua, deleted product.

 Research of the first author supported in part by the Go West Fellowship No. 792 from the Commission of the European Communities and by the Ministry for Science and Technology of the Republic of Slovenia research grant No. P1-0214-101-94.

 Research of the third author supported in part by a grant from the Russian Fundamental Research Foundation No. 93-0211-1402.

