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On projected embeddings and desuspending theα-invariant
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Abstract

A mapf :K→ L is called aprojected embedding fromL×Bs if there is an embeddingF :K→
L×Bs such thatf = π ◦F , whereπ :L×Bs→ L is the projection. A mapf :Sp � Sq→ Sm is a
link mapif f Sp ∩ f Sq = ∅. We apply projected embeddings to desuspending theα-invariant of link
maps and to embeddings of double covers into Euclidean space.
 2001 Elsevier Science B.V. All rights reserved.
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A mapf :K→L is called aprojected embedding fromL×Bs if there is an embedding
F :K → L × Bs such thatf = π ◦ F , whereπ :L × Bs → L is the projection. A map
f :X � Y → Z is a link map if f (X) ∩ f (Y ) = ∅. In this paper we apply projected
embeddings to desuspending theα-invariant of link maps (Theorem 1) and to embeddings
of double covers into Euclidean space (Theorem 3). For an introduction and motivation see
[9,14,12], [16, Question on p. 152], [17, §6], [22,2].

We shall work in the smooth category. LetEMm
pq be the set of link mapsSp � Sq→ Sm

which embedSp standardly in the PL category (note thatany embeddingSp → Sm is
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PL standard form � p + 3 [7]). Let λ : EMm
pq → πq(S

m−p−1) be the linking coefficient.
A link concordancebetween link mapsf0, f1 :Sp � Sq→ Sm is a link map

F :Sp × I � Sq × I → Sm × I
such thatF(x,0)= f0(x) andF(x,1)= f1(x). The link concordance does not necessarily
embedSp × I .

Theorem 1. Denotek = 2p+1−m. The mappinga =Σkλ : EMm
pq→ πk+q(Sp) is a link

concordance invariant, provided3p2 + 1 �m� 2p and the binomial coefficient
(
m− p
k

)
is

odd.

Clearly, ima = Σkπq(Sm−p−1) andΣq+3−ma = Σ∞λ is the well-knownα-invariant
[8,10], see also [19,21]. Thus Theorem 1 forq � m − 1 together with examples of non-
surjectivity and non-injectivity of a non-stable suspension homomorphism gives examples
of non-surjectivity and non-injectivity of theα-invariant. Theorem 1 is not interesting for
q � m − 2: for q � m − 3 the a-invariant is a suspension of theα-invariant, and for
q =m− 2 we have

ima = ker
(
h :π2p−1

(
Sp

)→ Z(p)

)∼= π2p
(
Sp+1)= πSp−1,

anda gives no more information thanα.
Denote byLMm

pq the set of link mapsSp � Sq → Sm, up to the link concordance. In [9,

14] an invarianta′ : LMm
pq → πk+q+1(S

p+1) was constructed such thatΣq+2−ma′ = α
(note that the concordance invariance ofΣa = a′ follows analogously to Lemma 2 below,
sinceSp × I embeds intoSm × I ×R

k+1 by general position).
The desuspension ofα given by Theorem 1 is stronger in the sense thata′ = Σa

but weaker in the sense thata is defined only onEMm
pq not on LMm

pq . It would be
interesting to know ifEMm

pq in Theorem 1 can be replaced byLMm
pq (we can approximate

the compositionSp → Sm→ Sm × R
k by embeddings, but it remains to prove that our

invariant will not depend on this approximation).
Form= 2p � 6 andq � 3p− 6 Theorem 1 (with the invariant defined even onLMm

pq )
follows from [27, Proposition F], and was also stated without proof in [15]. Nezhinskij
outlined a geometric proof of this simplest case of Theorem 1 (without the restriction
q � 3p− 6 at the Alexandrov Session in 1999, but with the invariant defined onEM2p

pq not

onLM2p
pq ). Our proof of Theorem 1 extends his ideas.

Proof of Theorem 1. Suppose that

F :Sp × I � Sq × I → Sm × I
is a link concordance betweenF0,F1 :Sp�Sq→ Sm such thatF |Sp×{0,1} is an embedding.
Since there existssomeproper framed immersionSp × I � Sq × I → Sm × I , we may
assume by [6, 1.2.2], [1, Lemma 2] thatFSp×I is a general position framed immersion.

By general position,F |Sp×I has no triple points. Therefore by Lemma 2 below for
n= p+ 1, there is an embedding

�F :Sp × I → Sm × I ×R
k



D. Repovš, A. Skopenkov / Topology and its Applications 124 (2002) 69–75 71

such thatπ ◦ �F = F |Sp×I , where

π :Sm × I ×R
k→ Sm × I

is the projection.
We may assume thatSm×I×R

k ⊂Σk(Sm×I) close to the baseSm×I ⊂Σk(Sm×I).
Let �F |Σk(Sq×I ) =ΣkF |Sq×I . SinceF(Sp × I) ∩F(Sq × I)= ∅, it follows that

�F :Sp × I �Σk(Sq × I)→Σk
(
Sm × I)

is a link concordance, which embedsSp × I , between�F0 = ΣkF0 and �F1 = ΣkF1.
ThereforeΣkλ(F0)= λ(�F0)= λ(�F1)=Σkλ(F1). ✷
Lemma 2. If the binomial coefficient

(
n− k
k

)
is odd,N is an n-manifold andf :N →

B2n−k is a proper general position framed immersion without triple points and such that
f |∂N is an embedding, thenf is a projected embedding fromB2n−k ×Bk .

Proof. Let

∆= {
x ∈ B2n−k:

∣∣f−1x
∣∣ � 2

}
and ∆̃= {

x ∈N :
∣∣f−1f x

∣∣ � 2
}
.

Thenf̂ = f |∆̃ : ∆̃→∆ is a double covering. Denote bŷf the line bundle associated with
the double coverf̂ and letw1(f̂ ) ∈ Hk(∆,Z2) be the first Stiefel–Whitney class of this
line bundle.

The normal bundle of∆ in B2n−k is isomorphic to(n− k)⊕ (n− k)f̂ . Hence

w̄(∆)= (
1+w1

(
f̂

))n−k
, so 0= w̄k(∆)=

(
n− k
k

)(
w1

(
f̂

))k = (
w1

(
f̂

))k
cf. [3, proof of proposition].

By general position dim∆ = k. Hence it follows by Theorem 3(a) below that̂f is a
projected embedding from∆ × Bk . This implies thatf is a projected embedding from
B2n−k ×Bk .

Indeed, take a map̂g : ∆̃→ Bk such thatf̂ × ĝ : ∆̃→ ∆ × Bk is an embedding.
Take a Riemannian metric onN such that 1-neighborhoodU of ∆̃(f ) in N is a tubular
neighborhood of̃∆ in N . Let r :U → ∆̃ be the projection of the normal bundle. Define
a mapg :N→ Bk by g(x)= 0 for x /∈ U andg(x)= (1− dist(x, ∆̃))ĝ(r(x)) for x ∈ U .
Thenf × g :N→N ×Bk is an embedding. ✷
Theorem 3. Let∆ be ak-manifold(closed or with boundary), ∆̃ its double cover and
pr :∆̃→∆ the projection. Consider the following conditions:

(E) there exists an equivariant mapg : ∆̃→ Ss−1;
(P) pr is a projected embedding from∆×Bs;
(A) the compositioñ∆

pr→∆⊂∆×Bs is approximable by embeddings;
(W) (w1(pr))s = 0∈Hs(∆,Z2).

Then(E)⇔ (P)⇒ (A)⇒ (W). Moreover,
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(a) if s = k, then(E)⇔ (P)⇔ (A)⇔ (W);
(b) if 2s � k + 3 and both∆ and∆̃ are parallelizable, then(E)⇔ (P)⇔ (A).

Note that in Theorem 3 (and below)̃∆ and∆ are arbitrary manifolds, not necessarily
double point sets. By general position, all conditions of Theorem 3 hold fors > k.

The implications(P)⇒ (A) and (E)⇒ (W) are obvious and well known. To prove
(E)⇒ (P), it suffices to observe that the map pr×g : ∆̃→ ∆ × Ss−1 is an embedding.
Note that the embedding pr×g has a trivial normal bundle.

To prove(P)⇒ (E), take an embeddingF = F1×F2 : ∆̃→∆×Bs such thatπ ◦F = pr
and define an equivariant mapg : ∆̃→ Ss−1 by

g(x)= F2(x)−F2(−x)
|F2(x)−F2(−x)| .

To prove Theorem 3(a) it suffices to prove either(W) ⇒ (E) or (W) ⇒ (P). The
implication (W)⇒ (E) is a folklore result from obstruction theory. For completeness,
we present below its proof which was kindly communicated to us by A. Volovikov. We
also sketch a geometric proof of the implication(W)⇒ (P). The proofs of(A)⇒ (W),
(W)⇒ (P) and 5(b) below are based on the ideas of [26], [7, §11], [13], [1, proof of
Lemma 3], [18, §5]. Theorem 3 should be compared to [5,24].

The following remark improves [16, Theorem 2], [17, Hacon’s remark in §6], see
also [11,25].

Remark 4. The group Spin(r) embeds into Euclidean space with a trivial normal bundle
in codimension

s =
{
l2− l + 2, r = 2l (dimSpin(r)= 2l2− l),
l2+ l + 2, r = 2l + 1 (dimSpin(r)= 2l2+ l).

Proof. Let ∆ = SO(r) and ∆̃ = Spin(r). By [16, Theorem 1 and table on p. 154],
∆ embeds with trivial normal bundle in codimension[ r+1

2 ], and hence in any greater
codimension.

By [16, lemma on p. 166], there is an equivariant mapg : ∆̃→ Ss−1. Now Remark 4
follows from the implication(E)⇒ (P) of Theorem 3 (since the embedding obtained there
has a trivial normal bundle).✷
Proof of (A)⇒ (W) in Theorem 3. We need the following two facts. For a general
position immersionF : ∆̃→∆×Bs , ε-close toi ◦ pr, let

Σ(F)= {
x ∈∆×Bs | there arey, z ∈ ∆̃ such that|y, z|> 5ε, Fy = Fz= x}

be the ‘far away double points’ immersed submanifold.
It is proved analogously to [26], [7, §11] that the class[Σ(F)] ∈Hk−s(∆,Z2) does not

depend on homotopy ofF through maps,ε-close toi ◦ pr. It is proved analogously to [13]
that this class is dual to(w1(pr))s (it suffices to prove this for the case whenπ ◦ F = pr).
This implies(A)⇒ (W). ✷
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Sketch of the proof of (W)⇒ (P) in Theorem 3(a). For s = 1 the proof is obvious so
assume thats � 2. We may assume that∆ is connected. Ifw1(pr)= 0, then there exists an
equivariant map̃∆→ S0, hence(E) and(P) are true.

If w1(pr) �= 0, then∆̃ is connected. Take a general position immersionF : ∆̃→∆×Bs
such thatπ ◦ F = pr. Since[Σ(F)] = (w1(pr))k = 0, it follows that the number of double
points ofF is even. Ifk is even and∆ is orientable, then the algebraic number of double
points ofF is zero by [20, Lemma 5]. Therefore, as in [1, proof of Lemma 3], we can
apply ‘projected version’ of the Whitney trick to eliminate double points ofF and obtain
an embeddingF ′ : ∆̃→∆×Bs such thatπ ◦ F = pr. ✷
Proof of (W) ⇒ (E) in Theorem 3(a). (A. Volovikov) We can assume without loss
of generality that∆̃ is connected. LetZ2 act on R

k by multiplication with −1. An
equivariant map∆̃→ Sk−1 exists if and only if there exists a non-zero section of the
bundle∆̃× Z2R

k→∆. We will show that the unique obstruction class to defining a non-
zero section of this bundle is trivial and hence this bundle has a non-zero section.

If ∆̃ has nonempty boundary, then it is easy to see that the obstruction class lies in the
zero group. Suppose further that̃∆ is closed.

First case: k is even. The unique obstruction class to defining a non-zero section
lies in Hk(∆;Z) (coefficients in cohomology are not twisted sincek is even). This
obstruction class reduced mod 2 equals to(w1(pr))k = 0 ∈ Hk(∆,Z2), i.e., vanishes. If
∆ is nonorientable, thenHk(∆;Z)= Z2 and the reduction is an isomorphism, hence the
obstruction class vanishes.

If ∆ is orientable, thenHk(∆;Z) = Z and we obtain that the obstruction class is
represented by an even number (since its reduction mod 2 equals to zero). On the other
hand a non-zero obstruction class in any case (fork odd or even) has order 2 by [20,
Lemma 5]. Hence the obstruction class also vanishes.

Second case:k is odd. In this case coefficients are twisted and we have the following
Smith–Richardson sequence

· · ·→Hk(∆;Z)→Hk
(
∆̃;Z)→Hk

(
∆; Ẑ )→ 0.

This Smith–Richardson sequence (one of the two Smith–Richardson sequences) is induced
by the short coefficient sequence 0→ Z→ pr∗Z→ Ẑ→ 0 of sheaves over∆. HereZ is
the constant sheaf over∆ (with Z as a fiber), pr∗Z is the direct image of the constant
sheafZ over∆̃ andẐ is a subsequent factor sheaf where the inclusion is defined on a fiber
asm→ (m,m),m ∈ Z. Note thatHi(∆;pr∗Z)=Hi(∆̃;Z).

It follows from this sequence thatHk(∆; Ẑ) can be one of 0,Z2 or Z. Indeed, if∆̃ is
not orientable, thenHk(∆̃;Z) = Z2, henceHk(∆; Ẑ) is either 0 orZ2. If ∆̃ and∆ are
orientable, thenHk(∆; Ẑ)= Z2 becausẽ∆→∆ is a double cover. In the remaining case
when∆̃ is orientable and∆ is not orientable we haveHk(∆; Ẑ)= Z.

The obstruction class obviously vanishes ifHk(∆; Ẑ) = 0. If Hk(∆; Ẑ) = Z2, then
Hk(∆; Ẑ)→ Hk(∆;Z2) is an isomorphism and we see that the obstruction class also
vanishes. Finally, ifHk(∆; Ẑ) = Z, then the obstruction class again vanishes since the
nonzero obstruction class has order 2 by [20, Lemma 5].✷
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Proof Theorem 3(b). It suffices to prove(A)⇒ (E). We shall construct an equivariant
mapΣk∆̃→ Sk+s−1. If k � 2(s − 1)− 1, then Theorem 2.5 of [4] implies(E). Consider
the natural action ofZ2 on ∆̃ and denote it byx �→ −x. Since both∆ and ∆̃ are
parallelizable, there is a continuous family{hx :Dk → ∆}x∈∆ of embeddings such that
hx0= x andh−x ≡−hx .

Denote byi :∆→ ∆ × Bs the inclusion. LetF = F1 × F2 : ∆̃→ ∆ × Bs be an
embedding sufficiently close toi ◦ pr. SinceF is close toi ◦ pr, we may assume that
F1hx(

Dk

2 ) ⊂ hx(Dk). Therefore a mapφ : ∆̃ × Dk

2 → Dk × Bs is well-defined by the
formula φ(x, t) = (h−1

x F1hx(t),F2hx(t)) see [18, Fig. 4]. SinceF is an embedding, it
follows thatφ does not identify antipodes(x, t) and(−x,−t). Extendφ to

Σk∆∼= ∆×Dk
{∆× t | t ∈ ∂Dk}

by

φ[x, t] =


φ(x, t), |t|� 1

2,(
2− 2

t

|t|
)
φ

(
x,

t

2|t|
)
+

(
2
t

|t| − 1

)
(t,0), |t|� 1

2.

Sinceφ(x, t
2|t |) is close to( t2|t | ,0), it follows that the new mapφ does not identify

antipodes. Hence we can obtain an equivariant mapΣk∆̃→ Sk+s−1. ✷
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