TOPOLOGY
AND ITS
APPLICATIONS

On projected embeddings and desuspending the α-invariant

Dušan Repovš ${ }^{\mathrm{a}, *}$, Arkady Skopenkov ${ }^{\text {b, }}{ }^{1}$
${ }^{\text {a }}$ Institute of Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, Ljubljana, Slovenia 1001
${ }^{\text {b }}$ Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119899

Received 5 May 2000; received in revised form 30 May 2001

Abstract

A map $f: K \rightarrow L$ is called a projected embedding from $L \times B^{s}$ if there is an embedding $F: K \rightarrow$ $L \times B^{s}$ such that $f=\pi \circ F$, where $\pi: L \times B^{s} \rightarrow L$ is the projection. A map $f: S^{p} \sqcup S^{q} \rightarrow S^{m}$ is a link map if $f S^{p} \cap f S^{q}=\emptyset$. We apply projected embeddings to desuspending the α-invariant of link maps and to embeddings of double covers into Euclidean space. © 2001 Elsevier Science B.V. All rights reserved.

MSC: primary 57R40; secondary 22E15, 55S91, 57Q55
Keywords: Embedding into Euclidean space; Approximability by embeddings; α-invariant; Equivariant suspension isomorphism; Equivariant map; Projected embedding; Double point set

A map $f: K \rightarrow L$ is called a projected embedding from $L \times B^{s}$ if there is an embedding $F: K \rightarrow L \times B^{s}$ such that $f=\pi \circ F$, where $\pi: L \times B^{s} \rightarrow L$ is the projection. A map $f: X \sqcup Y \rightarrow Z$ is a link map if $f(X) \cap f(Y)=\emptyset$. In this paper we apply projected embeddings to desuspending the α-invariant of link maps (Theorem 1) and to embeddings of double covers into Euclidean space (Theorem 3). For an introduction and motivation see [9,14,12], [16, Question on p. 152], [17, §6], [22,2].

We shall work in the smooth category. Let $E M_{p q}^{m}$ be the set of link maps $S^{p} \sqcup S^{q} \rightarrow S^{m}$ which embed S^{p} standardly in the PL category (note that any embedding $S^{p} \rightarrow S^{m}$ is

[^0]PL standard for $m \geqslant p+3$ [7]). Let $\lambda: E M_{p q}^{m} \rightarrow \pi_{q}\left(S^{m-p-1}\right)$ be the linking coefficient. A link concordance between link maps $f_{0}, f_{1}: S^{p} \sqcup S^{q} \rightarrow S^{m}$ is a link map

$$
F: S^{p} \times I \sqcup S^{q} \times I \rightarrow S^{m} \times I
$$

such that $F(x, 0)=f_{0}(x)$ and $F(x, 1)=f_{1}(x)$. The link concordance does not necessarily embed $S^{p} \times I$.

Theorem 1. Denote $k=2 p+1-m$. The mapping $a=\Sigma^{k} \lambda: E M_{p q}^{m} \rightarrow \pi_{k+q}\left(S^{p}\right)$ is a link concordance invariant, provided $\frac{3 p}{2}+1 \leqslant m \leqslant 2 p$ and the binomial coefficient $\binom{m-p}{k}$ is odd.

Clearly, $\operatorname{im} a=\Sigma^{k} \pi_{q}\left(S^{m-p-1}\right)$ and $\Sigma^{q+3-m} a=\Sigma^{\infty} \lambda$ is the well-known α-invariant [8,10], see also [19,21]. Thus Theorem 1 for $q \geqslant m-1$ together with examples of nonsurjectivity and non-injectivity of a non-stable suspension homomorphism gives examples of non-surjectivity and non-injectivity of the α-invariant. Theorem 1 is not interesting for $q \leqslant m-2$: for $q \leqslant m-3$ the a-invariant is a suspension of the α-invariant, and for $q=m-2$ we have

$$
\operatorname{im} a=\operatorname{ker}\left(h: \pi_{2 p-1}\left(S^{p}\right) \rightarrow \mathbb{Z}_{(p)}\right) \cong \pi_{2 p}\left(S^{p+1}\right)=\pi_{p-1}^{S},
$$

and a gives no more information than α.
Denote by $L M_{p q}^{m}$ the set of link maps $S^{p} \sqcup S^{q} \rightarrow S^{m}$, up to the link concordance. In [9, 14] an invariant $a^{\prime}: L M_{p q}^{m} \rightarrow \pi_{k+q+1}\left(S^{p+1}\right)$ was constructed such that $\Sigma^{q+2-m} a^{\prime}=\alpha$ (note that the concordance invariance of $\Sigma a=a^{\prime}$ follows analogously to Lemma 2 below, since $S^{p} \times I$ embeds into $S^{m} \times I \times \mathbb{R}^{k+1}$ by general position).

The desuspension of α given by Theorem 1 is stronger in the sense that $a^{\prime}=\Sigma a$ but weaker in the sense that a is defined only on $E M_{p q}^{m}$ not on $L M_{p q}^{m}$. It would be interesting to know if $E M_{p q}^{m}$ in Theorem 1 can be replaced by $L M_{p q}^{m}$ (we can approximate the composition $S^{p} \rightarrow S^{m} \rightarrow S^{m} \times \mathbb{R}^{k}$ by embeddings, but it remains to prove that our invariant will not depend on this approximation).

For $m=2 p \geqslant 6$ and $q \leqslant 3 p-6$ Theorem 1 (with the invariant defined even on $L M_{p q}^{m}$) follows from [27, Proposition F], and was also stated without proof in [15]. Nezhinskij outlined a geometric proof of this simplest case of Theorem 1 (without the restriction $q \leqslant 3 p-6$ at the Alexandrov Session in 1999, but with the invariant defined on $E M_{p q}^{2 p}$ not on $L M_{p q}^{2 p}$). Our proof of Theorem 1 extends his ideas.

Proof of Theorem 1. Suppose that

$$
F: S^{p} \times I \sqcup S^{q} \times I \rightarrow S^{m} \times I
$$

is a link concordance between $F_{0}, F_{1}: S^{p} \sqcup S^{q} \rightarrow S^{m}$ such that $\left.F\right|_{S^{p} \times\{0,1\}}$ is an embedding. Since there exists some proper framed immersion $S^{p} \times I \sqcup S^{q} \times I \rightarrow S^{m} \times I$, we may assume by [6, 1.2.2], [1, Lemma 2] that $F_{S^{p} \times I}$ is a general position framed immersion.

By general position, $\left.F\right|_{S^{p} \times I}$ has no triple points. Therefore by Lemma 2 below for $n=p+1$, there is an embedding

$$
\bar{F}: S^{p} \times I \rightarrow S^{m} \times I \times \mathbb{R}^{k}
$$

such that $\pi \circ \bar{F}=\left.F\right|_{S^{p} \times I}$, where

$$
\pi: S^{m} \times I \times \mathbb{R}^{k} \rightarrow S^{m} \times I
$$

is the projection.
We may assume that $S^{m} \times I \times \mathbb{R}^{k} \subset \Sigma^{k}\left(S^{m} \times I\right)$ close to the base $S^{m} \times I \subset \Sigma^{k}\left(S^{m} \times I\right)$. Let $\left.\bar{F}\right|_{\Sigma^{k}\left(S^{q} \times I\right)}=\left.\Sigma^{k} F\right|_{S^{q} \times I}$. Since $F\left(S^{p} \times I\right) \cap F\left(S^{q} \times I\right)=\emptyset$, it follows that

$$
\bar{F}: S^{p} \times I \sqcup \Sigma^{k}\left(S^{q} \times I\right) \rightarrow \Sigma^{k}\left(S^{m} \times I\right)
$$

is a link concordance, which embeds $S^{p} \times I$, between $\bar{F}_{0}=\Sigma^{k} F_{0}$ and $\bar{F}_{1}=\Sigma^{k} F_{1}$. Therefore $\Sigma^{k} \lambda\left(F_{0}\right)=\lambda\left(\bar{F}_{0}\right)=\lambda\left(\bar{F}_{1}\right)=\Sigma^{k} \lambda\left(F_{1}\right)$.

Lemma 2. If the binomial coefficient $\binom{n-k}{k}$ is odd, N is an n-manifold and $f: N \rightarrow$ $B^{2 n-k}$ is a proper general position framed immersion without triple points and such that $\left.f\right|_{\partial N}$ is an embedding, then f is a projected embedding from $B^{2 n-k} \times B^{k}$.

Proof. Let

$$
\Delta=\left\{x \in B^{2 n-k}:\left|f^{-1} x\right| \geqslant 2\right\} \quad \text { and } \quad \tilde{\Delta}=\left\{x \in N:\left|f^{-1} f x\right| \geqslant 2\right\} .
$$

Then $\hat{f}=\left.f\right|_{\tilde{\Delta}}: \widetilde{\Delta} \rightarrow \Delta$ is a double covering. Denote by \hat{f} the line bundle associated with the double cover \hat{f} and let $w_{1}(\hat{f}) \in H^{k}\left(\Delta, \mathbb{Z}_{2}\right)$ be the first Stiefel-Whitney class of this line bundle.

The normal bundle of Δ in $B^{2 n-k}$ is isomorphic to $(n-k) \oplus(n-k) \hat{f}$. Hence

$$
\bar{w}(\Delta)=\left(1+w_{1}(\hat{f})\right)^{n-k}, \quad \text { so } \quad 0=\bar{w}_{k}(\Delta)=\binom{n-k}{k}\left(w_{1}(\hat{f})\right)^{k}=\left(w_{1}(\hat{f})\right)^{k}
$$

cf. [3, proof of proposition].
By general position $\operatorname{dim} \Delta=k$. Hence it follows by Theorem 3(a) below that \hat{f} is a projected embedding from $\Delta \times B^{k}$. This implies that f is a projected embedding from $B^{2 n-k} \times B^{k}$.

Indeed, take a map $\hat{g}: \widetilde{\Delta} \rightarrow B^{k}$ such that $\hat{f} \times \hat{g}: \widetilde{\Delta} \rightarrow \Delta \times B^{k}$ is an embedding. Take a Riemannian metric on N such that 1-neighborhood U of $\widetilde{\Delta}(f)$ in N is a tubular neighborhood of $\widetilde{\Delta}$ in N. Let $r: U \rightarrow \widetilde{\Delta}$ be the projection of the normal bundle. Define a map $g: N \rightarrow B^{k}$ by $g(x)=0$ for $x \notin U$ and $g(x)=(1-\operatorname{dist}(x, \widetilde{\Delta})) \hat{g}(r(x))$ for $x \in U$. Then $f \times g: N \rightarrow N \times B^{k}$ is an embedding.

Theorem 3. Let Δ be a k-manifold (closed or with boundary), $\widetilde{\Delta}$ its double cover and $\mathrm{pr}: \widetilde{\Delta} \rightarrow \Delta$ the projection. Consider the following conditions:
(E) there exists an equivariant map $g: \widetilde{\Delta} \rightarrow S^{s-1}$;
(P) pr is a projected embedding from $\Delta \times B^{s}$;
(A) the composition $\widetilde{\Delta} \xrightarrow{\mathrm{pr}} \Delta \subset \Delta \times B^{s}$ is approximable by embeddings;
(W) $\left(w_{1}(\mathrm{pr})\right)^{s}=0 \in H^{s}\left(\Delta, \mathbb{Z}_{2}\right)$.

Then $(\mathrm{E}) \Leftrightarrow(\mathrm{P}) \Rightarrow(\mathrm{A}) \Rightarrow(\mathrm{W})$. Moreover,
(a) if $s=k$, then $(\mathrm{E}) \Leftrightarrow(\mathrm{P}) \Leftrightarrow(\mathrm{A}) \Leftrightarrow(\mathrm{W})$;
(b) if $2 s \geqslant k+3$ and both Δ and $\widetilde{\Delta}$ are parallelizable, then $(\mathrm{E}) \Leftrightarrow(\mathrm{P}) \Leftrightarrow(\mathrm{A})$.

Note that in Theorem 3 (and below) $\widetilde{\Delta}$ and Δ are arbitrary manifolds, not necessarily double point sets. By general position, all conditions of Theorem 3 hold for $s>k$.

The implications $(\mathrm{P}) \Rightarrow(\mathrm{A})$ and $(\mathrm{E}) \Rightarrow(\mathrm{W})$ are obvious and well known. To prove $(\mathrm{E}) \Rightarrow(\mathrm{P})$, it suffices to observe that the map $\operatorname{pr} \times g: \widetilde{\Delta} \rightarrow \Delta \times S^{s-1}$ is an embedding. Note that the embedding $\mathrm{pr} \times g$ has a trivial normal bundle.

To prove $(\mathrm{P}) \Rightarrow(\mathrm{E})$, take an embedding $F=F_{1} \times F_{2}: \widetilde{\Delta} \rightarrow \Delta \times B^{s}$ such that $\pi \circ F=\mathrm{pr}$ and define an equivariant map $g: \widetilde{\Delta} \rightarrow S^{s-1}$ by

$$
g(x)=\frac{F_{2}(x)-F_{2}(-x)}{\left|F_{2}(x)-F_{2}(-x)\right|} .
$$

To prove Theorem 3(a) it suffices to prove either $(\mathrm{W}) \Rightarrow(\mathrm{E})$ or $(\mathrm{W}) \Rightarrow(\mathrm{P})$. The implication $(\mathrm{W}) \Rightarrow(\mathrm{E})$ is a folklore result from obstruction theory. For completeness, we present below its proof which was kindly communicated to us by A. Volovikov. We also sketch a geometric proof of the implication $(\mathrm{W}) \Rightarrow(\mathrm{P})$. The proofs of $(\mathrm{A}) \Rightarrow(\mathrm{W})$, $(\mathrm{W}) \Rightarrow(\mathrm{P})$ and 5(b) below are based on the ideas of [26], [7, §11], [13], [1, proof of Lemma 3], [18, §5]. Theorem 3 should be compared to [5,24].

The following remark improves [16, Theorem 2], [17, Hacon's remark in §6], see also [11,25].

Remark 4. The group $\operatorname{Spin}(r)$ embeds into Euclidean space with a trivial normal bundle in codimension

$$
s= \begin{cases}l^{2}-l+2, & r=2 l\left(\operatorname{dim} \operatorname{Spin}(r)=2 l^{2}-l\right), \\ l^{2}+l+2, & r=2 l+1\left(\operatorname{dim} \operatorname{Spin}(r)=2 l^{2}+l\right)\end{cases}
$$

Proof. Let $\Delta=S O(r)$ and $\widetilde{\Delta}=\operatorname{Spin}(r)$. By [16, Theorem 1 and table on p. 154], Δ embeds with trivial normal bundle in codimension [$\frac{r+1}{2}$], and hence in any greater codimension.

By [16, lemma on p. 166], there is an equivariant map $g: \widetilde{\Delta} \rightarrow S^{s-1}$. Now Remark 4 follows from the implication $(\mathrm{E}) \Rightarrow(\mathrm{P})$ of Theorem 3 (since the embedding obtained there has a trivial normal bundle).

Proof of $(\mathrm{A}) \Rightarrow(\mathrm{W})$ in Theorem 3. We need the following two facts. For a general position immersion $F: \widetilde{\Delta} \rightarrow \Delta \times B^{s}$, ε-close to $i \circ \mathrm{pr}$, let

$$
\Sigma(F)=\left\{x \in \Delta \times B^{s} \mid \text { there are } y, z \in \widetilde{\Delta} \text { such that }|y, z|>5 \varepsilon, F y=F z=x\right\}
$$

be the 'far away double points' immersed submanifold.
It is proved analogously to $[26],[7, \S 11]$ that the class $[\Sigma(F)] \in H_{k-s}\left(\Delta, \mathbb{Z}_{2}\right)$ does not depend on homotopy of F through maps, ε-close to $i \circ \mathrm{pr}$. It is proved analogously to [13] that this class is dual to $\left(w_{1}(\mathrm{pr})\right)^{s}$ (it suffices to prove this for the case when $\pi \circ F=\mathrm{pr}$). This implies $(A) \Rightarrow(W)$.

Sketch of the proof of $(\mathrm{W}) \Rightarrow(\mathrm{P})$ in Theorem 3(a). For $s=1$ the proof is obvious so assume that $s \geqslant 2$. We may assume that Δ is connected. If $w_{1}(\mathrm{pr})=0$, then there exists an equivariant map $\widetilde{\Delta} \rightarrow S^{0}$, hence (E) and (P) are true.

If $w_{1}(\mathrm{pr}) \neq 0$, then $\widetilde{\Delta}$ is connected. Take a general position immersion $F: \widetilde{\Delta} \rightarrow \Delta \times B^{s}$ such that $\pi \circ F=$ pr. Since $[\Sigma(F)]=\left(w_{1}(\mathrm{pr})\right)^{k}=0$, it follows that the number of double points of F is even. If k is even and Δ is orientable, then the algebraic number of double points of F is zero by [20, Lemma 5]. Therefore, as in [1, proof of Lemma 3], we can apply 'projected version' of the Whitney trick to eliminate double points of F and obtain an embedding $F^{\prime}: \widetilde{\Delta} \rightarrow \Delta \times B^{s}$ such that $\pi \circ F=\mathrm{pr}$.

Proof of $(\mathrm{W}) \Rightarrow(\mathrm{E})$ in Theorem 3(a). (A. Volovikov) We can assume without loss of generality that $\widetilde{\Delta}$ is connected. Let \mathbb{Z}_{2} act on \mathbb{R}^{k} by multiplication with -1 . An equivariant map $\widetilde{\Delta} \rightarrow S^{k-1}$ exists if and only if there exists a non-zero section of the bundle $\widetilde{\Delta} \times_{\mathbb{Z}_{2}} \mathbb{R}^{k} \rightarrow \Delta$. We will show that the unique obstruction class to defining a nonzero section of this bundle is trivial and hence this bundle has a non-zero section.

If $\widetilde{\Delta}$ has nonempty boundary, then it is easy to see that the obstruction class lies in the zero group. Suppose further that $\widetilde{\Delta}$ is closed.

First case: k is even. The unique obstruction class to defining a non-zero section lies in $H^{k}(\Delta ; \mathbb{Z})$ (coefficients in cohomology are not twisted since k is even). This obstruction class reduced $\bmod 2$ equals to $\left(w_{1}(\mathrm{pr})\right)^{k}=0 \in H^{k}\left(\Delta, \mathbb{Z}_{2}\right)$, i.e., vanishes. If Δ is nonorientable, then $H^{k}(\Delta ; \mathbb{Z})=\mathbb{Z}_{2}$ and the reduction is an isomorphism, hence the obstruction class vanishes.

If Δ is orientable, then $H^{k}(\Delta ; \mathbb{Z})=\mathbb{Z}$ and we obtain that the obstruction class is represented by an even number (since its reduction $\bmod 2$ equals to zero). On the other hand a non-zero obstruction class in any case (for k odd or even) has order 2 by [20, Lemma 5]. Hence the obstruction class also vanishes.

Second case: k is odd. In this case coefficients are twisted and we have the following Smith-Richardson sequence

$$
\cdots \rightarrow H^{k}(\Delta ; \mathbb{Z}) \rightarrow H^{k}(\widetilde{\Delta} ; \mathbb{Z}) \rightarrow H^{k}(\Delta ; \widehat{\mathbb{Z}}) \rightarrow 0
$$

This Smith-Richardson sequence (one of the two Smith-Richardson sequences) is induced by the short coefficient sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathrm{pr}_{*} \mathbb{Z} \rightarrow \widehat{\mathbb{Z}} \rightarrow 0$ of sheaves over Δ. Here \mathbb{Z} is the constant sheaf over Δ (with \mathbb{Z} as a fiber), $\mathrm{pr}_{*} \mathbb{Z}$ is the direct image of the constant sheaf \mathbb{Z} over $\widetilde{\Delta}$ and $\widehat{\mathbb{Z}}$ is a subsequent factor sheaf where the inclusion is defined on a fiber as $m \rightarrow(m, m), m \in \mathbb{Z}$. Note that $H^{i}\left(\Delta ; \operatorname{pr}_{*} \mathbb{Z}\right)=H^{i}(\widetilde{\Delta} ; \mathbb{Z})$.

It follows from this sequence that $H^{k}(\Delta ; \widehat{\mathbb{Z}})$ can be one of $0, \mathbb{Z}_{2}$ or \mathbb{Z}. Indeed, if $\widetilde{\Delta}$ is not orientable, then $H^{k}(\widetilde{\Delta} ; \mathbb{Z})=\mathbb{Z}_{2}$, hence $H^{k}(\Delta ; \widehat{\mathbb{Z}})$ is either 0 or \mathbb{Z}_{2}. If $\widetilde{\Delta}$ and Δ are orientable, then $H^{k}(\Delta ; \widehat{\mathbb{Z}})=\mathbb{Z}_{2}$ because $\widetilde{\Delta} \rightarrow \Delta$ is a double cover. In the remaining case when $\widetilde{\Delta}$ is orientable and Δ is not orientable we have $H^{k}(\Delta ; \widehat{\mathbb{Z}})=\mathbb{Z}$.

The obstruction class obviously vanishes if $H^{k}(\Delta ; \widehat{\mathbb{Z}})=0$. If $H^{k}(\Delta ; \widehat{\mathbb{Z}})=\mathbb{Z}_{2}$, then $H^{k}(\Delta ; \widehat{\mathbb{Z}}) \rightarrow H^{k}\left(\Delta ; \mathbb{Z}_{2}\right)$ is an isomorphism and we see that the obstruction class also vanishes. Finally, if $H^{k}(\Delta ; \widehat{\mathbb{Z}})=\mathbb{Z}$, then the obstruction class again vanishes since the nonzero obstruction class has order 2 by [20, Lemma 5].

Proof Theorem $\mathbf{3}(\mathrm{b})$. It suffices to prove $(\mathrm{A}) \Rightarrow(\mathrm{E})$. We shall construct an equivariant map $\Sigma^{k} \widetilde{\Delta} \rightarrow S^{k+s-1}$. If $k \leqslant 2(\underset{\sim}{\sim}-1)-1$, then Theorem 2.5 of [4] implies (E). Consider the natural action of \mathbb{Z}_{2} on $\widetilde{\Delta}$ and denote it by $x \mapsto-x$. Since both Δ and $\widetilde{\Delta}$ are parallelizable, there is a continuous family $\left\{h_{x}: D^{k} \rightarrow \Delta\right\}_{x \in \Delta}$ of embeddings such that $h_{x} 0=x$ and $h_{-x} \equiv-h_{x}$.

Denote by $i: \Delta \rightarrow \Delta \times B^{s}$ the inclusion. Let $F=F_{1} \times F_{2}: \widetilde{\Delta} \rightarrow \Delta \times B^{s}$ be an embedding sufficiently close to $i \circ \mathrm{pr}$. Since F is close to $i \circ \mathrm{pr}$, we may assume that $F_{1} h_{x}\left(\frac{D^{k}}{2}\right) \subset h_{x}\left(D^{k}\right)$. Therefore a map $\phi: \widetilde{\Delta} \times \frac{D^{k}}{2} \rightarrow D^{k} \times B^{s}$ is well-defined by the formula $\phi(x, t)=\left(h_{x}^{-1} F_{1} h_{x}(t), F_{2} h_{x}(t)\right)$ see [18, Fig. 4]. Since F is an embedding, it follows that ϕ does not identify antipodes (x, t) and $(-x,-t)$. Extend ϕ to

$$
\Sigma^{k} \Delta \cong \frac{\Delta \times D^{k}}{\left\{\Delta \times t \mid t \in \partial D^{k}\right\}}
$$

by

$$
\phi[x, t]= \begin{cases}\phi(x, t), & |t| \leqslant \frac{1}{2} \\ \left(2-2 \frac{t}{|t|}\right) \phi\left(x, \frac{t}{2|t|}\right)+\left(2 \frac{t}{|t|}-1\right)(t, 0), & |t| \geqslant \frac{1}{2} .\end{cases}
$$

Since $\phi\left(x, \frac{t}{2|t|}\right)$ is close to $\left(\frac{t}{2|t|}, 0\right)$, it follows that the new map ϕ does not identify antipodes. Hence we can obtain an equivariant map $\Sigma^{k} \widetilde{\Delta} \rightarrow S^{k+s-1}$.

Acknowledgements

We would like to thank P. Akhmetiev, V.M. Nezhinskij and A. Volovikov for useful discussions, and the referee for useful comments and suggestions.

References

[1] P. Akhmetiev, On isotopic and discrete realization of mappings from n-dimensional sphere to Euclidean space, Mat. Sb. 187 (7) (1996) 3-34 (in Russian); English transl.: Sbornik Math. 187 (7) (1996) 951-980.
[2] P. Akhmetiev, D. Repovš, A. Skopenkov, Obstructions to approximating maps of n-manifolds in $\mathbb{R}^{2 n}$ by embeddings, Topology Appl., to appear.
[3] P. Akhmetiev, A. Szücs, Geometric proof of the easy part of the Hopf invariant one theorem, Math. Slovaca 49 (1999) 71-74.
[4] P.E. Conner, E.E. Floyd, Fixed points free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960) 416-441.
[5] R. Fenn, Some generalizations of the Borsuk-Ulam theorem and applications to realizing homotopy classes by embedded spheres, Proc. Cambridge Philos. Soc. 74 (1973) 152-156.
[6] M. Gromov, Partial Differential Relations, in: Ergebn. Math. Grenzgeb. (3), Springer, Berlin, 1986.
[7] J.F.P. Hudson, Piecewise-Linear Topology, Benjamin, New York, 1969.
[8] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. 62 (1959) 345-362.
[9] U. Koschorke, Desuspending α-invariant, in: Abstracts of the Baku Intern. Topol. Conf., 1987.
[10] U. Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988) 383-415.
[11] L.N. Mann, J.L. Sicks, Imbedding of compact Lie groups, Indiana Univ. Math. J. 20 (1971) 655-665.
[12] R.J. Milgram (Ed.), Problems Presented to the 1970 AMS Summer Colloquium in Algebraic Topology, Proc. Symp. Pure Appl. Math., Vol. 22, American Mathematical Society, Providence, RI, 1971, pp. 187-202.
[13] J.G. Miller, Self-intersection of some immersed manifolds, Trans. Amer. Math. Soc. 136 (1969) 329-338.
[14] V.M. Nezhinskij, Groups of the classes of pseudo-homotopic singular links, Zapiski Nauch. Sem. LOMI 168 (1988) 114-124 (in Russian).
[15] V.M. Nezhinskij, Singular links of the type ($p, 2 k+1$) in $(4 k+2)$-sphere. II, Zapiski Nauch. Sem. POMI 231 (1995) 191-196.
[16] E. Rees, Some embeddings of Lie groups in Euclidean spaces, Mathematika 18 (1971) 152156.
[17] E. Rees, Problems concerning embeddings of manifolds, Adv. Math. 19 (1990) 72-79.
[18] D. Repovš, A.B. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topology Appl. 87 (1998) 1-19.
[19] D. Repovš, A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (6) (1999) 61-109 (in Russian); English transl.: Russ. Math. Surv. 54 (6) (1999) 1149-1196.
[20] K.S. Sarkaria, Kneser colorings of polyhedra, Illinois J. Math. 33 (4) (1989) 592-620.
[21] A. Skopenkov, On the generalized Massey-Rolfsen invariant for link maps, Fund. Math. 165 (2000) 1-15.
[22] A. Szücs, On the cobordism groups of immersions and embeddings, Math. Proc. Cambridge Philos. Soc. 109 (1991) 343-349.
[23] A. Szücs, Note on double points of immersions, Manuscripta Math. 76 (1992) 251-256.
[24] A.Yu. Volovikov, Mappings of free \mathbb{Z}_{p}-spaces into manifolds, Izv. Akad. Nauk SSSR, Ser. Mat. 46 (1) (1982) 36-55.
[25] G. Walker, R. Wood, Low codimensional embeddings of $S p(n)$ and $S U(n)$, Proc. Edinburgh Math. Soc. 27 (1984) 25-29.
[26] H. Whitney, Differentiable manifolds in Euclidean space, Proc. Nat. Acad. Sci. USA 21 (1935) 462-464.
[27] U. Koschorke, On link maps and their homotropy classification, Math. Ann. 286 (1990) 753782.

[^0]: * Corresponding author. Supported in part by the Ministry for Science and Technology of the Republic of Slovenia research grant No. J1-0885-0101-98.
 E-mail addresses: dusan.repovs@fmf.uni-lj.si (D. Repovš), skopenko@mccme.ru (A. Skopenkov).
 ${ }^{1}$ Supported in part by the Russian Foundation for Fundamental Research grant No. 99-01-00009.

