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Abstract. We prove a selection theorem which unifies the nonconvex-valued and the zero-dimensio-
nal selection theorems. Our proof is based on a new method which unifies the methods of outside
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density of selections.

Mathematics Subject Classifications (1991):Primary: 54C60, 54C55; Secondary: 28B20.

Key words: multivalued mappings, continuous selections, function of nonconvexity, selection ap-
proximation property.

0. Introduction

Continuous singlevalued selectionsf of a given multivalued mappingF are usu-
ally constructed as uniform limits of sequences of certain approximations{fn}n∈N
of F . Practically all known selection results are obtained by using one of the fol-
lowing two approaches to the construction of{fn}n∈N . In the first (and the most
popular) one, the method of outside approximations, mappingsfn are continuous
εn-selections ofF , i.e., fn(x) all lie near the setF(x) and all mappingsfn are
continuous. In the second one, the method of inside approximations,fn are δn-
continuous selections ofF , i.e., fn(x) all lie in the setF(x), howeverfn are
discontinuous.

Roughly speaking, for infinite dimensional domains the key ingredient of the
method of outside approximations is a consideration of the convex hull
conv{D(fn(x), εn) ∩ F(x)}x∈X and the construction (using these hulls) of a more
preciseεn+1-selectionfn+1, for someεn+1 < εn. The sets conv{D(fn(x), εn) ∩
F(x)}x∈X lie insideF(x) wheneverF(x) is convex, and this is the key point in the
proofs of various convex-valued selection theorems [11, Part B, §4].
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A version of such an approach is related to the situation where one has an ap-
propriate upper estimate of the distance between such a convex hull andF(x). This
idea was realized by Michael [4] who introduced the notion ofparaconvexsubsets
of normed spaces. In [8, 12] these authors consideredfunctional paraconvexityand
a functionαP : (0,∞)→ [0, 2] associated to each nonempty closed subsetP ⊂ Y

of a Banach space(Y, ‖ · ‖) (cf. Definition 1.1 below).
The identityαP ≡ 0 is equivalent to the convexity ofP and the moreαP

differs from zero, the less ‘convex’P is. It has been found that if suchfunctions
of nonconvexityαF(x) of the valuesF(x), x ∈ X, admit a nice common majorant,
then the continuous selections ofF exist. For example, we have (cf. [8]):

THEOREM A. Let β: (0,∞) → (0, 1) be a monotone increasing function and
F : X → Y a closed-valued lower semicontinuous mapping from a paracompact
spaceX into a Banach spaceY . Suppose thatαF(x)(r) < β(r), for everyx ∈ X

andr > 0. ThenF has a singlevalued continuous selection.

But what happens if no nice information concerning nonconvexity of values
F(x) is available forx ∈ X? The following selection theorem was proved by
Michael and Pixley [7]:

THEOREM B. LetX be a paracompact space,Y a Banach space,Z ⊂ X a subset
such thatdimX Z 6 0, and F : X → Y a closed-valued lower semicontinuous
mapping withF(x) convex, for allx ∈ X\Z. ThenF has a singlevalued continuous
selection.

For Z = ∅ (resp., forX \ Z = ∅ ) such a ‘unified’ theorem coincides with the
classical convex-valued (resp., zero-dimensional) Michael selection theorem [3].
In [1] an analog of Theorem B was proved for an axiomatically defined (in the
sense of Horvath [2]) convexity structure in a complete metric spaceY . In [7]
(resp., in [1]) the method of outside approximations works successfully due to the
convexity (resp., generalized convexity) of the values of the mappingF outside the
zero-dimensional subsetZ ⊂ X of the domain.

However, for nontrivial functions of nonconvexityαF(x), x ∈ X\Z, this method
does not work because the consideration of the convex hull conv{D(fn(z), εn) ∩
F(z)} at pointsz ∈ Z cannot give an improvement fromεn-precision toεn+1-
precision, withεn+1 < εn.

The second approach, i.e., the method of inside approximations is frequently
used for constructing various compact-valued selections (cf. [11, Parts A, §4 and B,
§1.2]), and briefly, states the existence of a sequence{Fn}n∈N of appropriate finite-
valued selectionsFn of F . Applying to the convex-valued situation, the values
fn(x) of single-valued (butδn-continuous) selectionsfn are here certain convex
combinations (with respect to a suitable partition of unity) of elements ofFn(x).
Clearly, in a nonconvex setting the mappingsfn, beingδn-continuous as above,
will automatically lie outside ofF .



CONTINUOUS SELECTIONS AS UNIFORM LIMITS 241

In the present paper, we deal with situations where various steps of both meth-
ods of outside and inside approximations work simultaneously. On one hand, we
generalize Theorem A by replacing the monotonicity restriction for the function
β(·) by a purely analytical property thatβ(·) is geometrically summable (g-summ-
able). Moreover, in comparison with [14] we use weakg-summability (cf. Defini-
tion 1.2 below). On the other hand, the main goal of this paper is the proof of the
following selection theorem which unifies the zero-dimensional selection theorem
and Theorem A, in the spirit of Theorem B. For a given functionα: (0,∞)→ R,
we shall denote byα+: (0,∞) → R the function of the upper right limits ofα,
i.e.,α+(t) = lim sups→t,s>t α(s).

THEOREM C. Let β: (0,∞) → (0,∞) be a weaklyg-summable function and
F : X → Y a closed-valued lower semicontinuous mapping from a paracompact
spaceX into a Banach spaceY . Suppose thatZ ⊂ X is a subset such that
dimX Z 6 0. ThenF has a singlevalued continuous selection, wheneverβ(·) is
a pointwise strong majorant of the function(sup{αF(x)(·) | x ∈ X \ Z})+.

We repeat that the hypotheses of Theorem C allow one to construct a selection
f of F as a uniform limit of a sequence{fn}n∈N of δn-continuousεn-selections
of F . So we must control the behavior oftwo parameters, namely,δn → 0 and
εn→ 0, asn→∞.

As an application, we prove that in Theorem C one can additionally assume
that the valuesF(x) are nonclosed for allx from some at most countable subset
C ⊂ X. Such a triple union exploits the techniques of [6]:

THEOREM D. Let β: (0,∞) → (0,∞) be a weaklyg-summable function and
F : X → Y a lower semicontinuous mapping from a paracompact spaceX into a
Banach spaceY . Suppose thatC ⊂ X is a countable subset of the domain such that
valuesF(x) are closed for allx ∈ X \ C and thatZ ⊂ X with dimX Z 6 0. Then
F has a single-valued continuous selection, wheneverβ(·) is a pointwise strong
majorant of the function(sup{αCl(F (x))(·) | x ∈ X \ Z})+.

Clearly, Theorems A, B and C are special cases of Theorem D, as well as
Michael’s zero-dimensional, convex-valued, paraconvex-valued [4] and countable
selection theorems (see [6, Theorem 7.1]). We want to emphasize that, in compari-
son with [4, 8, 10, 12], we do not use the classical convex-valued selection theorem
as an ingredient of the proofs.

For finite-dimensional domainsX and forZ = ∅ such an approach was pro-
posed in [14]. A generalization of Theorems C and D to axiomatically defined
H -convex structures (in the spirit of [1, 2]) can be obtained in the same manner.

Finally, we prove the following ‘density’ version of Theorem D, however, for
majorantsβ(·) with the additional property that lim supt→0 β(t) < 1 (compare with
Proposition 1.4 below):
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THEOREM E. Assume that in the hypotheses of TheoremD, the domainX is
additionally perfectly normal, the rangeY is separable, and the upper limit of
the majorantβ: (0,∞) → (0,∞) at zero is less than one. Then there exists a
countable family{fw}w∈W, |W | = ℵ0, of continuous selections ofF such that the
set{fw(x)}w∈W is dense inF(x), for eachx ∈ X.

1. Preliminaries

For a nonempty closed subsetP ⊂ Y of a Banach space(Y, ‖ · ‖) and for an open
ball D ⊂ Y of radiusr, we define

δ(P,D) = sup{dist(q, P )/r | q ∈ conv(P ∩D)},
where for the empty intersectionP ∩D we putδ(P,D) = 0. Clearly, for a convex
setP with nonempty intersectionP ∩D, the equalityδ(P,D) = 0 means that the
intersectionP ∩D is a convex subset ofD.

DEFINITION 1.1. For any nonempty closed subsetP ⊂ Y of a Banach space
(Y, ‖ · ‖) the value of itsfunction of nonconvexityαP at a pointr > 0 is defined as
αP (r) = sup{δ(P,D) | D is an open ball of radiusr}.

For any functionα: R→ R we define the functionα[1](·) as the product of the
independent real variablet and the value of the functionα at t : α[1](t) = t · α(t),
t ∈ R. We also setα[0](t) = t , and for alln ∈ N we set

α[n+1](t) = α[1](α[n](t)).

Clearly, for aconstantα, the sequence{α[n](t)}∞n=0 is the usual geometric pro-
gression with the coefficientα ∈ R. Notice that, ifα: (0,∞) → (0, 1), then
α[1](t) < t andα[n+1](t) < α[n](t), for all t > 0, i.e., the sequence{α[n](t)}∞n=0 is
monotonely decreasing at eacht > 0.

DEFINITION 1.2. (a) A functionα: (0,∞)→ (0,∞) is said to begeometrically
summable at the pointt > 0 if the series

∑∞
n=0 α[n](t) is convergent. The sum of

this series is denoted byα∞(t);
(b) A functionα(·) is said to begeometrically summableif it is geometrically

summable at each pointt > 0;
(c) A functionα(·) is said to beweakly geometrically summableif it is geomet-

rically summable at some sequence of pointstn, converging to infinity,n ∈ N.

A straightforward verification shows that the following holds:

LEMMA 1.3. For each functionα(·), each positivet and eachN ∈ N the follow-
ing holds:

∞∑
n=N

α[n](t) =
∞∑

k=0

α[k](α[N](t)) = α∞(α[N](t)).
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Hence,g-summability of the functionα(·) at the pointt implies itsg-summabi-
lity at the sequence of points{α[n](t)}n>0. So, in order to illustrate the difference
betweeng-summability and weakg-summability suppose, for example, that for a
function α: (0,∞) → (0, 1) the corresponding functionα[1] maps(0,∞) onto
itself.

Then weakg-summability ofα follows by g-summability ofα at points of
somediscrete subsetof the ray (0,∞). Namely, at the double-sided sequence
{tn}∞n=−∞ with the property thatα[1](tn+1) = tn. Clearly, the subsequence{t−n}∞n=0
monotonely decreases to zero and subsequence{tn}∞n=0 monotonely increases to in-
finity. In comparison with this, forg-summability one must check theg-summabi-
lity at eachpositivet .

It is easy to check (see [12]) the following sufficient condition forg-summability
of a functionα(·) over the ray(0,∞).

PROPOSITION 1.4.A functionα: (0,∞)→ (0, 1) is g-summable whenever all
upper right limits ofα over[0,∞) are less than1.

Note that the possibility of considering the upper right limits over the open ray
(0,∞) in Proposition 1.4 is still an open problem. It seems that the character of
convergence ofα(t) to 1, ast → 0, reflects differently ong-summability ofα(·).
An interesting testing example is the following: is the functionα(t) = (1+ tp)−1

g-summable?
Recall that a multivalued mappingF : X→ Y is said to belower semicontinu-

ousif the set

F−1(U) = {x ∈ X | F(x) ∩ U 6= ∅}
is open inX, wheneverU is open inY . A singlevalued mappingf : X → Y is
called aselection(resp.,ε-selection) of F if f (x) ∈ F(x) (resp., dist(f (x), F (x)) <

ε), for all x ∈ X.
A singlevalued mappingf : X → Y into a metric spaceY is said to beδ-

continuousif for every x ∈ X and everyr > 0, there exists a neighborhoodU(x)

such that dist(f (x′), f (x)) < r + δ, for all x′ ∈ U(x). Finally, if Z ⊂ X, then
dimX Z 6 0 means that dimE 6 0, for everyE ⊂ Z which is closed inX. Recall
thatD(y, r) denotes the open ball of radiusr centered at the pointy.

2. Proof of Theorem C: The Inductive Step

We shall present below a procedure for improvingδ-continuousε-selections.

THEOREM 2.1. Let X, Y , F , andZ be as in TheoremC and letα(·) be a point-
wise strong majorant of each function of nonconvexityαF(x)(·), x ∈ X\Z. Suppose
that positive numbersε, δ, andσ are given and letf : X → Y be aδ-continuous
ε-selection of the mappingF . Then forε∗ = ε + 2δ + σ there exists a mapping
f ∗: X→ Y such that:



244 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

(a) ‖f ∗(x)− f (x)‖ < ε∗, for all x ∈ X;
(b) f ∗ is an(α(ε∗) · ε∗)-selection ofF ; and
(c) f ∗ is σ -continuous.

We make some remarks before we begin the proof. First, we note that in this
theorem, there are no iteration type restrictions for the majorantα. Second, note
that by settingδ → 0 andσ → 0, the assertion 2.1(b) above states thatf ∗ is a
closer approximation ofF thanf , whenever the upper right limit of functionα at
the pointε is less than 1. This fact explains the appearance of the upper right limits
in our technique. Finally, we wish to emphasize that the degreeσ of discontinuity
of f ∗ does not depend on the degreeδ of discontinuity off .

Proof.We describe the construction which includes the following 12 steps.

(1) For everyx ∈ X, choose a pointy(x) ∈ F(x) ∩D(f (x), ε).
(2) Using theδ-continuity off , for everyx ∈ X fix a neighborhoodV (x) of x

in which‖f (x′)− f (x)‖ < 2δ, x ∈ X.
(3) Consider the open coveringω = {W(x)}x∈X of the paracompact spaceX,

where

W(x) = V (x) ∩ F−1(D(y(x), σ/3) 6= ∅.
(4) Let ν = {Uγ }γ∈0 be a locally finite open covering ofX such that the closed

covering{Cl(Uγ )}γ∈0 is inscribed into the coveringω.
(5) For everyγ ∈ 0, fix a pointxγ ∈ X such that Cl(Uγ ) ⊂ W(xγ ).
(6) For everyγ ∈ 0 and everyx ∈ Cl(Uγ ), pick a point

sγ (x) ∈ F(x) ∩D(y(xγ ), σ/3)).

(The nonemptiness of the last intersection follows from (3) and (5).)
(7) For every pointx ∈ X, denote by0(x) the finite subset{γ ∈ 0 | x ∈ Cl(Uγ )}

of the index set0, and byK(x) the finite subset{y(xγ ) | γ ∈ 0(x)} of the
Banach spaceY . Clearly, all elements ofK(x) are (σ/3)-close to the set
F(x), x ∈ X.

(8) For everyx ∈ X \ Z, consider the finite-dimensional simplex1(x) =
conv{sγ (x) | γ ∈ 0(x)} and in this compact set choose a finiteη(x)-net
N(x), where

η(x) = (α(ε∗)− αF(x)(ε
∗)) · ε∗/3 > 0.

(9) For eachx ∈ X \ Z, setG(x) = ⋂{F−1(D(y, dist(y, F (x)) + η(x))) | y ∈
N(x)} \ ⋃{Cl(Uγ ) | x /∈ Cl(Uγ )}. Then,G(x) is an open neighborhood
of x, due to the lower semicontinuity ofF and the local finiteness of the
coveringν. Moreover, ifx′ ∈ G(x) andx /∈ Cl(Uγ ) thenx′ /∈ Cl(Uγ ), i.e.,
K(x′) ⊂ K(x), for all x′ ∈ G(x).

(10) If G = ⋃{G(x) | x ∈ X \ Z}, thenG is open inX andX \G ⊂ Z. Hence
dim(X \G) 6 0.
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(11) Inscribe into the coveringν a locally finite open coveringτ = {Tγ }γ∈0 such
that any two of theTγ ’s have intersection disjoint fromX \ G and pick a
locally finite partition of unity{eγ }γ∈0 which refines the coveringτ .

(12) Finally, put

f ∗(x) =
∑
γ∈0

eγ (x) · sγ (x) =
∑

γ∈0(x)

eγ (x) · sγ (x).

Let us now check the properties (a)–(c). By (6), we have that:

‖sγ (x)− f (x)‖ 6 ‖sγ (x)− y(xγ )‖ + ‖y(xγ )− f (xγ )‖ +
+‖f (xγ )− f (x)‖ < σ/3+ ε + 2δ < ε∗.

Hencesγ (x) ∈ D(f (x), ε∗), for everyx ∈ X and everyγ ∈ 0(x). So,f ∗(x) is
ε∗-close tof (x), becausef ∗(x) lies in the convex hull of points of all which are
ε∗-close tof (x). Therefore (a) is proved.

Let us verify (b). Ifx ∈ X \G, then there exists a single indexγ ∈ 0 such that
x ∈ Tγ . Hence

f ∗(x) = sγ (x) ∈ F(x), dist(f ∗(x), F (x)) = 0.

As in the proof of (a) above, we see thatf ∗(x) ∈ conv{D(f (x), ε∗) ∩ F(x)}.
So, for eachx ∈ X \ Z we obtain

dist(f ∗(x), F (x)) 6 αF(x)(ε
∗) · ε∗ < α(ε∗) · ε∗,

due to the definition of the nonconvexity function.
So, in the third possible case, wherex ∈ Z ∩G, we fix x0 ∈ X \ Z such that

x ∈ G(x0), i.e.,f ∗(x) ∈ 1(x) ⊂ 1(x0), by (9). Choose an elementy0 from the
η(x0)-netN(x0) of the simplex1(x0) such that

‖y0 − f ∗(x)‖ < η(x0) = η0.

By the construction of the neighborhoodG(x0) it follows that

D(y0, dist(y0, F (x0))+ η0) ∩ F(x) 6= ∅.
Therefore, the ballD(f ∗(x), dist(y0, F (x0)) + 2η0) intersectsF(x). For the dis-
tance dist(y0, F (x0)) we have the upper estimateαF(x0)(ε

∗) ·ε∗, becausex0 ∈ X\Z
andy0 ∈ 1(x0) ⊂ conv{F(x0) ∩D(f (x0), ε

∗)}. Hence

dist(f ∗(x), F (x)) 6 αF(x0)(ε
∗) · ε∗ + 2η0 < α(ε∗) · ε∗,

which completes the verification of (b).
In checking (c), our argument reminds one of the techniques from [5] (see, also

[11, Part A, §1.3]). So, having the partition of unity{eγ } from (11), we fixx ∈ X

and let

A(x) = {γ ∈ 0 | eγ (x) > 0}, B(x) = {γ ∈ 0 | x ∈ supp(eγ )},
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G0(x) =
(⋂
{Int(supp(eγ )) | γ ∈ A(x)}

)∖(⋃
{supp(eγ ) | γ /∈ B(x)}

)
.

It is well known that for all pointsx′ from the neighborhoodG0(x), the following
inclusions hold:

A(x) ⊂ A(x′) ⊂ B(x′) ⊂ B(x).

Hence, forx′ ∈ G0(x) we have

f ∗(x′)− f ∗(x) =
∑

γ∈A(x ′)
eγ (x′) · sγ (x′)−

∑
γ∈A(x)

eγ (x) · sγ (x)

=
∑

γ∈A(x)

[eγ (x′)− eγ (x)] · sγ (x)+

+
∑

γ∈A(x)

eγ (x′) · [sγ (x′)− sγ (x)] +

+
∑

γ∈A(x ′)\A(x)

eγ (x′) · sγ (x′).

The first item is the sum of a fixed finite number of mappings which are continu-
ous onG0(x) and each is zero at the pointx. Hence, in some smaller neighborhood
of x, the norm of this item is less thanσ/6. The norm of the second item is less
than 2σ/3 because pointssγ (x′) andsγ (x) areσ/3-close to pointsy(xγ ) (see (5)).
Finally, the norm of the third item is less than or equal to

∑
γ∈B(x)\A(x) eγ (x′) ·

‖sγ (x′)‖.
But in the last sum, the index setB(x) \A(x) is a fixed finite set, all real-valued

functionseγ are continuous and equal to zero at the pointx, and all real-valued
functions‖sγ ‖ are bounded atx. Hence, in some neighborhood ofx, the norm of
the third item is less thanσ/6. Finally, for all pointsx′ sufficiently close tox, we
obtain that‖f ∗(x′)− f ∗(x)‖ < σ . Theorem 2.1 is thus proved. 2

Below we need the following slight generalization of Theorem 2.1

THEOREM 2.1′. If we add to the assumptions of Theorem2.1 the property that
over some closedA ⊂ X there exists a continuous selections: A → Y of
the restrictionF |A, then the conclusions of Theorem2.1 can be expanded by the
property

(d) ‖f ∗(a)− s(a)‖ < α(ε∗)ε∗, a ∈ A.

Proof. If Fs : X→ Y coincides withF overX \ A andFs(a) = {s(a)}, a ∈ A,
then Theorem 2.1 is applicable to the lower semicontinuous mappingFs , due to the
fact that functions of nonconvexity of singletons are identically equal to zero.2
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3. Proof of Theorem C: From ε-Selections to Selections

Starting from a continuousε-selectiong0, we obtain a continuous selectiong
and estimate the distance betweeng0 andg. The proof consists of the inductive
repetitions of previous Theorem 2.1 and in the steps of this procedure we use
discontinuoussinglevalued mappings.

THEOREM 3.1. Let X, Y , F , Z be as in TheoremC and letε0 andτ be positive
numbers. Suppose that the functionβ: (0,∞) → (0,∞) is geometrically sum-
mable at the pointε0 and thatβ(·) strongly majorates the function(sup{αF(x)(·) |
x ∈ X \ Z})+ at the sequence of points{εn = β[n](ε0)}∞n=0. Then, for each contin-
uousε0-selectiong0 of the mappingF there exists a continuous selectiong of F

such that‖g(x)− g0(x)‖ < τ + β∞(ε0).

Proof.Let γ (·) be the pointwise supremum of the set{αF(x)(·) | x ∈ X \ Z} of
functions of nonconvexity. By the assumptions of Theorem 3.1,(β−γ +) is positive
at every pointεn = β[n](ε0), n ∈ N. The following lemma is clear – it suffices to
observe thatεn converges to zero and that(β−γ +)(εn) are fixed positive numbers.

LEMMA 3.2. There exists a positive functionν: (0,∞)→ (0,∞) such that

ν+(εn) < (β − γ +)(εn), n ∈ N.

So, the functionα = γ + ν is a pointwise strong majorant of each function of
nonconvexity{αF(x)(·) | x ∈ X \ Z}) and Theorem 2.1 applies to this function.
Moreover, by Lemma 3.2, we have that

α+(εn) = γ +(εn)+ ν+(εn) < β(εn), n ∈ N.

Step 1.Functionβ majorates the upper right limit of the functionα at the point
ε0. So, one can chooseτ0 > 0 such that the inclusionε ∈ (ε0, ε0 + τ0) implies the
inequality

α(ε) · ε < β(ε0) · ε0 = β[1](ε0).

Pick positive numbersδ0 andδ1 such that 2δ0+ δ1 < τ0. Note thatg0 is continuous
and henceδ0-continuous, too. So Theorem 2.1 applies to the mappingF in the case
where:

f = g0, ε = ε0, δ = δ0, σ = δ1,

ε∗ = ε0+ 2δ0 + δ1 ∈ (ε0, ε0+ τ0).

Therefore, there exists aδ1-continuous(α(ε∗) · ε∗)-selection (hence(β[1](ε0))-
selection)g1 of the mappingF such that

‖g1(x)− g0(x)‖ < ε∗ < ε0+ τ0, x ∈ X.
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Step 2.The functionβ majorates the upper right limit of the functionα at the
point ε1 = β[1](ε0). So one can chooseτ1 > 0 such that the inclusionε ∈ (ε1, ε1+
τ1) implies the inequality

α(ε) · ε < β(ε1) · ε1 = β[2](ε0).

If 2δ1 > τ1, then we simply decreaseδ1 in Step 1 in such a manner that 2δ1 < τ1

(this is always possible, due to the independence ofδ1 of δ0). Next, we pick a
positive numberδ2 such that 2δ1 + δ2 < τ1. Theε1-selectiong1 is δ1-continuous.
So Theorem 2.1 applies to the mappingF in the case where:

f = g1, ε = ε1, δ = δ1, σ = δ2,

ε∗ = ε1+ 2δ1 + δ2 ∈ (ε1, ε1+ τ1).

Therefore, there exists aδ2-continuous(α(ε∗) · ε∗)-selection (hence,(β[2](ε0))-
selection)g2 of the mappingF such that

‖g2(x)− g1(x)‖ < ε∗ < ε1+ τ1, x ∈ X.

The continuation of such a procedure gives a sequence ofδn-continuousβ[n](ε0)-
selectionsgn: X→ Y of the mappingF such that 2δn < τn and

‖gn+1(x)− gn(x)‖ < β[n](ε0)+ τn, x ∈ X.

To complete the proof, it suffices to choose a sequenceτ0, τ1, τ2, . . . with the ad-
ditional property that

∑∞
n=0 τn < τ and setg(x) = limn→∞ gn(x). Theorem 3.1 is

thus proved. 2
Analogously to Section 2, we have the following generalization of Theorem 3.1.

THEOREM 3.1′. If we add to the assumptions of Theorem3.1 the property that
over some closedA ⊂ X there exists a continuous selections: A → Y of the
restriction F |A, then the conclusions of Theorem3.1 can be strengthened by the
property that selectiong of F also extendss.

Proof. As in the proof of Theorem 2.1′, we apply Theorem 3.1 to the lower
semicontinuous mappingFs : X → Y which coincides withF over X \ A and
Fs(a) = {s(a)}, a ∈ A. By Step 1 in the proof of Theorem 3.1 we have that:

‖g1(a)− s(a)‖ < α(ε∗) · ε∗ < β[1](t), a ∈ A,

becauseg1 is a(α(ε∗) · ε∗)-selection (hence a(β[1](ε0))-selection) of the mapping
Fs . Similary, in Step 2 of the proof we additionally obtain that

‖g2(a)− s(a)‖ < β[2](t), a ∈ A.

Hence, for the final selectiong of G we haveg(a) = limn→∞ gn(a) = s(a), a ∈ A,
i.e.,g is an extension ofs. 2
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4. End of Proof of Theorem C

In view of Theorems 2.1 and 3.1 it suffices to find an arbitrary continuousε-
selection ofF for someε > 0 with β∞(ε) <∞ and then improve it to a genuine
selection. We begin by performing such an improvement over a proper subsetA of
the domainX. Using Theorem 3.1 it is possible to repeat such an improvement over
some larger subsetA′, A ⊂ A′ ⊂ X, for a biggerε′ > ε. So, we prove the theorem
by performing such extensions for a suitable sequenceA0 ⊂ A1 ⊂ A2 ⊂ · · · which
cover the whole domainX. Here we exploit an idea from [4].

Proof. We fix an increasing sequence of positive numbers{tn}∞n=0 such that
β∞(tn) < ∞ and tn+1 > 1 + β∞(tn) for all n ∈ N. The existence of such
a sequence follows directly from weakg-summability of the functionβ(·) (cf.
Definition 1.2(c)).

Consider an arbitrary continuous singlevalued mappingh: X → Y . Clearly,
one can additionally assume that

G0 = {x ∈ X | D(h(x), t0) ∩ F(x) 6= ∅} 6= ∅.
Inequalitiestn > n imply that, in the domainX the sets

Gn = {x ∈ X | D(h(x), tn) ∩ F(x) 6= ∅}
constitute a sequence of open subsets{Gn}∞n=0 such that

∅ 6= G0 ⊂ G1 ⊂ · · · ⊂ Gn ⊂ · · · ,
∞⋃

n=0

Gn = X.

Paracompactness (in fact, countable paracompactness) ofX guarantees inX the
existence of a sequence of closed subsets{An}∞n=0 such that

∅ 6= A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · ,
∞⋃

n=0

An = X, An ⊂ Gn.

Moreover, we can assume that the family{An} is locally finite.
We now apply Theorem 3.1 to the paracompact spaceA0, the lower semi-

continuous mappingF0 = F |A0, the above chosen numbert0, the continuous
t0-selectionh0 = h|A0 of the mappingF0, and the strong majorantβ(·) of the
function (sup{αF(x)(·) | x ∈ X \ Z})+. So, settingτ = 1 in Theorem 3.1, we can
find a continuous selectionf0: A0→ Y of the mappingF0 such that

‖f0(x)− h0(x)‖ < 1+ β∞(t0) < t1, x ∈ X.

Next we pass to the closed subsetA1 ⊂ X. Let us consider the lower semi-
continuous multivalued mapping, sayF1, over this paracompact space, which co-
incides withf0 over the closed subsetA0 ⊂ A1, and withF over the complement
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A1 \ A0. We claim that the restrictionh1 = h|A1 is a t1-selection ofF1. In fact, for
x ∈ A0 we have from the previous inequality that

dist(h1(x), F1(x)) = ‖h0(x)− f0(x)‖ < t1.

In the casex ∈ A1 \A0, it is clear that

dist(h1(x), F1(x)) = dist(h(x), F (x)) < t1

because

A1 ⊂ G1 = {x ∈ X | D(h(x), t1) ∩ F(x) 6= ∅}.
Hence, Theorem 3.1 applies to the paracompact spaceA1, the lower semi-

continuous mappingF1, the numbert1, and the continuoust1-selectionh1 of the
mappingF1. Thus, settingτ = 1 in this theorem, we can find a continuous selection
f1: A1→ Y of the mappingF1 which extendsf0 and for which

‖f1(x)− h1(x)‖ < 1+ β∞(t1) < t2, x ∈ X.

Inductive repetition gives a sequence{fn}∞n=0 of continuous mappings intoY
such that the domain offn equals toAn, eachfn+1 extends the previousfn, and
eachfn is a selection ofF over An. For everyx ∈ X there exists min{n | x ∈
An} = nx and for this minimal index we have

fnx
(x) = fnx+1(x) = · · · = f (x) ∈ F(x).

So, the pointwise limitf of the sequence{fn}∞n=0 is a selection ofF . The local
finiteness of the family{An}∞n=0 and the continuity of eachfn imply the continuity
of f . Theorem C is thus proved. 2

In contrast to Theorem 3.1 note that in the last step we did not estimate the
distance between the initial mappingh and the final selectionf .

5. Proofs of Theorems D and E

By virtue of Proposition 5.1 from [6], in order to prove Theorem D it suffices
to check the so-calledselection extension propertyand selection approximation
property for the mappingG = Cl(F ), which associates the closure Cl(F (x)) of
the setF(x) with eachx ∈ X.

DEFINITION 5.1. Selection extension property(SEP) of a mappingG: X → Y

means that, for every closedA ⊂ X each partial continuous selections: A → Y

of the restrictionG|A admits a continuous extensions̃: X→ Y which, in turn, is a
selection ofG.

In order to check the SEP it suffices (as in Theorems 2.1′ and 3.1′) to con-
sider the mappingGs. The functions of nonconvexity of singletons are identically
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zero. Hence Theorem C applies to the mappingGs. So a selection ofGs, say s̃,
is the desired extension ofs. Therefore SEP has been proved for the mapping
G = Cl(F ).

DEFINITION 5.2. Selection approximation property(SAP) of a mapppingF :
X → 2Y , with Y a metric space, means that for everyε > 0 there corresponds
δ = δF (ε) > 0 satisfying the following condition: Ifh: X→ Y is continuous with
d(h, F ) < δ and ifA ⊂ X is closed, then every selectiong for F |A with d(g, h|A)

< δ extends to a selectionf of F with d(f, h) < ε. Here,d is the metric onY
andd(g, F ) < ε means thatd(g(x), F (x)) < ε for all x ∈ X. For more on this
property see Section 5 in [6].

In order to check the SAP forG = Cl(F ), let s be a selection ofG|A, whereA

is a closed subset ofX, and let a positiveε be given. Pick a numbert > 0 such that
β∞(t) = ∑∞

n=0 β[n](t) < ∞. By Lemma 1.3,
∑∞

n=N β[n](t) = β∞(β[N](t)) and
thereforeβ∞(β[N](t)) < ε/2 for someN ∈ N.

The numberδ = β[N](t) is positive due to the positivity of the functionβ. Now,
let g0 be a continuousδ-selection of the mappingGs. Then‖g0(a) − s(a)‖ < δ,
a ∈ A. Apply Theorem 3.1′ to the multivalued mappingGs and its continuousε0-
selectiong0, whereε0 = δ, andτ = ε/2. Then we obtain a continuous selectiong

of Gs (and hence an extension ofs) such that

‖g(x)− g0(x)‖ < τ + β∞(δ) < ε.

Therefore, for everyε > 0 we find δ > 0 with the property that for every
closed subsetA ⊂ X and every selections of G|A, from eachδ-selectiong0 of the
mappingGs one can obtain a selectiong of Gs such that dist(g, g0) < ε. The latter
means that by definition [6] the mappingG = Cl(F ) has SAP. Theorem D is thus
proved.

In a similar way one can prove the analog of Theorem 3.1 ‘modulo’ a countable
subset of the domain.

THEOREM D′. Theorem3.1 holds for any mappingF whose values are closed
except for at most countably many points of the domain.

In order to prove Theorem E, we introduce another, very natural, selection-type
property of multivalued mappings. First, observe that SAP for an empty subset
A ⊂ X simply means that for eachε > 0 there existsδ ∈ (0, ε) such that for
each continuousδ-selectiong of F there exists a continuous selectionf of F such
that dist(f (x), g(x)) < ε, x ∈ X. In other words, the mappingF has theselection
improvement property(SIP).

DEFINITION 5.3. A multivalued mappingF : X → Y into a metric spaceY
is said to have thehereditary selection improvement property(HSIP) if for each
ε > 0 there existsδ ∈ (0, ε) such that for each closedA ⊂ X and for each
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continuousδ-selectiong of F |A there exists a continuous selectionf of F |A such
that dist(f (a), g(a)) < ε, a ∈ A.

We wish to emphasize that, in comparison with SAP, we do not fix here values
of f over some prescribed subsetB ⊂ A. So, we derive Theorem E from the
following ‘conditional’ selection theorem:

THEOREM 5.4. Suppose that a multivalued mappingF : X→ Y from a perfectly
normal spaceX into a separable metric spaceY has SEP and HSIP. Then there
exists a countable family{fw}w∈W , |W | = ℵ0, of continuous selections ofF such
that the set{fw(x)}w∈W is dense inF(x), for eachx ∈ X.

Proof.The desired countable index setW for a desired family of selections will
consist of certain triples(i, j, k) of natural numbers. The first argumenti is the
index of a dense countable subset{yi} of Y . The second argumentj is the index of
a sequence{rj } of positive numbers, converging to zero.

Denote byδj = δ(rj ) the positive numbers chosen with respect to HSIP. Due
to the perfect normality of the domainX the open setGij = F−1(D(yi, δj )) can
be represented for each pair(i, j) as a unionGij = ⋃∞

k=1 Aijk of closed (inX)
subsets. So we set

W = {(i, j, k) | Aijk 6= ∅} ⊂ N3.

Pick an elementw = (i, j, k) ∈ W and denoteAijk by Aw. Consider the restriction
F |Aw

= Fw. By construction, the constant mapping fromAw to the pointyi is a
continuousδj -selection ofFw. By HSIP we can improve this selection to a genuine
selection, sayhw, of the mappingFw such that dist(hw(x), yj ) < rj , x ∈ Aw. By
SEP we can extendhw over the whole domain, i.e., we can find a selectionfw of
F such thatfw|Aw

≡ hw.
We claim that{fw}w∈W is the desired countable family of selections ofF . In-

deed, let us fixx ∈ X, y ∈ F(x) and the second natural argumentj . Then there
exists an elementyi from the above chosen dense countable subset ofY such that
dist(y, yi) < δj . Hencex ∈ Gij andx ∈ Aijk = Aw for some naturalk. We now
estimate the distance between pointsy andfw(x). So, havingx ∈ Aw we obtain
that

dist(fw(x), y) = dist(hw(x), y) 6 dist(hw(x), yi)+ dist(yi, y) < rj + δj .

Hence dist(fw(x), y) < 2rj → 0, j →∞. Theorem 5.4 is thus proved. 2
Observe that in fact we used a weak version of HSIP because in the proof we

worked only with theconstantδ-selections.

Proof of Theorem E.As it was pointed out in [6], SEP and SAP for Cl(F ) imply
SEP forF , whenever the values ofF are closed except for at most countably many
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points of a paracompact domainX. We checked SEP and SAP for Cl(F ) in proving
Theorem D. Hence we conclude thatF has SEP.

By hypotheses of the theorem we have thatβ(r) 6 q < 1, for some constantq
and for all sufficiently smallr > 0. Hence, for all suchr the series

∑∞
k=0 β[k](r) =

β∞(r) is majorated by the usual geometric series
∑∞

k=0 qkr = r 1
1−q

. Therefore
β∞(r) → 0, wheneverr → 0. Thus for a fixedε > 0 we can find a positive
numberδ such that the majorantβ(·) is geometrically summable at the pointt = δ

and

β∞(r) <
ε

2
, r ∈ (0, δ].

So letA be a closed subset ofX. HenceA is a paracompact space. ThenA∩C ⊂ C

and hence is at most countable. Clearly, dimA(A ∩ Z) 6 0, by closedness ofA.
Thus, ifg is a continuousδ-selection ofF |A, then Theorem D′ is applicable to the
restrictionF |A with ε0 = δ andτ = ε/2, i.e., one can find a continuous selection
f of F |A such that

‖f (a)− g(a)‖ < τ + β∞(δ) < ε, a ∈ A.

Therefore we have checked HSIP forF and Theorem E now follows Theorem 5.4.2
Observe that in order to prove Theorem E for perfectly normal (not necessarily

paracompact) domains, one must prove that Theorem C and Theorem D hold for
normal countably paracompact domains and verify that for such domains SEP and
SAP for Cl(F ) imply SEP forF . Then, in the proof of Theorem E the closed subset
A of perfectly normal spaceX will also be perfectly normal and hence it will be
normal and countably paracompact and one can use generalizations of Theorems C
and D. Similar changes must be included for normalτ -paracompact domains.

We believe that this way differs from the above case of paracompact domains
only in technical details. We finish by stating two problems concerning the relations
between SEP, SAP, and HSIP.

QUESTION 5.5. Does SAP imply HSIP?

QUESTION 5.6. Do SEP and HSIP together imply SAP?

For using SAP in (a) we must know that a givenδ-selection over the closed
subsetA ⊂ X is extendable to aδ-selection over the whole domainX. But it is
not clear why such an extension should exist. In (5.6), SEP gives no information
about upper estimates of the distance between the initialδ-selection overX and the
resulting selection. On the other hand, HSIP guarantees such an upper estimate,
but, in general, HSIP does not preserve values of partial selections overA ⊂ X.
Therefore we suspect that the answers to both questions are in fact negative.
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