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0. Introduction

Continuous singlevalued selectiorisof a given multivalued mapping' are usu-
ally constructed as uniform limits of sequences of certain approximatifng. v
of F. Practically all known selection results are obtained by using one of the fol-
lowing two approaches to the construction{gf,},cy. In the first (and the most
popular) one, the method of outside approximations, mappjhgse continuous
g,-selections ofF, i.e., f,,(x) all lie near the setF(x) and all mappingsf, are
continuous In the second one, the method of inside approximatighsare §,-
continuous selections of, i.e., f,(x) all lie in the setF(x), however f, are
discontinuous

Roughly speaking, for infinite dimensional domains the key ingredient of the
method of outside approximations is a consideration of the convex hull
con{D(f,(x), &,) N F(x)},ex and the construction (using these hulls) of a more
preciseg,  1-selection f,, .1, for somesg, 1 < ¢,. The sets con\D(f,(x), &,) N
F(x)}.ex lie inside F (x) wheneverF (x) is convex, and this is the key point in the
proofs of various convex-valued selection theorems [11, Part B, 84].
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A version of such an approach is related to the situation where one has an ap-
propriate upper estimate of the distance between such a convex hdlandr his
idea was realized by Michael [4] who introduced the notiopafaconvexsubsets
of normed spaces. In [8, 12] these authors considemctional paraconvexitgnd
a functionap: (0, c0) — [0, 2] associated to each nonempty closed subBsetY
of a Banach spacg’, | - ||) (cf. Definition 1.1 below).
The identityap = 0 is equivalent to the convexity aP and the morexp
differs from zero, the less ‘convex? is. It has been found that if sudbnctions
of nonconvexityr s, Of the valuesF (x), x € X, admit a nice common majorant,
then the continuous selections Bfexist. For example, we have (cf. [8]):

THEOREMA. Letg: (0,00) — (0,1) be a monotone increasing function and
F: X — Y aclosed-valued lower semicontinuous mapping from a paracompact
spaceX into a Banach spac®. Suppose thaty,(r) < B(r), for everyx € X
andr > 0. ThenF has a singlevalued continuous selection.

But what happens if no nice information concerning nonconvexity of values
F(x) is available forx € X? The following selection theorem was proved by
Michael and Pixley [7]:

THEOREM B. Let X be a paracompact spack,a Banach space/ C X a subset
such thatdimy Z < 0, and F: X — Y a closed-valued lower semicontinuous
mapping withF (x) convex, for allk € X\ Z. ThenF has a singlevalued continuous
selection.

ForZ = ¢ (resp., forX \ Z = @) such a ‘unified’ theorem coincides with the
classical convex-valued (resp., zero-dimensional) Michael selection theorem [3].
In [1] an analog of Theorem B was proved for an axiomatically defined (in the
sense of Horvath [2]) convexity structure in a complete metric spackn [7]
(resp., in [1]) the method of outside approximations works successfully due to the
convexity (resp., generalized convexity) of the values of the mappiongtside the
zero-dimensional subs&t ¢ X of the domain.

However, for nontrivial functions of nonconvexigy ., x € X\ Z, this method
does not work because the consideration of the convex hull{éniny;(z), £,) N
F(z)} at pointsz € Z cannot give an improvement from-precision toe, -
precision, withe,, ;1 < &,.

The second approach, i.e., the method of inside approximations is frequently
used for constructing various compact-valued selections (cf. [11, Parts A, 84 and B,
81.2]), and briefly, states the existence of a sequéhgk .y of appropriate finite-
valued selectiong, of F. Applying to the convex-valued situation, the values
f»(x) of single-valued (but,-continuous) selectiong, are here certain convex
combinations (with respect to a suitable partition of unity) of elements, of).
Clearly, in a nonconvex setting the mappingjs beingé,-continuous as above,
will automatically lie outside of.
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In the present paper, we deal with situations where various steps of both meth-
ods of outside and inside approximations work simultaneously. On one hand, we
generalize Theorem A by replacing the monotonicity restriction for the function
B () by a purely analytical property thgl-) is geometrically summable{summ-
able). Moreover, in comparison with [14] we use wegdsummability (cf. Defini-
tion 1.2 below). On the other hand, the main goal of this paper is the proof of the
following selection theorem which unifies the zero-dimensional selection theorem
and Theorem A, in the spirit of Theorem B. For a given function(0, co) — R,
we shall denote by ™: (0, c0) — R the function of the upper right limits af,
i.e.,at(r) =limsup_,, ., a(s).

THEOREM C. Let8: (0,00) — (0, 00) be a weaklyg-summable function and

F: X — Y a closed-valued lower semicontinuous mapping from a paracompact
spaceX into a Banach spac&’. Suppose thaZ C X is a subset such that
dimy Z < 0. ThenF has a singlevalued continuous selection, wheng\er is

a pointwise strong majorant of the functiosup{ar.(-) | x € X \ Z})*.

We repeat that the hypotheses of Theorem C allow one to construct a selection
f of F as a uniform limit of a sequendgf, },.cn Of §,-continuouse,-selections
of F. So we must control the behavior tfo parameters, namely, — 0 and
g, — 0,asn — oo.

As an application, we prove that in Theorem C one can additionally assume
that the values'(x) are nonclosed for alt from some at most countable subset
C C X. Such a triple union exploits the techniques of [6]:

THEOREMD. LetB: (0,00) — (0, o0) be a weaklyg-summable function and
F: X — Y alower semicontinuous mapping from a paracompact spadeo a
Banach spac&. Suppose thaf' C X is a countable subset of the domain such that
valuesF (x) are closed for allk € X \ C and thatZ c X withdimy Z < 0. Then

F has a single-valued continuous selection, wheng\er is a pointwise strong
majorant of the functiotsup{eeci(r)) (1) | x € X \ ZPH™.

Clearly, Theorems A, B and C are special cases of Theorem D, as well as
Michael's zero-dimensional, convex-valued, paraconvex-valued [4] and countable
selection theorems (see [6, Theorem 7.1]). We want to emphasize that, in compari-
son with [4, 8, 10, 12], we do not use the classical convex-valued selection theorem
as an ingredient of the proofs.

For finite-dimensional domain®¥ and for Z = @ such an approach was pro-
posed in [14]. A generalization of Theorems C and D to axiomatically defined
H-convex structures (in the spirit of [1, 2]) can be obtained in the same manner.

Finally, we prove the following ‘density’ version of Theorem D, however, for
majorants3(-) with the additional property that lim sup, () < 1 (compare with
Proposition 1.4 below):
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THEOREM E. Assume that in the hypotheses of Theo2nhe domainX is
additionally perfectly normal, the rang® is separable, and the upper limit of
the majorantg: (0, 00) — (0, c0) at zero is less than one. Then there exists a
countable family{ f,,}wew, |[W]| = g, of continuous selections &f such that the
set{ fu, (x)}wew is dense inF (x), for eachx € X.

1. Preliminaries

For a nonempty closed subsetc Y of a Banach spacg’, | - ||) and for an open
ball D C Y of radiusr, we define

3(P, D) = supdist(q, P)/r | g € conM(P N D)},

where for the empty intersectiaP N D we puté (P, D) = 0. Clearly, for a convex
set P with nonempty intersectio® N D, the equalitys(P, D) = 0 means that the
intersectionP N D is a convex subset db.

DEFINITION 1.1. For any nonempty closed subgetc Y of a Banach space
(Y, ] - ) the value of itdunction of nonconvexity p at a pointr > 0 is defined as
ap(r) =supd(P, D) | D is an open ball of radius}.

For any functionw: R — R we define the functioa!!(.) as the product of the
independent real variableand the value of the functiom atz: ot(r) =1 - a(z),
t € R. We also se&[(r) = ¢, and for alln € N we set

ol (1) = ot (Ol[n](l‘)).

Clearly, for aconstante, the sequencéx!"!(1)}°°, is the usual geometric pro-
gression with the coefficient € R. Notice that, ifa: (0,00) — (0, 1), then
oM@ <t anda[”“](_t) < a"(1), forallt > 0, i.e., the sequende!™ (1)}°°, is
monotonely decreasing at eack 0.

DEFINITION 1.2. (a) A functionx: (0, co) — (0, 00) is said to begeometrically
summable at the point > 0 if the seriesy - ,«!"l(¢) is convergent. The sum of
this series is denoted ™ (z);

(b) A function « () is said to begeometrically summabli it is geometrically
summable at each point> 0;

(c) A functiona (-) is said to baveakly geometrically summalifdt is geomet-
rically summable at some sequence of poiptgonverging to infinityy € N.

A straightforward verification shows that the following holds:

LEMMA 1.3. For each functionx(-), each positive and eachV € N the follow-
ing holds

Y a0 ="M @™@) = a®@M@).

n=N k=0
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Hence g-summability of the functiom(-) at the point implies itsg-summabi-
lity at the sequence of poin{e!!(7)},>0. S0, in order to illustrate the difference
betweeng-summability and wealg-summability suppose, for example, that for a
functiona: (0, 00) — (0, 1) the corresponding functioa™ maps(0, co) onto
itself.

Then weakg-summability ofa follows by g-summability of« at points of
somediscrete subsebf the ray (0, oo). Namely, at the double-sided sequence
{t.}°2 ., with the property that'!(7,,1) = 1,. Clearly, the subsequen¢e ,}>,
monotonely decreases to zero and subsequignge, monotonely increases to in-
finity. In comparison with this, fop-summability one must check tlgesummabi-
lity at eachpositiver.

Itis easy to check (see [12]) the following sufficient conditiongesummability
of a functiona (-) over the ray(0, co).

PROPOSITION 1.4.A functiona: (0, o0) — (0, 1) is g-summable whenever all
upper right limits ofw over[0, co) are less thari.

Note that the possibility of considering the upper right limits over the open ray
(0, o0) in Proposition 1.4 is still an open problem. It seems that the character of
convergence ok(r) to 1, ast — 0, reflects differently org-summability ofc(-).

An interesting testing example is the following: is the functiom) = (1 + ¢#)~*
g-summable?

Recall that a multivalued mapping: X — Y is said to bdower semicontinu-
ousif the set

FYU)y={xeX | Fx)NU # %}

is open inX, wheneverU is open inY. A singlevalued mapping: X — Y is
called aselection(resp. g-selection of F if f(x) € F(x) (resp., distf (x), F(x)) <
g), forall x € X.

A singlevalued mapping: X — Y into a metric spacd is said to bes-
continuoudf for every x € X and every- > 0, there exists a neighborhodd(x)
such that distf (x'), f(x)) < r + 6, forall x’ € U(x). Finally, if Z c X, then
dimy Z < 0 means that dink < 0, for everyE C Z which is closed inX. Recall
that D(y, r) denotes the open ball of radiusentered at the point.

2. Proof of Theorem C: The Inductive Step

We shall present below a procedure for improvéagontinuouses-selections.

THEOREM 2.1. Let X, Y, F, andZ be as in Theorent and leta(-) be a point-
wise strong majorant of each function of nonconvexity;,(-), x € X\ Z. Suppose
that positive numbers, §, ando are given and letf: X — Y be as-continuous
g-selection of the mapping. Then fore* = ¢ 4+ 2§ 4+ o there exists a mapping
f*: X — Y such that
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@ I f*x) — fx)| < e*, forall x € X;
(b) f*isan(u(e*) - £*)-selection ofF; and
(c) f*iso-continuous.

We make some remarks before we begin the proof. First, we note that in this
theorem, there are no iteration type restrictions for the majara®econd, note
that by settingg — 0 ande — 0, the assertion 2.1(b) above states tfiatis a
closer approximation of" than f, whenever the upper right limit of functian at
the pointe is less than 1. This fact explains the appearance of the upper right limits
in our technique. Finally, we wish to emphasize that the degretdiscontinuity
of f* does not depend on the degéeef discontinuity of f.

Proof. We describe the construction which includes the following 12 steps.

(1) Foreveryx € X, choose a poing(x) € F(x) N D(f(x), ).

(2) Using thes-continuity of f, for everyx e X fix a neighborhoodv (x) of x
in which || f(x") — f(X)| < 28, x € X.

(3) Consider the open covering = {W(x)}.cx Of the paracompact space,
where

W(x) = V) NF YD), o/3) #0.

(4) Letv = {U, },<r be alocally finite open covering df such that the closed
covering{CI(U, )}, er is inscribed into the covering.

(5) Foreveryy e I, fix a pointx, € X such that GIU,) C W(x,).

(6) Foreveryy € I and everyx € CI(U,), pick a point

sy(x) € F(x) N D(y(x,),0/3)).

(The nonemptiness of the last intersection follows from (3) and (5).)

(7) Forevery poink € X, denote by (x) the finite subsety € I" | x € CI(U,)}
of the index sel”, and byK (x) the finite subsefy(x,) | y € I'(x)} of the
Banach spac&’. Clearly, all elements oK (x) are (o/3)-close to the set
Fx),x e X.

(8) For everyx € X \ Z, consider the finite-dimensional simplex(x) =
conv{s, (x) | y € I'(x)} and in this compact set choose a finitéx)-net
N(x), where

n(x) = (a(e¥) — O!F(x)(é"*)) -e"/3> 0.

(9) Foreachr € X \ Z, setG(x) = ({(F~Y(D(y, dist(y, F(x)) +n(x))) | y €
N} \ U{CI(U,) | x ¢ CI(U,)}. Then,G(x) is an open neighborhood
of x, due to the lower semicontinuity df and the local finiteness of the
coveringv. Moreover, ifx’ € G(x) andx ¢ ClI(U,) thenx” ¢ CI(U,), i.e.,
K(x') Cc K(x), forallx’ € G(x).

(10) If G = U{G(x) | x € X \ Z}, thenG is open inX andX \ G C Z. Hence
dim(X \ G) < 0.
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(11) Inscribe into the covering a locally finite open covering = {7}, r such
that any two of ther,’s have intersection disjoint fronX \ G and pick a
locally finite partition of unity{e, }, cr which refines the covering.

(12) Finally, put

Fr =) e @) 5@ = Y e) s, ).

yell yel'(x)

Let us now check the properties (a)—(c). By (6), we have that:

sy () = FOOI < lsy (x) = yxp)ll + [ly(ey) — Fx)I +
+1f(x)— f@)l <o/3+e+28 <e™.
Hences, (x) € D(f(x), %), for everyx € X and everyy € I'(x). So, f*(x) is
g*-close tof (x), becausef*(x) lies in the convex hull of points of all which are
g*-close tof (x). Therefore (a) is proved.

Let us verify (b). Ifx € X \ G, then there exists a single indgxe T" such that
x € T,.Hence

ff(x) =s,(x) € F(x), dist(f*(x), F(x)) =0.

As in the proof of (a) above, we see thét(x) € con{D(f(x), *) N F(x)}.
So, for eachx € X \ Z we obtain

dist(f*(x), F(x)) < app) (") - " < a(e®) - &7,

due to the definition of the nonconvexity function.

So, in the third possible case, whares Z N G, we fixxo € X \ Z such that
x € G(xg), i.e., f*(x) € A(x) C A(xp), by (9). Choose an elemems from the
n(xo)-netN (xg) of the simplexA (xg) such that

lyo — f*) | < n(xo) = no.
By the construction of the neighborho@t xo) it follows that
D(yo, dist(yo, F'(x0)) + no) N F(x) # @.

Therefore, the balD(f*(x), dist(yo, F (x0)) + 2no) intersectsF (x). For the dis-
tance distyo, F(xo)) we have the upper estimate ,,(¢*)-¢*, becauseg € X\ Z
andyg € A(xg) C CONV{ F(xg) N D(f(xg), €*)}. Hence

dist(f*(x), F(x)) < apug () - €° 4+ 2no < ar(e™) - €7,

which completes the verification of (b).

In checking (c), our argument reminds one of the technigues from [5] (see, also
[11, Part A, 81.3]). So, having the partition of unily, } from (11), we fixx € X
and let

Ax) ={y €' | ¢,(x) > 0}, B(x) ={y €' | x € supfe,)},
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Go(x) = ([Minttsuprte,) | v € 4)) \ (Utsupte,) 7 ¢ B)).

It is well known that for all pointsc” from the neighborhoodrq(x), the following
inclusions hold:

A(x) Cc A(x") c B(x") C B(x).

Hence, forx’ € Go(x) we have

FfON =0 = ) i) s, = Y e ) s x)

yeA(x') yE€A(x)
= Y e, () — e, ()] -5, (x) +
y€EA(x)
+ Y e () 5, (¥) — 5, ()] +
y€EA(x)
+ Z e, (x") -5, (x").
yEAGN\A)

The firstitem is the sum of a fixed finite number of mappings which are continu-
ous onGo(x) and each is zero at the pointHence, in some smaller neighborhood
of x, the norm of this item is less thary6. The norm of the second item is less
than 2r/3 because points, (x") ands, (x) ares /3-close to pointg (x, ) (see (5)).
Finally, the norm of the third item is less than or equal}y, . ,)\ ¢y €y (X)) -
sy (X))

But in the last sum, the index sB{(x) \ A(x) is a fixed finite set, all real-valued
functionse, are continuous and equal to zero at the painéind all real-valued
functionsl|s, || are bounded at. Hence, in some neighborhood ofthe norm of
the third item is less thas/6. Finally, for all pointsx” sufficiently close tox, we
obtain thatl| f*(x") — f*(x)|| < o. Theorem 2.1 is thus proved. O

Below we need the following slight generalization of Theorem 2.1

THEOREM 2.1. If we add to the assumptions of Theor@ri the property that
over some closedt C X there exists a continuous selection A — Y of
the restriction F| 4, then the conclusions of Theoretrl can be expanded by the

property
d) I f*(@) —s@)|l < a(e")e*, a € A.

Proof.If F;: X — Y coincides withF over X \ A andF;(a) = {s(a)},a € A,
then Theorem 2.1 is applicable to the lower semicontinuous magpirdue to the
fact that functions of nonconvexity of singletons are identically equal to zero.
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3. Proof of Theorem C: From e-Selections to Selections

Starting from a continuous-selectiongg, we obtain a continuous selectign

and estimate the distance betwegnandg. The proof consists of the inductive
repetitions of previous Theorem 2.1 and in the steps of this procedure we use
discontinuoussinglevalued mappings.

THEOREM 3.1. Let X, Y, F, Z be as in Theorer® and leteg and r be positive
numbers. Suppose that the functifn (0, co) — (0, co) is geometrically sum-
mable at the pointy and thatj(-) strongly majorates the functiofsupe s (-) |
x € X \ Z})™T at the sequence of points, = B"(e9)}>,. Then, for each contin-
uouseg-selectiongg of the mappingF there exists a continuous selectigrof F
such thatljg(x) — go(x)Il < T + B (e0).

Proof. Let y (-) be the pointwise supremum of the $ef(-) | x € X \ Z} of
functions of nonconvexity. By the assumptions of Theorem@ 4,y 1) is positive
at every points, = B"(gg), n € N. The following lemma is clear — it suffices to
observe that, converges to zero and thigt — y ™) (s, are fixed positive numbers.

LEMMA 3.2. There exists a positive function (0, co) — (0, co) such that

vi(e) < (B—y e, nel

So, the functionr = y + v is a pointwise strong majorant of each function of
nonconvexity{or.(-) | x € X \ Z}) and Theorem 2.1 applies to this function.
Moreover, by Lemma 3.2, we have that

OlJr(gn) = V+(€n) + 1)Jr(gn) < B(en), neN

Step 1Functiong majorates the upper right limit of the functianat the point
0. SO, one can choosg > 0 such that the inclusion € (gq, g9 + 10) implies the
inequality

a(e) - e < B(eo) - €0 = BM(e0).

Pick positive numberg, ands,; such that 8, + §; < to. Note thatgg is continuous
and hencég-continuous, too. So Theorem 2.1 applies to the mappiingthe case
where:

f:go’ & = &o, 8:80, 0281’
e = gg+ 200 + 81 € (g9, €0 + To).

Therefore, there exists &-continuous(a(s*) - ¢*)-selection (hence&p!(gg))-
selection)g, of the mappingF such that

lg1(x) — go(¥) |l < &" <eo+7, x€X.
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Step 2.The functiong majorates the upper right limit of the functienat the
pointe; = B (gg). So one can choosg > 0 such that the inclusion e (&1, &1 +
7;) implies the inequality

a(e)-e < Bler) - &1 = B (e0).

If 281 > 11, then we simply decreasg in Step 1 in such a manner that;2< 1,
(this is always possible, due to the independencé;ajf §p). Next, we pick a
positive numbe#s, such that 2; + 6, < t1. Theg;-selectiong; is §;-continuous.
So Theorem 2.1 applies to the mappiFign the case where:

f=g, e=¢, 6=68, o0=07d,

" =e1+201+ 68 € (61, 1+ 11).
Therefore, there exists &-continuous(a(e*) - £*)-selection (hence(B? (gg))-
selection)g, of the mappingF such that

lg2(x) —g1(X)| <&* <e1+11, x€X.

The continuation of such a procedure gives a sequenseafntinuouss”! (eq)-
selectiong,: X — Y of the mappingF such that 8, < 1, and

gnr1(x) — g (Il < " (e0) + 7, ¥ € X.

To complete the proof, it suffices to choose a sequepca, 1, . . . with the ad-
ditional property thad "> 7, < t and sefg(x) = lim,_.o g,(x). Theorem 3.1 is
thus proved. O

Analogously to Section 2, we have the following generalization of Theorem 3.1.

THEOREM 3.1. If we add to the assumptions of Theor8r the property that
over some closed C X there exists a continuous selection A — Y of the
restriction F|,, then the conclusions of Theoredril can be strengthened by the
property that selectiorg of F also extends.

Proof. As in the proof of Theorem 2.1we apply Theorem 3.1 to the lower
semicontinuous mapping,;: X — Y which coincides withF over X \ A and
F;(a) = {s(a)}, a € A. By Step 1 in the proof of Theorem 3.1 we have that:

lgi(a) — s(a)|l < a(e*)-e* < pH(r), ace A,

because; is a(x(s*) - £*)-selection (hence €81 (gg))-selection) of the mapping
F,. Similary, in Step 2 of the proof we additionally obtain that

lga(a) = s@)ll < B2 (), a € A.

Hence, for the final selectionof G we haveg(a) = lim,_, o, g.(a) = s(a),a € A,
i.e., g is an extension of. O
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4. End of Proof of Theorem C

In view of Theorems 2.1 and 3.1 it suffices to find an arbitrary continusus
selection ofF for somee > 0 with 8*°(¢) < oo and then improve it to a genuine
selection. We begin by performing such an improvement over a proper stilo$et
the domainX . Using Theorem 3.1 it is possible to repeat such an improvement over
some larger subset’, A C A’ C X, for a biggere’ > ¢. So, we prove the theorem

by performing such extensions for a suitable sequenice A; C A, C --- which
cover the whole domai . Here we exploit an idea from [4].

Proof. We fix an increasing sequence of positive numbers?, such that
B¥(t,) < oo andr, 1 > 14 B, for all n € N. The existence of such
a sequence follows directly from weaksummability of the functiond(-) (cf.
Definition 1.2(c)).

Consider an arbitrary continuous singlevalued mapgngd — Y. Clearly,
one can additionally assume that

Go = {x € X | D(h(x), 10) N F(x) # ¥} # 0.
Inequalitiest, > n imply that, in the domairX the sets
Gy, ={x € X | D(h(x),1,) N F(x) # V}}

constitute a sequence of open subsgéts} > , such that

[
@#GQCGlC"'CGnC"'s UGn:X-
n=0

Paracompactness (in fact, countable paracompactneX¥sjudrantees iX the
existence of a sequence of closed subgét$  , such that

o0
P#*ACALC--CACoooy | JAn =X A CG
n=0

Moreover, we can assume that the fanfify, } is locally finite.

We now apply Theorem 3.1 to the paracompact spagethe lower semi-
continuous mappingo = F|,,, the above chosen numbey, the continuous
fo-selectionhy = hl,, of the mappingFy, and the strong majorargi(-) of the
function (suplar () | x € X \ Z})*. So, settingr = 1 in Theorem 3.1, we can
find a continuous selectiofy: Ag — Y of the mappingFy such that

Il fo(x) —ho(x)|| <14 B¥() <t1, x€X.

Next we pass to the closed subgit ¢ X. Let us consider the lower semi-
continuous multivalued mapping, s#y, over this paracompact space, which co-
incides with fy over the closed subsdt; C A, and withF over the complement
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A1\ Ap. We claim that the restriction; = &4, is at;-selection ofF;. In fact, for
x € Ag we have from the previous inequality that

dist(i1(x), F1(x)) = llho(x) — fo(x)| < f1.
Inthe caser € A1\ A, itis clear that

dist(h1(x), Fi(x)) = dist(h(x), F(x)) < t,
because

A1 C Gr={x € X | D(h(x), 1) N F(x) # #}.

Hence, Theorem 3.1 applies to the paracompact spacehe lower semi-
continuous mappind, the number,, and the continuous-selectioni, of the
mappingF;. Thus, setting = 1 in this theorem, we can find a continuous selection
f1: A1 — Y of the mappingF; which extendsf, and for which

| fi(x) — ()| <14 B¥(11) <, x € X.

Inductive repetition gives a sequengs,}°2, of continuous mappings int¥
such that the domain of, equals toA,, eachy, ., extends the previoug,, and
eachf, is a selection ofF over A,. For everyx € X there exists mifn | x €

A, } = n, and for this minimal index we have

Ju.(X) = fo1(x) = - = fx) € F(x).

So, the pointwise limitf of the sequencgf,}> , is a selection ofF. The local
finiteness of the familyA, }°° ; and the continuity of eaclf, imply the continuity
of f. Theorem C is thus proved. O

In contrast to Theorem 3.1 note that in the last step we did not estimate the
distance between the initial mappihgnd the final selectiorf.

5. Proofs of Theorems D and E

By virtue of Proposition 5.1 from [6], in order to prove Theorem D it suffices
to check the so-calledelection extension propergnd selection approximation
property for the mappingG = CI(F), which associates the closure(Elx)) of

the setF (x) with eachx € X.

DEFINITION 5.1. Selection extension propertEP of a mappingG: X — Y
means that, for every closetl ¢ X each partial continuous selection A — Y
of the restrictionG| 4, admits a continuous extensi®n X — Y which, inturn, is a
selection ofG.

In order to check the SEP it suffices (as in Theorems$ @it 3.1) to con-
sider the mappings,. The functions of nonconvexity of singletons are identically
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zero. Hence Theorem C applies to the mappihg So a selection o6, says,
is the desired extension of Therefore SEP has been proved for the mapping
G = CI(F).

DEFINITION 5.2. Selection approximation properySAP of a mapppingF'
X — 2, with Y a metric space, means that for every- O there corresponds
8 = 8r(e) > 0 satisfying the following condition: Ik: X — Y is continuous with
d(h, F) < §andifA C X is closed, then every selectigrfor F|, with d(g, h|4)

< § extends to a selectiori of F with d(f, h) < ¢. Here,d is the metric onY
andd(g, F) < ¢ means that/(g(x), F(x)) < ¢ for all x € X. For more on this
property see Section 5 in [6].

In order to check the SAP faF = CI(F), lets be a selection of7 |4, whereA
is a closed subset df, and let a positive be given. Pick a number> 0 such that
Bo(t) = Y02, B"M(t) < co. By Lemma 1.3 2, Bl"(r) = g=(BN (1)) and
thereforeg> (8N (1)) < /2 for someN e N.

The numbes = BVI(z) is positive due to the positivity of the functigh Now,
let go be a continuous-selection of the mapping,. Then|go(a) — s(a)| < §,
a € A. Apply Theorem 3.1to the multivalued mappin@, and its continuous,-
selectiongg, Whereeg = 8, andt = ¢/2. Then we obtain a continuous selectipn
of G, (and hence an extension 9fsuch that

lg(x) — gox)|| < 7+ B>(S) <e.

Therefore, for every > 0 we findé > 0 with the property that for every
closed subset C X and every selection of G|, from eachs-selectiongg of the
mappingG, one can obtain a selectignof G, such that disfg, go) < ¢. The latter
means that by definition [6] the mappitg= CI(F) has SAP. Theorem D is thus
proved.

In a similar way one can prove the analog of Theorem 3.1 ‘modulo’ a countable
subset of the domain.

THEOREM D. Theorem3.1 holds for any mappind” whose values are closed
except for at most countably many points of the domain.

In order to prove Theorem E, we introduce another, very natural, selection-type
property of multivalued mappings. First, observe that SAP for an empty subset
A C X simply means that for each > 0 there exist$ e (0, ¢) such that for
each continuou8-selectiong of F there exists a continuous selectigrof F such
that dist f (x), g(x)) < ¢, x € X. In other words, the mapping has theselection
improvement propert{SIP).

DEFINITION 5.3. A multivalued mapping®: X — Y into a metric spac&
is said to have théereditary selection improvement prope(iySIP) if for each
¢ > 0 there exist$ € (0, ¢) such that for each closed c X and for each
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continuouss-selectiong of F|, there exists a continuous selectigrof F|, such
that dist f (a), g(a)) < &,a € A.

We wish to emphasize that, in comparison with SAP, we do not fix here values
of f over some prescribed subsBt ¢ A. So, we derive Theorem E from the
following ‘conditional’ selection theorem:

THEOREM 5.4. Suppose that a multivalued mappifg X — Y from a perfectly
normal spaceX into a separable metric spacé has SEP and HSIP. Then there
exists a countable familf/f,, },ew, |W| = Ko, of continuous selections @f such
that the sef{ f,,(x)},ew iS dense inF (x), for eachx € X.

Proof. The desired countable index d&tfor a desired family of selections will
consist of certain triplesi, j, k) of natural numbers. The first argumenis the
index of a dense countable subget of Y. The second argumelitis the index of
a sequencér;} of positive numbers, converging to zero.

Denote bys; = &(r;) the positive numbers chosen with respect to HSIP. Due
to the perfect normality of the domaixi the open seG;; = F~*(D(y;, §;)) can
be represented for each pair j) as a unionG;; = |J;o, A;jx of closed (inX)
subsets. So we set

W ={(, j. k) | Aiji # 0} C N°.

Pick an elemen = (i, j, k) € W and denote4;;; by A,,. Consider the restriction
Fla, = F,. By construction, the constant mapping froty to the pointy; is a
continuouss ;-selection off,,. By HSIP we can improve this selection to a genuine
selection, say:,,, of the mappingF,, such that dist:,,(x), y;) < r;, x € A,. By
SEP we can exten#d,, over the whole domain, i.e., we can find a selectfgnof
F such thatf,, |4, = hy.

We claim that{ f,,}..ew is the desired countable family of selectionsrfin-
deed, let us fixx € X, y € F(x) and the second natural argumgntThen there
exists an elemeny; from the above chosen dense countable subsEtsafch that
dist(y, y;) < 8;. Hencex € G;; andx € A;jx = A, for some naturak. We now
estimate the distance between pointand f,, (x). So, havingx € A, we obtain
that

dist(f, (x), y) = dist(hy(x), y) < dist(h, (x), y;) + dist(y;, y) <r; +3;.

Hence distf,, (x), y) < 2r; — 0, j — oc. Theorem 5.4 is thus proved. ]

Observe that in fact we used a weak version of HSIP because in the proof we
worked only with theconstants-selections.

Proof of Theorem EAs it was pointed out in [6], SEP and SAP for(El) imply
SEP forF, whenever the values @f are closed except for at most countably many
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points of a paracompact domath We checked SEP and SAP for(E)) in proving
Theorem D. Hence we conclude thathas SEP.

By hypotheses of the theorem we have that) < ¢ < 1, for some constarnt
and for all sufficiently smalt > 0. Hence, for all such the seriesy >, ¥ (r) =
B>(r) is majorated by the usual geometric serf€sg. ,q“r = rﬁ. Therefore
B*(r) — 0, wheneverr — 0. Thus for a fixede > 0 we can find a positive
numbers such that the majoramt(-) is geometrically summable at the point &
and

BX(r) < % r e (0, 5].

SoletA be a closed subset &f. HenceA is a paracompact space. ThémC c C
and hence is at most countable. Clearly, gith N Z) < 0, by closedness od.
Thus, if g is a continuous-selection ofF'| 4, then Theorem Dis applicable to the
restrictionF |4, with g = § andt = ¢/2, i.e., one can find a continuous selection
f of F|4 such that

[ fa@) —g@)| <t+B70@) <& acA.

Therefore we have checked HSIP f6and Theorem E now follows Theorem 5.

Observe that in order to prove Theorem E for perfectly normal (not necessarily
paracompact) domains, one must prove that Theorem C and Theorem D hold for
normal countably paracompact domains and verify that for such domains SEP and
SAP for C(F) imply SEP forF. Then, in the proof of Theorem E the closed subset
A of perfectly normal spac& will also be perfectly normal and hence it will be
normal and countably paracompact and one can use generalizations of Theorems C
and D. Similar changes must be included for normglaracompact domains.

We believe that this way differs from the above case of paracompact domains
only in technical details. We finish by stating two problems concerning the relations
between SEP, SAP, and HSIP.

QUESTION 5.5. Does SAP imply HSIP?
QUESTION 5.6. Do SEP and HSIP together imply SAP?

For using SAP in (a) we must know that a givérselection over the closed
subsetA C X is extendable to d-selection over the whole domaixi. But it is
not clear why such an extension should exist. In (5.6), SEP gives no information
about upper estimates of the distance between the isisalection oveX and the
resulting selection. On the other hand, HSIP guarantees such an upper estimate,
but, in general, HSIP does not preserve values of partial selectionsdozerX .
Therefore we suspect that the answers to both questions are in fact negative.
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