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Abstract. We consider transversal (orthogonal) perturbations of finite-dimensional convex sets and
estimate the ‘degree of nonconvexity’ of resulting sets, i.e. we estimate the nonconvexity of graphs
of continuous functions. We prove that a suitable estimate of nonconvexity of graphs over all lines
induces a ‘nice’ estimate of the nonconvexity of graphs of the entire function. Here, the term ‘nice’
means that in the well-known Michael selection theorem it is possible to replace convex sets of a
multivalued mapping by such nonconvex sets. As a corollary, we obtain positive results for poly-
nomials of degree two under some restrictions on coefficients. Our previous results concerned the
polynomials of degree one and Lipschitz functions. We show that for a family of polynomials of
degree three such estimate of convexity in general does not exist. Moreover, for degree 9 we show
that the nonconvexity of the unique polynomialP(x, y) = x9+x3y realizes the worst possible case.
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1. Introduction

There is a principal difference between selection theorems for multivalued map-
pings with finite-dimensional domains compared to those whose domains are infini-
te-dimensional. To illustrate the point, we recall the arguments from [5]. The first
one of them is, in fact, a reformulation of the selection theorem from [3]:

THEOREM 1.1 [5, Theorem 2.4]. LetY be a completely metrizable space andL
a hereditary family of closed nonempty subsets ofY (i.e.L ∈ L andy ∈ L imply
that {y} ∈ L). Then the following statements are equivalent:

(a) For every paracompact spaceX with dimX 6 n+ 1, every lower semicon-
tinuous mappingF : X→ L has a selection and

SVAN338.tex; 9/04/1998; 12:45; p.1
VTEX(P) PIPS No.: 162701 (svankap:mathfam) v.1.15



40 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

(b) EveryL ∈ L is n-connected(i.e. L ⊂ Cn) and if X is paracompact and
dimX 6 n+ 1, then every lower semicontinuous mapF : X→ L has a local
selection.

Is it possible to find a purelytopologicalanalogue of Theorem 1.1 without any
dimensional restrictions? Due to the well-known example from [6], the answer
to this question is, in general, negative. In fact, Michael [5] derived from [6] the
following result, related to Theorem 1.1:

THEOREM 1.2 [5, Theorem 2.8]. There is no classC of topological spaces such
that the following assertions would be equivalent for every completely metrizable
spaceY and every hereditary familyL of its closed nonempty sets:

(a) If X is a paracompact space then every lower semicontinuous mappingF : X→
L has a selection and

(b) The inclusionL ⊂ C holds and for every paracompact spaceX, every lower
semicontinuous mapF : X→ L has a local selection.

In view of these facts, one tries to change the topological requirement in the
question above by substituting somemetric restrictions. The present paper is an
attempt in this direction. The key ingredient of our work is the notion of the
function of nonconvexity: to every nonempty closed subsetA ⊂ X of a Banach
space(X, ‖ · ‖) we associate some functionhA: (0,∞) → [0,2]. The identity
hA ≡ 0 is equivalent to the convexity ofA and the morehA differs from zero, the
less ‘convex’ isA.

The notion of the function of nonconvexity was first introduced in [8] as a
generalization of the concept ofparaconvexity(cf. [4]). An intermediate notion of
functional paraconvexitywas proposed earlier in [10]. Note also that for a Hilbert
spaceX, values of a function of nonconvexity always lie on the interval[0,1].
Moreover, the result of Klee [1] shows that if dimX > 2 and if for each closed
A ⊂ X, the values ofhA are in[0,1], thenX is isometric to a Hilbert space.

THEOREM 1.3 [8]. Leth: (0,∞) → [0,1) be a monotone increasing mapping
andF : X → Y a closed-valued lower semicontinuous mapping from a paracom-
pact spaceX into a Banach spaceY . Suppose thathF(x)(r) < h(r), for every
x ∈ X andr > 0. ThenF has a continuous selection.

The exact evaluation of the function of nonconvexity or finding a nice majorant
for it is a nontrivial task. Some positive results were obtained for the case whenA

is the graph of a continuous function with convex domain. We consider a convex
set (domain) and then perturb it along an additional direction, orthogonal to the
given convex set. Of course, here we work in a Hilbert space and, moreover, in the
present paper we shall only deal with finite-dimensional Euclidean spaces.
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NONCONVEXITY OF GRAPHS 41

THEOREM 1.4 [7]. (a) For everyn ∈ N and C > 0, there exists a constant
α ∈ [0,1) which is a majorant for the functions of nonconvexity of graphs of
an arbitrary Lipschitz(with constantC) functions ofn real variables with convex
closed domain; and

(b) The assertion of(a) holds for graphs of functionsf with monotone restric-
tionsf |`, for every one-dimensional linè.

THEOREM 1.5 [8]. Letm ∈ N andC > 1. Then there exists a monotone in-
creasing functionh: (0,∞) → [0,1) which is a majorant for the function of
nonconvexity of the graph of an arbitrary polynomialPm(x) = ∑m

i=0 aix
i , with

|ai | 6 C and |ai/am| 6 C.

Clearly, Theorems 1.4 and 1.5, together with Theorem 1.3, yield some special
selection theorems. The purpose of the present paper is first to present some new
positive results on the function of nonconvexity of graphs of continuous func-
tions. Here, the main result remains a relation between continuity of a function
and its directional continuity, when ‘global’ restrictions automatically imply all
‘one-dimensional’ restrictions and the converse holds only under some additional
assumptions (see Theorem 2.4 below). As a corollary, we obtain the generalization
of Theorem 1.5 for polynomialsP2(x1, . . . , xn), n > 1.

On the other hand, we also present some negative results, which show that
degree ofP = 2 is the greatest possible for an existence of a nice (in the sense
of Theorem 1.3) estimate for function of nonconvexity of a graph of a polyno-
mial P in more than one variable. More precisely, we prove in Theorem 2.8 that
if Pµ = P3(x, y) = x3 + µxy, 0 < µ < 1, andAµ = 0(Pµ) is the graph of
Pµ, then sup{hAµ | 0 < µ < 1} is identically equal to the unit function. Hence,
for the family {x3 + µxy | 0 < µ < 1} of polynomials of thethird degree of
two real variables, the analogue of Theorem 1.5 is, in general, false. Moreover, for
higher degrees we have a stronger counterexample, i.e. the equalityh0(P) ≡ 1 over
the whole ray(0,∞) holds for asinglepolynomial,P = P9(x, y) = x9 + x3y

(see Theorem 2.7 below). Note that such negative results are mainly the result of
the behaviour ‘at infinity’, since for every convexboundedsubsetV ⊂ R2, the
restrictionsP |V are Lipschitz functions and thus Theorems 1.3 and 1.4 hold.

2. Statements of Results

LetX be a Banach space. We shall denote:

(a) The closed convex hullconv{x1, . . . , xk} of the pointsx1, . . . , xk by [x1, . . .,
xk];

(b) The infimum of the radii of all closed balls containing all pointsx1, . . . , xk
(respectively, bounded setA ⊂ X) byR[x1, . . . , xk] (respectively,R[A]); and

(c) For a Hilbert spaceX, the center of the unique closed ball of radiusR[A]
which contains the bounded setA ⊂ X by c[A].
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42 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

Note thatR[A] (resp.c[A]) is theČebyševradius (resp.centerof the bounded
setA).

DEFINITION 2.1. For a nonempty closed subsetA ⊂ X of a Banach space
(X, ‖ · ‖) and for a convex subsetE ⊂ X with R[E] > 0, we define therelative
precision of an approximation ofA by elements ofE as follows:

δ(E,A) = sup{dist(q,A)/R[E] | q ∈ conv(E ∩ A)},
where for the empty intersectionE ∩ A we putδ(E,A) = 0.

Clearly, for a convex setE with nonempty intersectionE ∩ A, the equality
δ(E,A) = 0 means that the intersectionE ∩ A is a convex subset ofA.

DEFINITION 2.2. For a nonempty closed subsetA ⊂ X of a Banach space
(X, ‖ · ‖), thevalueof its function of nonconvexityhA at a pointr > 0 is defined
as follows:

hA(r) = sup{δ(D,A) | D is an open ball withR[D] = r}.
Sometimes, the approximations by convex hulls of finite subsets is more suit-

able:

LEMMA 2.3 [11]. Definition2.2 of the functionhA(·) of nonconvexity of the set
A admits the following equivalent definition:

hA(r) = sup{δ(convE,A) | E is a finite subset ofA withR(E) = r}.
In the sequel, we shall denote byM<1 (monotone and less than 1) the set of all

strictly increasing functions from(0,∞) to [0,1).
THEOREM 2.4. For every integern ∈ N and every functionh ∈M<1, there exists
a functionH ∈ M<1 with the following property: iff : Rn → R is a continuous
function with a closed convex domainV and if for every linè ⊂ Rn, the function
h0(F |`∩V ) of nonconvexity of the graph of the restrictionf |`∩V is less thanh, then
the functionh0(f ) of nonconvexity of the entire graph0(f ) is less thanH .

As a corollary of Theorem 2.4, we obtain the following result:

THEOREM 2.5. For every integern ∈ N and every constantC > 0, there exists
a functionH ∈ M<1 with the following property: IfP2 is a polynomial inn real
variables of degree two, i.e.P2(x1, . . . , xn) = ∑

aij xixj +∑ akxk + a0, and if
‖aij‖ 6 C, for every16 i, j 6 n, thenh0(P2) < H .

In the next theorem, we modify the ‘y = sin 1/x’ example from [2] in order to
prove the essentiality of the restriction|aij | 6 C in Theorem 2.5 (even forn = 1).
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NONCONVEXITY OF GRAPHS 43

THEOREM 2.6. There exists a continuous multivalued mappingF : [0,1] → R2

with no continuous singlevalued selection, such that every valueF(t) ofF is either
an interval or a connected path on a parabola.

THEOREM 2.7. The function of nonconvexityh0(P) for the polynomialP(x, y) =
x9 + x3y is identically equal to1.

THEOREM 2.8. LetPµ(x, y) = x3+µxy, whereµ > 0. Then for every sequence
µn→ 0, the corresponding sequence of functions of nonconvexity of graphs ofPµn
has a pointwise supremum, identically equal to1.

We complete this section by a geometric interpretation of the equalityhA(r) =
1, for closed subsetsA ⊂ X of a Hilbert spaceX. We say that a closed ballD with
centerc is inscribedintoA if c ∈ conv(D ∩ A) and(IntD) ∩ A = ∅. We also say
that a fixed closed ballD, centered at the origin, can beapproximativelyinscribed
intoA if for every 0< λ < 1 there existsc ∈ X such thatc ∈ conv((c +D) ∩ A)
and(c + λD) ∩ A = ∅. Observe that in a Hilbert space the equalityhA(r) = 1
is equivalent to the fact that the closed ball of radiusr, centered at the origin,
can be approximately inscribed intoA. Hence, in Theorem 2.7 each closed ball
D can be approximately inscribed into the graph of a given unique polynomial,
P9(x, y) = x9 + x3y.

For a summary of results, let{Pα}α∈A be a family of polynomials of degree
6 m in n real variables and letL = {L ⊂ Rn+1 | L = T (0(Pα)), for someα ∈ A
and for some isometryT }. Let F : X → L be a lower semicontinuous mapping
defined on a paracompact spaceX. So we can give some answers to the following
two questions:

QUESTION 2.9. Does there exist a majoranth ∈M<1 for the set{h0(Pα)}α∈A?

QUESTION 2.10. Does there exist a continuous singlevalued selection ofF?

Restrictions on

m n coefficients ofPα Question 2.9 Question 2.10 References

1 Arbitrary None Yes Yes [2]

2 1 None In general, No In general, No Theorem 2.6

Arbitrary 1 |ai | 6 c, Yes Yes Theorem 1.5

|ai/am| 6 c
2 Arbitrary |aij | 6 c Yes Yes Theorem 2.5

3 2 |ai | 6 1 In general, No Unknown Theorem 2.8

9 2 UniqueP h0(P ) ≡ 1 Unknown Theorem 2.7

possible
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44 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

3. Proof of Theorem 2.4

Hilbert spaces have many advantages over Banach spaces. One of them, which will
be useful for us, is the fact that for an estimate of the function of nonconvexity of a
subsetA in a Hilbert space it suffices to control only the distances betweenA and
Čebyšev centers of simplices with vertices inA. Compare this with Definition 2.1,
where supremum was taken overall points of conv(E ∩ A). More precisely, we
have the following lemma (see [11]). Here, we shall use the term ‘h-paraconvex
set’ for a setA with hA 6 h.

LEMMA 3.1. Let h ∈ M<1 and suppose that for a closed subsetA ⊂ X of a
Hilbert spaceX the following property holds: for every integerm ∈ N and every
m-tuple of pointsx1, . . . , xm ∈ A, the distancedist(c[x1, . . . , xm], A) is less than
or equal toh(R[x1, . . . , xm])R[x1, . . . , xm]. ThenA is anH -paraconvex subset of
a Hilbert space, whereH(R) = h(R)+ ε(R) < 1 andε(R) is the positive root of
the equation(h(R)+ x)2 = 1− x2.

In other words,centralh-paraconvexity of a subsetA of a Hilbert space implies
H -paraconvexity ofA, for some 06 h < H < 1.

Graphs of continuous functions also have some nice properties in compari-
son with abstract subsets. The main one (for our purpose) is that we can always
consider simplices of dimension equal to the dimension of the domain. For an
arbitrary set, Carathéodory’s theorem gives an upper estimate for the dimension of
the simplices: it is equal to the dimension of the domainplus1.

LEMMA 3.2 [9]. Letf : Rk → R be a continuous function with a convex domain
and lety1, y2, . . . , yk+2 ∈ 0(f ) and z ∈ [y1, y2, . . . , yk+2] be arbitrary points.
Then there exist pointsp1, . . . , pk+1 ∈ 0(f ) such thatz ∈ [p1, p2, . . ., pk+1]
and the simplex[p1, . . . , pk+1] can be moved into one of the faces of the simplex
[y1, . . . , yk+2].

The following property is also one of the desired ones for graphs of continuous
functions:

LEMMA 3.3. Letf : Rk → R be a continuous function with a convex domain of
dimensionk and let the graph0(f ) be anh-paraconvex subset ofRk+1, for some
functionh ∈ M<1. Then for everyR > 0 and every pointsy1, . . . , yk+1 ∈ 0(f ),
with R[y1, . . . , yk+1] = R and dim[y1, . . . , yk+1] = k, there exists a pointy ∈
0(f ) such that:

(1) ‖y − c[y1, . . . , yk+1]‖ 6 1+h(R)
2 · R; and

(2) One of the following two properties holds with respect to the plane5, passing
through the pointsy1, . . . , yk+1:

(L) ‖π(y)− c[y1, . . . , yk+1]‖ 6 1+h(R)
2 · R; or
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(a) (b)
Figure 1.

(M) The pointsy ∈ 0(f ) andcf ∈ 0(f ) are on the same side, with respect
to5, whereπ : Rk+1→ 5 is the projection, orthogonal to the domain
andcf = π−1(c) ∩ 0(f ).

Proof.Let

D = D(c, h(R) · R) and D′ = D(c, ((1+ h(R))/2) R)
be two concentric open balls. Exactly two cases are possible:π(D) ⊂ D′ or
π(D) 6⊂ D′.

If π(D) ⊂ D′, then the angle between5 andc + Rk is less than or equal to
φ = arccos(2h(R)/(1+ h(R))) (see Figure 1a). So, due toh-paraconvexity of
0(f ), we can findy ∈ 0(f ) ∩ D and, hence, (1) and (L) hold for the pointy. If
π(D) 6⊂ D′ then such an angle is greater thanφ (see Figure 1b). We can assume
that the pointcf is above the plane5 and, hence, is above the planec+Rk. (Note,
that c ∈ 5 ∩ (c + Rk), ccf is orthogonal toc + Rk and that in5 there are no
directions orthogonal toRk, due to the equality dim[y1, . . . , yk+1] = k.)

One of the pointsyi ∈ 5 ∩ 0(f ) lies belowc + Rk, because of the inclusion
c ∈ [y1, y2, . . . , yk+1]. But ‖yi − c‖ 6 R and henceyi ∈ π(D′). Due to the
continuity of functionf ‘on’ the segment[c, yi], we see that there exists a point
y ∈ (c + Rk) ∩ 0(f ) ∩ D′ which is above the plane5. Thus, fory, conditions
(1) and (M) are satisfied. Observe also, that notations (L) and (M) were motivated
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46 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

Figure 2.

by the terms ‘Lipschitz’ and ‘monotone’ and were originally derived exactly from
these two kinds of functions. 2

We now pass to the proof of Theorem 2.4. The general plan is similar to the
proof of Theorem 2.4 from [8].

PROPOSITION 3.4.For everyk ∈ N and every functionh ∈ M<1, there exists
a functionH ∈ M<1 with the following property: Iff : Rk → R is a continuous
function with convex closedk-dimensional domainV and if for every(k − 1)-
dimensional hyperplaneE ⊂ Rk, the graph0(f |E∩V ) is a centrally h-paraconvex
set, then the graph0(f ) is centrallyH -paraconvex set.

Clearly, Proposition 3.4 provides an inductive step, fromk−1 tok, in the proof
of Theorem 2.4, and the basis of induction(k = 1) is provided by the hypotheses
of Theorem 2.4.

Proof of Proposition 3.4. We proceed by induction onk. Suppose that the propo-
sition holds for 16 m < k. We shall verify it form = k. So, we fix a map
f : Rk → R and pointspi = (xi, f (xi)) ∈ 0(f ) and we denote the simplex
[p1, . . . , pk+1] by1. We may assume that dim(1) = k, since in the opposite case
it suffices to use the previous inductive steps.

If the centerc(1) of the simplex1 belongs to one of its boundary simplices∇,
thenc(1) = c(∇), R(1) = R(∇), and we may use the inductive hypothesis for
f |∇ . If the centerc(1) of the simplex1 is its interior point, then‖c(1)− pi‖ =
R(1) and we denotedi = dist(c(1),∇i), where∇i is the boundary simplex of
1,16 i 6 k + 1. Then we chooseε = ε(R) > 0 so small thath(R)+ ε(R) < 1,
whereR = R(1) (see Figure 2).

Case A. There exists 16 i 6 k + 1 such thatdi 6 ε · R.
By hypothesis, we conclude that for somey ∈ 0(f |∇i ),
‖c(∇i )− y‖ 6 h(R(∇i)) · R(∇i) 6 h(R) · R,

due to the monotonicity ofh. Hence,

‖c(1)− y‖ 6 h(R) · R + ε · R = (h(R)+ ε) · R.
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So, in this case we have the freedom to chooseH(R) as an arbitrary number from
[h(R)+ ε(R),1).

Case B. For all 16 i 6 k + 1, the inequalitydi > ε(R) · R holds.

LEMMA 3.5 [7, Case BB of the proof of Theorem 1.4]. There exists a monotone
decreasing functionδ: (0,1)→ (0,1) such that for everyε > 0 and every(k+1)-
simplex1, withR(1) = R and withmin{di | 1 6 i 6 k + 1} > ε · R, the upper
estimatemax{di | 16 i 6 k + 1} 6 δ(ε) · R holds.

So, we apply Lemma 3.3 to every(k − 1)-dimensional boundary simplex∇i of
the simplex1 and we find a pointyi ∈ 0(f |∇i ) such that for 2̂h = 1+ h:

(1)i ‖yi − ci‖ 6 ĥ(Ri) · Ri, whereci = c(∇i) andRi = R(∇i); and
(2)i for yi either (L)i or (M)i holds.

(a) Let us consider the case when all pointsyi lie on the same side of the plane
5 passing through the pointsp1, . . . , pk+1, for example, above this plane. Then
elementary geometry shows that one of the angles^yicic is less or equal to 90◦
and, hence,

‖c − yi‖2 6 ‖c − ci‖2+ ‖ci − yi‖2 6 d2
i + (ĥ(Ri))2 · R2

i

= d2
i + (ĥ(Ri))2(R2− d2

i )

6 R2[(1− (ĥ(Ri))2)δ2(ε)+ (ĥ(Ri))2].
The functionφ(t) = (1− t2)a2 + t2 is increasing on(0,∞), for 0 < a < 1,

andĥ(·) is also an increasing function. Hence, we obtain fromRi 6 R that:

‖c − yi‖2 6 [(1− (ĥ(R))2)δ2(ε)+ (ĥ(R))2]R2.

Observe that the first factor on the right is greater thanδ2(ε) because it is a
convex combination of numbersδ2(ε) and 1 with the coefficient(ĥ(R))2 ∈ (0,1).

(b) Let us consider the case when there exist two pointsyi and yj lying on
different sides with respect to5 and with properties (M)i and (M)j , respectively.
Then the points(ci)f and(cj )f (i.e. the points of the graph0(f ) which lie ‘over’
the centersci and, respectively,cj ) also lie on different sides with respect to5. Due
to the continuity off , we see that there existsyij ∈ 0(f ) ∩ [ci, cj ] and, hence,
‖c − yij‖ 6 max{di, dj } 6 δ(ε)R.

(c) Let us change the property (M) in the case (b) by the property (L). By a
similar argument we findyij ∈ 0(f ) ∩ [π(ci), π(cj )] and, hence,‖c − yij‖ 6
max{‖c − π(ci)‖, ‖c − π(cj)‖}. But for ‖c − π(ci)‖ and ‖c − π(cj )‖ we have
upper estimatesexactlyas in (a), because the (L)-property gives‖c − π(ci)‖ 6
ĥ(Ri)Ri and‖c − π(cj )‖ 6 ĥ(Rj )Rj .

(d) The last is the case when someyi with property (L) lies above5 and some
yj with property (M) lies below5. But then(cj )f also lies below5 and repetition
of (b) and (c) gives the existence of a pointyij ∈ 0(f ) ∩ [π(ci), cj ]. Hence,

‖c − yij‖ 6 max{‖c − π(cj )‖, ‖c − cj‖}.
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48 DUŠAN REPOVŠ AND PAVEL V. SEMENOV

We can now give the answer for the functionH ∈ M<1 from the statement
of Proposition 3.4. So, for a givenh ∈ M<1 we putε = (1− h)/2 and, hence,
h + ε = ĥ ∈ M<1. Next, according to Lemma 3.5 we can find a decreasing
function δ: (0,1) → (0,1). Note that the compositionδ(ε(·)) is an increasing
function. Finally,

H(R) = max
{
δ(ε(R)), [(1− (ĥ(R))2)δ2(ε(R))+ (ĥ(R))2]1/2, ĥ(R)}

= [
(1− (ĥ(R))2)δ2(ε(R))+ (ĥ(R))2]1/2 ∈M<1.

Proposition 3.4 is thus proved. By invoking Lemma 3.1, Theorem 2.4 is also proved.
2

4. Proof of Theorem 2.5

In view of Theorem 2.4, it suffices to find a common majoranth ∈ M<1 for
functions of nonconvexity of graphs of all restrictionsP |`, where` is any line
in Rn. So, for every linè ⊂ Rn, we pick a pointx0 = (x0

1, . . . , x
0
n) ∈ ` and a unit

vectorν = (ν1, . . . , νn) ∈ Rn parallel to`. Then` = {x0+ tν | t ∈ R}. Hence, for
x = (x1, . . . , xn) ∈ ` we havexi = x0

i + tνi and, therefore,

P2(x) =
n∑

i,j=1

aij (x
0
i + tν)(x0

j + tνj )+
n∑
k=1

ak(x
0
k + tνk)+ a0

= at2 + bt + c,
wherea = ∑n

i,j=1 aij νiνj . So,P2|` is a quadratic polynomial and the hypothesis
|aij | 6 C implies that|a| 6 Cn2. Thus, Theorem 2.5 is a corollary of Theorem 2.4
and the following lemma:

LEMMA 4.1. For every d > 0, there existshd ∈ M<1 such that for every
quadratic polynomialy = ax2 + bx + c, with |a| 6 d, the functionh0(y) of
nonconvexity of the graph ofy is less thanhd .

Proof. With respect to some orthogonal system of coordinates we have the
equationy = ax2, for a given quadratic polynomial for estimating ofh0(f ). For
graphs of continuous functionsy = f (x) it suffices to find only an estimate for
δ({A,B}, 0(f )) (see [8]), i.e. we must find a suitable control for dist(M,0(f ))

for the middle pointsM of all segments[A,B] with dist(A,B) = 2R andA,B ∈
0(f ). So, let us fixR > 0 and consider an arbitrary such segment withA(xA, yA),
B(xB, yB) andxA < xB . Exactly three cases are possible (see Figure 3):

(a) xA > 2R. Then, by monotonicity ofy over [2R,+∞), we conclude that
dist(M,0(y)) 6 (

√
2/2)R; or

(b) −2R 6 xA < 2R. Theny is a Lipschitz function on[−2R,2R], with the Lip-
schitz constantk = max{y′(x) | |x| 6 2R} = 4|a|R. Hence, dist(M,0(y)) 6
sin(arctank) · R; or
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Figure 3.

(c) x < −2R. Then, by monotonicity ofy over (−∞,0], we find (as in (a)) that
dist(M,0(y)) 6 (

√
2/2)R.

Hence, the final answer for the functionh ∈M<1 is

h(R) = max{√2/2, sin(arctan 4dR)}. 2

This also completes the proof of Theorem 2.5. 2

5. Proof of Theorem 2.6

Pick a monotone decreasing sequencean > 0, converging to zero and let for every
n > 1, 2bn = an+1 + an. First, we denote byp−n the quadratic polynomial with
the vertex(bn,1) and withp−n (an+1) = p−n (an) = 0. Next, we denote byp+n the
quadratic polynomial withp+n (bn) = p+n (bn+1) = 1 andp+n (an+1) = 0. In order
to defineF : [1/2,1] → R2, we partition the segment[1/2,1] into six congruent
subsegments:

[1/2,1] = [1/2, t1] ∪ [t1, t2] ∪ [t2, t3] ∪ [t3, t4] ∪ [t4, t5] ∪ [t5,1].
Next, we defineF at the ends of these subsegments, by letting (see Figure 4):

F(1) = 0(p−1 |[a2,a1]);F(t5) = 0(p−1 |[a2,b1]);
F(t4) = 0(p+1 |[a2,b1]);F(t3) = 0(p+1 |[b2,b1]);
F(t2) = 0(p+1 |[b2,a2]);F(t1) = 0(p−2 |[b2,a2]); and

F(1/2) = 0(p−2 |[a3,a2]);
Whent decreases from 1 tot5, F(t) shrinks fromF(1) to F(t5) over the graph

of p−1 . Whent decreases fromt5 to t4, F(t) passes fromF(t5) toF(t4) as a convex
combination of these parabolas. Whent decreases fromt4 to t3, F(t) grows from
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Figure 4.

F(t4) to F(t3) over the graph ofp+1 . When t decreases fromt3 to t2 thenF(t)
shrinks fromF(t3) to F(t2) over the graph ofp+1 . On [t1, t2] we define a ‘convex’
path fromF(t2) to F(t1) and on[1/2, t1] the valuesF(t) grow from F(t1) to
F(1/2) over the graph ofp−2 . Finally, we obtain the same situation att = 1/2,
as whent = 1. Extension over segments[1/n+1,1/n], n > 1 is made in a similar
way andF(0) = [(0,−1); (0,1)].

This completes the construction of the exampleF : [0,1] → R2. Note, that the
vertices of the parabola’sp+n are belowx-axis. Let us locate them more carefully,
in order to be sure that they converge to(0,0), whenn→∞. Clearly,

p+n (x) = An(x − an+1)(x − cn),
for someAn > 0 andan+1 < cn < bn. So, we have

1= An(bn − an+1)(bn − cn) = p+n (bn)
and

1= An(bn+1 − an+1)(bn+1− cn) = p+n (bn+1).

We wish to find:

p+n

(
bn + bn+1

2

)
= An

4
(bn − an+1 + bn+1 − an+1)(bn − cn + bn+1− cn)
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= An

4
(bn − an+1 + bn+1 − an+1)

(
1

An(bn − an+1)
+ 1

An(bn+1 − an+1)

)
= 1

4

(
2+ bn+1 − an+1

bn − an+1
+ bn − an+1

bn+1 − an+1

)
= 1

4

(
2+ dn + 1

dn

)
,

where

dn = bn+1− an+1

bn − an+1
< 0

is completely defined by the (given) sequence{an}. More precisely,

bn − an+1 = 1

2
(an − an+1) and bn+1 − an+1 = −1

2
(an+1− an+2).

Hence,

dn = an − an+1

an+2− an+1
.

Therefore, we must choose the sequence{an} so thatdn →−1. Clearly, it suffices
to putan = 1/n. (Note thatan = 2−n would be a wrong choice.) It is then clear
thatF : [0,1] → R2 is continuous.

Suppose, to the contrary, thatf : [0,1] → R2 is a continuous singlevalued
selection of0 and f (t) = (f1(t), f2(t)) ∈ F(t). Thenf1(1) ∈ [a2, a1] and
f1(1/2) ∈ [a3, a2]. Hence,a2 ∈ Im(f1|[1/2,1]), due to continuity off1. Analo-
gously,an ∈ Im(f1|[1/n,1/(n−1)]) and(0, a2] ⊂ Im f1. Hence, there exists a sequence
tn ∈ [0,1], converging to zero, such thatf1(tn) = bn, n > 1. But then

f (tn) = (bn, f2(tn)) ∈ F(tn).
By construction, the setF(t) has at most a single common point with the vertical
x = bn, namely the point(bn,1). Thereforef2(tn) = 1 andf2(0) = 1, because
of continuity of f2. Similar arguments for the pointsan show thatf2(0) = 0.
Contradiction. Theorem 2.6 is thus proved. 2

6. Proof of Theorems 2.7 and 2.8

We begin by some elementary facts, concerning polynomials of degree 3 in one
real variable.

LEMMA 6.1. For everya, b ∈ R, the following holds:

lim
t→∞

t3 −√t2− a(t2− b)
t

= a + 2b

2
.

2
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LEMMA 6.2. LetP(x) = ax3+ bx2+ cx+ d, a 6= 0. Then with respect to a new
origin, the equation ofP has the form

P(X) = aX3− D

3a
X,

whereD = b2− 3ac. 2

So, ifD = b2−3ac < 0, the derivativeP ′ = 3a(X2− (D/9a2)) has a constant
sign. Hence,P is monotone andh0(P) 6

√
2/2 (see [8]). Using Lemma 6.2, we

shall rename the coordinates and assume thatD > 0.

LEMMA 6.3. Let P(x) = ax3 − (D/3a)x andD > 0. Then the graph0(P )
intersects withx-axis at pointsx = 0, x = ±√D/√3a and has a local maximum
(resp. local minimum) at the point(−√D/3a,2D√D/27a2) (resp. at the point
(
√
D/3a,−2D

√
D/27a2)). 2

LEMMA 6.4. Using the notations of Lemma6.3, let 0 < y0 < 2D
√
D/27a2 and

let A(xA, yA) andB(xB, yB) be two points of intersection of the horizontal line
y = y0 with the graph0(P ) such that−√D/3a ∈ [xA, xB]. Letdist(A,B) = 2R,
then

y0 = 2
√
D − 3a2R2(D − 12a2R2)

27a2
;

xA = −R −
√
D − 3a2R2

3a
; and xB = R −

√
D − 3a2R2

3a
.

Proof.Find the roots of the equationax3− (D/3a)x = y0 or x3+ px + q = 0
with

p = − D

3a2
< 0, q = −y0

a
< 0.

Using Cardano’s formula, we have

xj = 2

√
−p

3
cos

φ + 2(j − 1)π

3
, j ∈ {1,2,3},

where

cosϕ = − q

2
(√
−p

3

)3 .

In our case, cosϕ > 0, i.e. 0< ϕ/3< π/6. Hence,

xA = 2

√
−p

3
cos

(
ϕ

3
+ 2π

3

)
and xB = 2

√
−p

3
cos

(
ϕ

3
− 2π

3

)
.

SVAN338.tex; 9/04/1998; 12:45; p.14



NONCONVEXITY OF GRAPHS 53

Figure 5.

Knowing that

2

√
−p

3
= 2
√
D

a
,

we obtain

2R = xB − xA = 2
√
D

3a

(
cos

ϕ − 2π

3
− cos

ϕ + 2π

3

)
= 2
√
D√

3a
sin

ϕ

3
.

So,ϕ = 3 arcsin(
√

3aR)/
√
D and, therefore,

y0 = −aq = 2

(√
−p

3

)3

cosϕ = 2a

(√
D

3a

)3(
4 cos3

ϕ

3
− 3 cos

ϕ

3

)
= 2D

√
D

27a2
cos

ϕ

3

(
1− 4 sin2 ϕ

3

)
= 2D

√
D

27a2

√
1− 3a2R2

D

(
1− 4 · 3a

2R2

D2

)
= 2
√
D − 3a2R2(D − 12a2R2)

27a2
;

xA = 2
√
D

3a
cos

ϕ + 2π

3
=
√
D

3a

(
− cos

ϕ

3
−√3 sin

ϕ

3

)
=
√
D

3a

(
−
√

1− 3a2R2

D
−√3

√
3aR√
D

)
= −R −

√
D − 3a2R2

3a
.

Finally, xB = xA + 2R. Lemma 6.4 is thus proved. 2
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LEMMA 6.5. For every fixedR > 0 and for every0 6 λ < 1, the value of the
function of nonconvexityh0(P) of polynomialP(x) = ax3 + bx2 + cx + d at the
pointR is more thanλ for sufficiently large

√
D and

√
D/a.

Proof. We use the notations of Lemma 6.4. Denote byC the point of the local
maximum and denote byM the middle point of the segment[A,B] (see Figure 5).

Due to the concavity ofP over[xA, xB], we have that

dist(M,0(P )) > min{R sinα,R sinβ},
whereα = ^CAB andβ = ^CBA. Hence,

h0(P)(R) > δ({A,B}, 0(P )) > dist(M,0(P ))/R > min{sinα, sinβ}.
So it suffices to show that sinα → 1 and sinβ → 1, when

√
D → ∞ and√

D/a → ∞. Next, we estimate tanα and tanβ. Using Lemmas 6.3 and 6.4 we
have that

tanα = ymax− y0

xmax− xA >
ymax− y0

2R

= 1

2R

2

27a2

[
D
√
D −

√
D − 3a2R2(D − 12a2R2)

]
.

Substituting the variablet = √D/a, we see that

tanα >
a

27R

[
t3−

√
t2 − 3R2(t2 − 12R2)

]
.

By Lemma 6.1, the second factor is equivalent to27
2 R

2t , whent → ∞. Hence,
tanα is more than variable equivalent to

a

2
Rt = R

2

√
D→∞.

So, sinα → 1 and, analogously, sinβ → 1 when
√
D/a → ∞ and

√
D → ∞.

Lemma is proved. 2

We now begin the proof of Theorem 2.7. Our plan is as follows:

(I) We restrict the polynomialz(x, y) = x9 + x3y over lines`: y = −ρ in the
planeR2 and letρ →+∞.

(II) Such restrictionz|` is, in fact, a cubic parabola with respect to the variable
t = x3.

(III) So, for a fixedR > 0 and sufficiently largeρ > 0, we find (as in Lem-
mas 6.4, 6.5) pointsA = Aρ andB = Aρ on the graph0(z|`) such that
dist(A,B) = 2R, the segment[A,B] is horizontal and the local maximum
of z|` lies betweenA andB. Our assertion is that the balls with the diameters
AB = AρBρ are approximately inscribed into0(P ) whenρ →+∞.
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Figure 6.

Figure 7.

(IV) We draw the horizontal planeHρ : z = zρ through the segment[A,B]. The
intersectionHρ∩0(z) gives a graph of some functiony = y(x) which will be
concave over[A,B] and will be with unique pointc = cρ of maximum. Thus,
we estimate the relative precision of the approximationδ({A,B},Hρ ∩0(z))
in a similar manner as in Lemma 6.5.

(V) From (I)–(IV) we get the desired estimate for the function of nonconvexity
h0(z) in the vertical and horizontal sections. In order to finish the proof, we
lift the planeHρ, up to the levelz = zρ+R and we estimate the nonconvexity
of such horizontal sections, as in (IV) (see Figure 6).
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Figure 8.

The main technical problem here is that the restriction ofz over the curvilinear
figure inHρ, bounded by the arcACB and by the segment[AB], is not concave.
So, the polynomialz is given over the linè: y = −ρ by the formula (see Figure 7):

z = x9 − x3ρ = t3− tρ, t = x3.

With the notations from Lemmas 6.4, 6.5, we see thata = 1 andD = b2− 3ac =
3ρ. Hence,

√
D/a → +∞ and

√
D → +∞, whenρ → +∞ and for a fixed

R > 0 and for sufficiently largeρ we can always find the pointsA andB, as
described in (III). The intersection of the horizontal planeHρ with 0(z) gives the
line inHρ defined by the equation

x9 + x3y = zρ. (i)

The equality (i) implies that

y = zρ

t
− t2, t = x3 and y′(t) = −zρ

t2
− 2t = − 1

t2
(zρ + 2t3). (ii)

Hence,y has a local maximum at the pointtρ = (−zρ/2)1/3 and the maximal value
yρ equals to (see Figure 8)

yρ = y(tρ) = 1

tρ
(zρ − t3ρ) =

3zρ
2(−zρ/2)1/3 = −

3 · 21/3

2
z2/3
ρ . (iii)
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LEMMA 6.6. limρ→∞(ρ + yρ) = +∞.
Proof. Equation (iii) gives the expression ofyρ via zρ andzρ we can find as in

Lemma 6.4. We must only be careful with the fact that we know the formula forzρ
via distance dist(A′, B ′) = 2r between pointsA′(x3

A, zρ) andB ′(x3
B, zρ), not from

the dist(A,B) = 2R. Clearly,r = r(R, ρ).
Let us find (or estimate) this dependence. By Lemma 6.4, we know that

tA′ = −r −
√

3ρ − 3r2

3
and t ′B = r −

√
3ρ − 3r2

3
.

Hence, by temporary denoting
√

3ρ − 3r2 = 3d, we find that

2R = xB − xA = t1/3B′ − t1/3A′ = (r + d)1/3+ (r − d)1/3,
or

8R3 = (r + d)+ (r − d)+ 3(r2 − d2)1/3 · 2R.
Hence,

4R3 = r + 3R
(
r2 − ρ − r

2

3

)1/3

= r − 3R
(
ρ − 4r2

3

)1/3

.

Finally,

r − 4R3

3R
=
(
ρ − 4r2

3

)1/3

. (iv)

If for a fixedR > 0, the functionr = r(ρ) is bounded, then the left side in (iv)
is bounded, whereas the right side is unbounded. Contradiction. Hence,r →+∞,
whenρ →∞. Moreover, we claim thatr = o(

√
ρ), ρ →+∞.

Suppose, to the contrary, that for some1
4 > c > 0, the inequalityr2 > c · ρ

holds, for sufficiently largeρ. Then for the left side in (iv), we have alower estimate
√
c

3R
√
ρ − 4

3
R2.

But for the right side in (iv) we have the followingupper estimate

3
√
ρ

(
1− 4c

3

)1/3

.

So, we see that forρ →+∞, the lower estimate is greater than the upper estimate.
Contradiction.

After having proved the relationr = o(
√
ρ), we calculateρ + yρ via r andρ.

So, by Lemma 6.4, we know thata = 1,D = 3ρ, and that

zρ = 2

27

√
3ρ − 3r2(3ρ − 12r2) = 2ρ3/2

33/2

√
1− r

2

ρ

(
1− 4r2

ρ

)
. (v)
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Therefore

ρ + yρ = ρ − 3 · 21/3

2
z2/3
ρ = ρ

[
1−

(
1− r

2

ρ

)1/3(
1− 4r2

ρ

)2/3]
.

Sincer2/ρ → 0 whenρ →+∞, it follows that

ρ + yρ ∼
p→∞ ρ

[
1−

(
1− r2

3ρ

)(
1− 8r2

3ρ

)]
= ρ

[
3r2

ρ
− 8r4

9ρ2

]
= 3r2 − 8

9

r2

ρ
.

But we know thatr →+∞ andr2/ρ → 0, whenρ →+∞. Thus, Lemma 6.6 is
proved. 2

If we return to (ii) (see Figure 8), we see that min{tanα, tanβ} > (ρ+yρ)/2R→
+∞ and, hence, min{sinα, sinβ} → 1, whenρ → +∞. Due to the concavity of
y = y(x) over [A,B], we see thatδ({A,B},H ∩ 0(z)) → 1, whenρ → +∞.
This completes steps (I)–(IV) of our plan. To realize step (V), we first prove that
the middle pointM of [A,B] practically coincides ‘at infinity’ with the point of
local maximum of functiony(x) from (i).

LEMMA 6.7.

lim
ρ→∞

xA + R
xρ

= 1.

Proof.Due to (v), and to the fact thatr2 = o(ρ) we have forxρ

xρ = (tρ)1/3 = (−zρ/2)1/9

=
[
− (ρ/3)3/2

√
1− r

2

ρ

(
1− 4r2

ρ

)]1/9

∼
ρ→∞−(ρ/3)

1/6.

On the other hand,

xA + R = (tA′)
1/3+ R = R −

(
r +

√
ρ − r2

√
3

)1/3

= R −
(
√
ρ

[
r√
ρ
+
√

1− r2

ρ√
3

])1/3

∼
ρ→∞−(ρ/3)

1/6.

Lemma 6.7 is thus proved. 2

To finish step (V), we fix 06 γ < 1, γ < γ̂ < 1 and draw two horizontal
planes:Hρ andH ′ρ which is an upper parallel shift ofHρ ontoR along thez-axis
(see Figure 9).
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Figure 9.

We chooseρ large enough so that dist(A′, B ′) > γ̂R and, hence, for every
horizontal planeH ′′ρ betweenHρ andH ′ρ, we have dist(A′, B ′) > γ̂R. Then, using
our estimates along horizontal planes, we chooseρ so large, that dist(M ′′, P ) >
(γ/γ̂ )dist(M ′′, B ′′) > γR for all pointsP ∈ H ′′ρ ∩0(z). Moreover, we can choose
ρ so large, that the triangle[M,M ′′, P ]will be practically rectangular – see Lemma
6.7. But then dist(M,P ) > dist(M ′′, P ) > γR. We omit the technical details.
Theorem 2.7 is thus proved. 2

The key step of the proof of Theorem 2.7 is the equality (iv) and the dependence
r = o(

√
ρ). Such an approach is unsuccessful for third-degree polynomials. More

precisely, instead of the statement of Lemma 6.6 thatρ + yρ → +∞, we have
for the case of the polynomialPµ(x, y) = x3 + µxy (for a fixedR > 0) that
ρ + yρ → 3R2/µ, whenρ → +∞. So, by passing toµ → 0, we obtain the
same result as in Lemma 6.6, however, fora family of polynomials{Pµ}, rather
than fora singlepolynomial as in Lemma 6.6. The remaining steps in the proof of
Theorem 2.8 differ in corresponding places in the proof of Theorem 2.7 only by
routine technical changes. We omit the details. 2
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