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Abstract. We consider transversal (orthogonal) perturbations of finite-dimensional convex sets and
estimate the ‘degree of nonconvexity’ of resulting sets, i.e. we estimate the nonconvexity of graphs
of continuous functions. We prove that a suitable estimate of nonconvexity of graphs over all lines
induces a ‘nice’ estimate of the nonconvexity of graphs of the entire function. Here, the term ‘nice’
means that in the well-known Michael selection theorem it is possible to replace convex sets of a
multivalued mapping by such nonconvex sets. As a corollary, we obtain positive results for poly-
nomials of degree two under some restrictions on coefficients. Our previous results concerned the
polynomials of degree one and Lipschitz functions. We show that for a family of polynomials of
degree three such estimate of convexity in general does not exist. Moreover, for degree 9 we show
that the nonconvexity of the unique polynomialx, y) = x2+ x3y realizes the worst possible case.
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1. Introduction

There is a principal difference between selection theorems for multivalued map-
pings with finite-dimensional domains compared to those whose domains are infini-
te-dimensional. To illustrate the point, we recall the arguments from [5]. The first
one of them is, in fact, a reformulation of the selection theorem from [3]:

THEOREM 1.1 [5, Theorem 2.4l etY be a completely metrizable space aid
a hereditary family of closed nonempty subset¥ ¢fe. L € £ andy € L imply
that{y} € £). Then the following statements are equivalent:

(a) For every paracompact spaceé with dimX < n + 1, every lower semicon-
tinuous mapping”: X — J£ has a selection and
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(b) Every L e L is n-connectedi.e. £ C €¢") and if X is paracompact and
dimX < n + 1, then every lower semicontinuous mép X — £ has alocal
selection.

Is it possible to find a pureljopologicalanalogue of Theorem 1.1 without any
dimensional restrictions? Due to the well-known example from [6], the answer
to this question is, in general, negative. In fact, Michael [5] derived from [6] the
following result, related to Theorem 1.1:

THEOREM 1.2 [5, Theorem 2.8]There is no clas€ of topological spaces such
that the following assertions would be equivalent for every completely metrizable
spaceY and every hereditary family of its closed nonempty sets:

(a) If X is a paracompact space then every lower semicontinuous mappiig—
L has a selection and

(b) The inclusiont C € holds and for every paracompact spakeevery lower
semicontinuous map: X — £ has a local selection.

In view of these facts, one tries to change the topological requirement in the
question above by substituting somreetric restrictions. The present paper is an
attempt in this direction. The key ingredient of our work is the notion of the
function of nonconvexityto every nonempty closed subsétC X of a Banach
space(X, || - ||) we associate some functidry: (0, c0) — [0, 2]. The identity
ha = 0 is equivalent to the convexity of and the moré: 4 differs from zero, the
less ‘convex’ isA.

The notion of the function of nonconvexity was first introduced in [8] as a
generalization of the concept paraconvexity(cf. [4]). An intermediate notion of
functional paraconvexityvas proposed earlier in [10]. Note also that for a Hilbert
spaceX, values of a function of nonconvexity always lie on the intef\@al1].
Moreover, the result of Klee [1] shows that if dikh > 2 and if for each closed
A C X, the values ofi, are in[0, 1], thenX is isometric to a Hilbert space.

THEOREM 1.3 [8] Leth: (0, 00) — [0, 1) be a monotone increasing mapping
and F: X — Y aclosed-valued lower semicontinuous mapping from a paracom-
pact spaceX into a Banach spacé&. Suppose that y,,(r) < h(r), for every

x € X andr > 0. ThenF has a continuous selection.

The exact evaluation of the function of nonconvexity or finding a nice majorant
for it is a nontrivial task. Some positive results were obtained for the case when
is the graph of a continuous function with convex domain. We consider a convex
set (domain) and then perturb it along an additional direction, orthogonal to the
given convex set. Of course, here we work in a Hilbert space and, moreover, in the
present paper we shall only deal with finite-dimensional Euclidean spaces.
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THEOREM 1.4 [7] (a) For everyn € N and C > 0, there exists a constant
a € [0, 1) which is a majorant for the functions of nonconvexity of graphs of
an arbitrary Lipschitz(with constantC) functions of: real variables with convex
closed domain; and

(b) The assertion ofa) holds for graphs of functiong with monotone restric-
tions f|,, for every one-dimensional link

THEOREM 1.5 [8] Letm € N andC > 1. Then there exists a monotone in-
creasing functionz: (0,00) — [0, 1) which is a majorant for the function of
nonconvexity of the graph of an arbitrary polynomi@),(x) = >" ja;x’, with
la;| < C and|a;/a,| < C.

Clearly, Theorems 1.4 and 1.5, together with Theorem 1.3, yield some special
selection theorems. The purpose of the present paper is first to present some new
positive results on the function of nonconvexity of graphs of continuous func-
tions. Here, the main result remains a relation between continuity of a function
and its directional continuity, when ‘global’ restrictions automatically imply all
‘one-dimensional’ restrictions and the converse holds only under some additional
assumptions (see Theorem 2.4 below). As a corollary, we obtain the generalization
of Theorem 1.5 for polynomial®, (x4, ..., x,),n > 1.

On the other hand, we also present some negative results, which show that
degree ofP = 2 is the greatest possible for an existence of a nice (in the sense
of Theorem 1.3) estimate for function of nonconvexity of a graph of a polyno-
mial P in more than one variable. More precisely, we prove in Theorem 2.8 that
if P, = Ps(x,y) = x%+ uxy,0 < pu < 1, andA, = I'(P,) is the graph of
Py, then suph,, | 0 < u < 1} is identically equal to the unit function. Hence,
for the family {x® + uxy | 0 < u < 1} of polynomials of thethird degree of
tworeal variables, the analogue of Theorem 1.5 is, in general, false. Moreover, for
higher degrees we have a stronger counterexample, i.e. the edualify= 1 over
the whole ray(0, co) holds for asingle polynomial, P = Po(x, y) = x% + x3y
(see Theorem 2.7 below). Note that such negative results are mainly the result of
the behaviour ‘at infinity’, since for every convésoundedsubsetV c R?, the
restrictionsP|y are Lipschitz functions and thus Theorems 1.3 and 1.4 hold.

2. Statements of Results
Let X be a Banach space. We shall denote:

(a) The closed convex hutlonv{x, ..., x;} of the pointsxy, ..., x; by [x4, ...,
Xel;

(b) The infimum of the radii of all closed balls containing all points. .., x;
(respectively, bounded sdtC X) by R[xy, ..., x;] (respectively,R[A]); and

(c) For a Hilbert spaceX, the center of the unique closed ball of radiRgA]
which contains the bounded s&tc X by c[A].
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Note thatR[A] (resp.c[A]) is the Ceby3evadius (respcenterof the bounded
SetA).

DEFINITION 2.1. For a nonempty closed subsetC X of a Banach space
(X, || - |) and for a convex subsdét C X with R[E] > 0, we define theelative
precision of an approximation of by elements of as follows:

S(E, A) = supdist(qg, A)/R[E] | g € CONV(E N A)},
where for the empty intersectiai N A we puts(E, A) = 0.

Clearly, for a convex sek with nonempty intersectiorE N A, the equality
S§(E, A) = 0 means that the intersectidhn A is a convex subset of.

DEFINITION 2.2. For a nonempty closed subsetc X of a Banach space
(X, || - ID, thevalueof its function of nonconvexity: 4 at a pointr > 0 is defined
as follows:

ha(r) =supd(D, A) | D is an open ball wittrR[D] = r}.

Sometimes, the approximations by convex hulls of finite subsets is more suit-
able:

LEMMA 2.3 [11]. Definition 2.2 of the functionz ,(-) of nonconvexity of the set
A admits the following equivalent definition:

ha(r) =supd(convE, A) | E is a finite subset of with R(E) = r}.

In the sequel, we shall denote By_, (monotone and less than 1) the set of all
strictly increasing functions fron0, co) to [0, 1).

THEOREM 2.4. For every integen € N and every function € M_,, there exists
a functionH € M_1 with the following property: iff: R” — R is a continuous
function with a closed convex domdihand if for every linef c R”, the function
hrriv) Of NONconvexity of the graph of the restrictigityny is less tham, then

the functiomir s, of nonconvexity of the entire gragh( f) is less thanA .

As a corollary of Theorem 2.4, we obtain the following result:

THEOREM 2.5. For every integer € N and every constant > 0, there exists
a functionH € M_; with the following property: IfP, is a polynomial in: real

variables of degree two, i.€%(x1, ..., x,) = Y a;;x;x; + > axxx + do, and if

lla;; || < C, foreveryl < i, j < n,thenhrp, < H.

In the next theorem, we modify the ‘= sin 1/x’ example from [2] in order to
prove the essentiality of the restrictigm;| < C in Theorem 2.5 (even for = 1).
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THEOREM 2.6. There exists a continuous multivalued mappiig[0, 1] — R?
with no continuous singlevalued selection, such that every @a{tjeof F is either
an interval or a connected path on a parabola.

THEOREM 2.7. The function of nonconvexiby(py for the polynomialP (x, y) =
x° 4 x3y is identically equal tdl.

THEOREM 2.8. Let P, (x, y) = x3+puxy, whereu > 0. Then for every sequence
u, — 0, the corresponding sequence of functions of nonconvexity of graghs of
has a pointwise supremum, identically equalto

We complete this section by a geometric interpretation of the equality) =
1, for closed subsets C X of a Hilbert spaceX. We say that a closed bdl} with
centerc isinscribedinto A if ¢ € con(D N A) and(Int D) N A = @. We also say
that a fixed closed balb, centered at the origin, can bpproximativelyinscribed
into A if for every 0 < A < 1 there existg € X such that € conV(c + D) N A)
and(c + AD) N A = (. Observe that in a Hilbert space the equality(r) = 1
is equivalent to the fact that the closed ball of radiysentered at the origin,
can be approximately inscribed intb. Hence, in Theorem 2.7 each closed ball
D can be approximately inscribed into the graph of a given unique polynomial,
Po(x,y) = x° + x3y.

For a summary of results, 1¢tP,},c4 be a family of polynomials of degree
< minn real variables and let = {L ¢ R | L = T(I'(P,)), for somex € A
and for some isometr§¥'}. Let F: X — £ be a lower semicontinuous mapping
defined on a paracompact spaceSo we can give some answers to the following
two questions:

QUESTION 2.9. Does there exist a majorang M _; for the set{iir(p,)}oca?

QUESTION 2.10. Does there exist a continuous singlevalued selectibf of

Restrictions on

m n coefficients ofP, Question 2.9  Question 2.10 References

1 Arbitrary None Yes Yes 2]

2 1 None In general, No Ingeneral, No Theorem 2.6

Arbitrary 1 la;| < c, Yes Yes Theorem 1.5
la; /am| < ¢

2 Arbitrary |a;;j| < ¢ Yes Yes Theorem 2.5

3 2 la;] <1 In general, No Unknown Theorem 2.8

9 2 UniqueP hrpy =1 Unknown Theorem 2.7

possible
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3. Proof of Theorem 2.4

Hilbert spaces have many advantages over Banach spaces. One of them, which will
be useful for us, is the fact that for an estimate of the function of nonconvexity of a
subsetA in a Hilbert space it suffices to control only the distances betweand
CebysSev centers of simplices with verticesdinCompare this with Definition 2.1,
where supremum was taken owdl points of conE N A). More precisely, we

have the following lemma (see [11]). Here, we shall use the térparaconvex

set’ for a setd with h4 < h.

LEMMA3.1. Leth € M_; and suppose that for a closed subgetc X of a
Hilbert spaceX the following property holds: for every integer € N and every
m-tuple of pointsxy, ..., x,, € A, the distancalist(c[xy, ..., x,,], A) is less than
or equal toh(R[x1, ..., xu)R[x1, ..., x,]. ThenA is an H-paraconvex subset of
a Hilbert space, wheréf (R) = h(R) + ¢(R) < 1lande(R) is the positive root of
the equationz(R) + x)? = 1 — x2.

In other wordsgentral h-paraconvexity of a subset of a Hilbert space implies
H-paraconvexity ofd, forsome 0< 7 < H < 1.

Graphs of continuous functions also have some nice properties in compari-
son with abstract subsets. The main one (for our purpose) is that we can always
consider simplices of dimension equal to the dimension of the domain. For an
arbitrary set, Carathéodory’s theorem gives an upper estimate for the dimension of
the simplices: it is equal to the dimension of the donpirs 1.

LEMMA 3.2 [9]. Let f: R¥ — R be a continuous function with a convex domain
and letyy, yo, ..., yii2 € T'(f) andz € [y1, yo, ..., yry2] be arbitrary points.
Then there exist pointg, ..., pry1 € T'(f) such thatz € [p1, p2, ..., prs1l

and the simpleXp;, ..., pr+1] can be moved into one of the faces of the simplex
Y1, -y Va2l

The following property is also one of the desired ones for graphs of continuous
functions:

LEMMA 3.3. Let f: R¥ — R be a continuous function with a convex domain of
dimensionk and let the grapH™(f) be ank-paraconvex subset &*+1, for some
functionh € M_1. Then for evenyR > 0 and every pointsy, ..., i1 € T'(f),
with R[y1, ..., yis1] = R anddim[yq, ..., yry1] = k, there exists a poiny €
I'(f) such that:

@ Iy — clyr. - yenalll < E52 - R; and
(2) One of the following two properties holds with respect to the plnpassing
through the points, ..., yii1:

(L) llr () = clyi, - - s Yagalll <

1+h(R) .
—2 R, or
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(@) (b)

Figure 1.

(M) The pointsy € I'(f) andc; € I'(f) are on the same side, with respect
to IT, wherer: R¥*1 — [T is the projection, orthogonal to the domain
andc; =7 ~Xc) NT(f).

Proof. Let
D =D(c,h(R)-R) and D’ = D(c,((1+h(R))/2) R)

be two concentric open balls. Exactly two cases are possiti®) c D’ or
n(D) ¢ D'

If 7(D) C D’, then the angle betwedn andc + R is less than or equal to
¢ = arccos2h(R)/(1 + h(R))) (see Figure 1a). So, due teparaconvexity of
I'(f), we can findy € I'(f) N D and, hence, (1) and (L) hold for the point If
7 (D) ¢ D' then such an angle is greater tharfsee Figure 1b). We can assume
that the point ; is above the plangl and, hence, is above the plane R¥. (Note,
thatc € T N (c + R¥), ccy is orthogonal tac + R* and that inIT there are no
directions orthogonal t&*, due to the equality difys, ..., y41] = k.)

One of the points; € IT N T'(f) lies belowc + R¥, because of the inclusion
¢ € [y, ¥2, ..., yiq1l. But [y, — ¢|| < R and hencey; € =(D’). Due to the
continuity of function f ‘on’ the segmenfc, y;], we see that there exists a point
y € (c + RY N I'(f) N D’ which is above the planB. Thus, fory, conditions
(1) and (M) are satisfied. Observe also, that notations (L) and (M) were motivated
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Figure 2.

by the terms ‘Lipschitz’ and ‘monotone’ and were originally derived exactly from
these two kinds of functions. O

We now pass to the proof of Theorem 2.4. The general plan is similar to the
proof of Theorem 2.4 from [8].

PROPOSITION 3.4.For everyk € N and every functiork € M_;, there exists
a functionH e M_1 with the following property: Iff: R* — R is a continuous
function with convex closettdimensional domairl and if for every(k — 1)-
dimensional hyperplan& c R, the graphl’( f|znv) is a centrally h-paraconvex
set, then the grapR (f) is centrally H-paraconvex set.

Clearly, Proposition 3.4 provides an inductive step, flom1 tok, in the proof
of Theorem 2.4, and the basis of inductiin= 1) is provided by the hypotheses
of Theorem 2.4.

Proof of Proposition 3.4We proceed by induction dn Suppose that the propo-
sition holds for 1< m < k. We shall verify it form = k. So, we fix a map
f: R¥ — R and pointsp; = (x;, f(x;)) € I'(f) and we denote the simplex
[p1, ..., pre1] DY A. We may assume that did) = &, since in the opposite case
it suffices to use the previous inductive steps.

If the centerc(A) of the simplexA belongs to one of its boundary simpliceés
thenc(A) = ¢(V), R(A) = R(V), and we may use the inductive hypothesis for
flv. If the centerc(A) of the simplexA is its interior point, thenjc(A) — p;|| =
R(A) and we denotel; = dist(c(A), V;), whereV; is the boundary simplex of
A,1<i<k+ 1 Thenwe choose = ¢(R) > 0 so small thak(R) + ¢(R) < 1,
whereR = R(A) (see Figure 2).

Case AThere exists K i < k+ 1suchthat; < ¢ - R.
By hypothesis, we conclude that for some& I'(f|v,),

le(Vi) =yl < h(R(V})) - R(V;) < h(R) - R,
due to the monotonicity of. Hence,
le(A) =yl <h(R)-R+¢-R=(h(R)+e¢)-R.
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So, in this case we have the freedom to chadg®) as an arbitrary number from
[A(R) +&(R), ).

Case BForall 1< i < k + 1, the inequalityd; > ¢(R) - R holds.

LEMMA 3.5 [7, Case BB of the proof of Theorem 1.4[here exists a monotone
decreasing functios: (0, 1) — (0, 1) such that for every > 0and everyk + 1)-
simplexA, with R(A) = R and withmin{d; | 1 <i < k+ 1} > ¢ - R, the upper
estimatemaxd; | 1 <i <k +1} <8(¢) - R holds.

So, we apply Lemma 3.3 to evefy — 1)-dimensional boundary simple¥; of
the simplexA and we find a poiny; € I'(f|v,) such that for 2 = 1 + A:

@) llyi — cill < h(R;) - R;, wherec; = ¢(V;) andR; = R(V;); and
(2); for y; either (L} or (M); holds.

(a) Let us consider the case when all poiptéie on the same side of the plane
IT passing through the poings, ..., pr.1, for example, above this plane. Then
elementary geometry shows that one of the angles;c is less or equal to 90
and, hence,

le = yill> < lle —cill> + llei — yill? < d? + (h(R))? - R?
= d?+ (h(R))*(R* — d?)
< R[(1 — (h(R))?)8%(e) + (h(R:))?.

The functiong (1) = (1 — t?)a® + t? is increasing on(0, co), for 0 < a < 1,
andhi(-) is also an increasing function. Hence, we obtain fl®nx R that:

le — yill2 < [(X — (h(R))®8%() + (A(R))!R?.

Observe that the first factor on the right is greater tb&@) because it is a
convex combination of numbes&(s) and 1 with the coefficienti (R))?2 € (0, 1).

(b) Let us consider the case when there exist two pogntand y; lying on
different sides with respect td and with properties (M)and (M);, respectively.
Then the pointgc;) r and(c;) s (i.e. the points of the graph( f) which lie ‘over’
the centers; and, respectively;;) also lie on different sides with respectlio Due
to the continuity off, we see that there existg; € I'(f) N [¢;, ¢;] and, hence,
llc — yijll < max{d;,d;} < d(e)R.

(c) Let us change the property (M) in the case (b) by the property (L). By a
similar argument we find;; € I'(f) N [7(c;), w(c;)] and, hence|c — y;;|l <
maxX{|lc — w(c)ll, llc — m(c;)ll}. But for |lc — m(c;)|| and [lc — (c;)|| we have
upper estimatesxactlyas in (a), because the (L)-property givies— (c;)|| <
h(Ri)R; andllc — ()|l < h(R))R;.

(d) The last is the case when somewith property (L) lies abovél and some
y;j with property (M) lies below1. But then(c;) r also lies belowT and repetition
of (b) and (c) gives the existence of a point € I'(f) N [ (c;), c;]. Hence,

lc — yijll < maxX{|lc —m(c)ll, llc —c;ll}
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We can now give the answer for the functiégh € M_; from the statement
of Proposition 3.4. So, for a giveln € M_; we pute = (1 — h)/2 and, hence,
h+e¢ = h e M.y Next, according to Lemma 3.5 we can find a decreasing
function §: (0,1) — (0, 1). Note that the compositiod(s(-)) is an increasing
function. Finally,

H(R) = max|8(e(R)), [(1 - (A(R)D8*(e(R)) + (M(RNAY?, h(R)}
= [ — (A(R)DSX(e(R)) + (h(R)]"* € M_1.

Proposition 3.4 is thus proved. By invoking Lemma 3.1, Theorem 2.4 is also proved.
O

4. Proof of Theorem 2.5

In view of Theorem 2.4, it suffices to find a common majorane M_, for
functions of nonconvexity of graphs of all restrictioly,, where/ is any line

in R". So, for every lineZ  R”", we pick a point® = (x2, ..., x%) € ¢ and a unit
vectorv = (vy, ..., v,) € R” parallel to¢. Thent = {x°+tv | t € R}. Hence, for
x = (x1,...,x,) € L we havex; = x? + tv; and, therefore,

P(x) = Z ajj ()cl-O + tv)(x? +1tv;) + Zak(x,? +tvr) + ag
i,j=1 k=1

= atz—l-bt—i-c,

wherea = )} j=1@ijvivj. SO, Pl is a quadratic polynomial and the hypothesis
la;;| < C implies thatla| < Cn?. Thus, Theorem 2.5 is a corollary of Theorem 2.4

and the following lemma:

LEMMA4.1. For everyd > O, there existsh; € M1 such that for every
quadratic polynomialy = ax? + bx + ¢, with |a| < d, the functionir,, of
nonconvexity of the graph ofis less tharh,.

Proof. With respect to some orthogonal system of coordinates we have the
equationy = ax?, for a given quadratic polynomial for estimating iof ;. For
graphs of continuous functions = f(x) it suffices to find only an estimate for
S({A, B}, T'(f)) (see [8]), i.e. we must find a suitable control for digt I"( 1))
for the middle points\f of all segment$A, B] with dist(A, B) = 2R andA, B €
'(f). So, let us fixRk > 0 and consider an arbitrary such segment with 4, y4),

B(xp, yg) andx, < xp. Exactly three cases are possible (see Figure 3):

(@) x4 > 2R. Then, by monotonicity ofy over [2R, +00), we conclude that
dist(M, T'(y)) < (v/2/2)R; or

(b) —2R < x4 < 2R. Theny is a Lipschitz function ofi—2R, 2R], with the Lip-
schitz constant = max{y’(x) | |x| < 2R} = 4|a|R. Hence, distM, ' (y)) <
sin(arctark) - R; or
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V2/2 Bt
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Figure 3.

(c) x < —2R. Then, by monotonicity of over (—oo, 0], we find (as in (a)) that
dist(M, T'(y)) < (v2/2)R.

Hence, the final answer for the functibne M_4 is

h(R) = max{(~/2/2, sin(arctan 4 R)}. O

This also completes the proof of Theorem 2.5. O

5. Proof of Theorem 2.6

Pick a monotone decreasing sequedgce- 0, converging to zero and let for every
n > 1,2, = a,41 + a,. First, we denote by the quadratic polynomial with
the vertex(b,, 1) and with p; (a,+1) = p, (a,) = 0. Next, we denote by the
quadratic polynomial wittpt(b,) = p;F(b,4+1) = 1 andp;’(a,4+1) = 0. In order
to defineF: [1/2, 1] — R?, we partition the segmeiiil/2, 1] into six congruent
subsegments:

[1/2,1] = [1/2, 11] U [t1, t2] U [£2, t3] U [13, 14] U [14, 5] U [15, 1].
Next, we defineF at the ends of these subsegments, by letting (see Figure 4):

F(t4) = F(piw[az,hl]); F(tS) = F(pf“bz,hl]);
F(IZ) = F(p?__hbz,az]); F(tl) = F(p2_|[b2,a2]); and
Whenr decreases from 1 g, F(¢) shrinks fromF (1) to F(#s) over the graph

of p;. Whent decreases from to 74, F(¢) passes fronF (t5) to F(z4) as a convex
combination of these parabolas. Whedecreases fromy to t3, F(z) grows from
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b

Figure 4.

F(14) to F(t3) over the graph ofp]. When decreases froms to 7, then F(r)
shrinks fromF (#3) to F(r2) over the graph op;. On|[#, 2] we define a ‘convex’
path from F(#) to F(x;) and on[1/2, 1] the valuesF(¢) grow from F(z;) to
F(1/2) over the graph of, . Finally, we obtain the same situationzat= 1/2,
as whenr = 1. Extension over segmerits/n+1, 1/n], n > 1is made in a similar
way andF (0) = [(0, —1); (0, 1)].

This completes the construction of the exampte[0, 1] — R?. Note, that the
vertices of the parabola’s] are belowx-axis. Let us locate them more carefully,
in order to be sure that they convergg@0), whenn — oo. Clearly,

pi(x) = Ap(x — ap1)(x — ),
for someA, > 0anda,.1 < ¢, < b,. So, we have

1= An(bn - an+l)(bn - Cn) = p;—:(bn)

and
1= An (bn+l - an+1) (bn+l - Cn) = P,j_ (bn+l)-
We wish to find:
bn + bn+l
+( Zn T Pntl
p ()
A,

= T(bn — apy1 + bpy1 — ang1)(by — cy + byg1 — cp)
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An (b b —a ) a
= —(b, —a, + n+ n+ +
+1 1 1 An (bn — an+1) An (bn+1 n 1)
] bn — Uy n n
( +1 ap+1 b ap+1 >

4

Y2444 2
_4 n dn’

where

bn — Qp41 bn+l — dp+1

b1 —a

+1 n+1

d, = 21—l g
bn —dp41

is completely defined by the (given) sequefeg. More precisely,

1
b, —ap41 = E(an —ayy1) and byy —ayq1 = _E(anH — Qpy2).
Hence,
dn _ ap — dp41 '
ap42 — Ap41

Therefore, we must choose the sequefagé¢ so thatd, — —1. Clearly, it suffices
to puta, = 1/n. (Note thata, = 27" would be a wrong choice.) It is then clear
that F: [0, 1] — R?is continuous.

Suppose, to the contrary, th#t [0,1] — R? is a continuous singlevalued
selection ofl" and f(r) = (f1(8), f>(t)) € F(). Then f1(1) € [a, a1] and
f1(1/2) € [as, az]. Hence,a; € Im(filj1/2,17), due to continuity off;. Analo-
gously,a, € Im(fili1/n,1/:-1)) @nd(0, az] C Im fi. Hence, there exists a sequence
t, € [0, 1], converging to zero, such thgt(z,) = b,, n > 1. But then

f(tn) = (bn’ fZ(tn)) € F(tn)-

By construction, the seff'(r) has at most a single common point with the vertical
x = b,, namely the pointb,, 1). Thereforef,(z,) = 1 and f>(0) = 1, because
of continuity of f>. Similar arguments for the points, show thatf>(0) = O.
Contradiction. Theorem 2.6 is thus proved. O

6. Proof of Theorems 2.7 and 2.8

We begin by some elementary facts, concerning polynomials of degree 3 in one
real variable.

LEMMA 6.1. For everya, b € R, the following holds:
fim 12— V12—a(t®>—b) _a+2b

t—00 t 2
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LEMMA 6.2. LetP(x) = ax®+bx?+cx +d, a # 0. Then with respect to a new
origin, the equation of has the form

D
P(X)=aX®— — X,
(X)=a o

whereD = b? — 3ac. O

So, if D = b?—3ac < 0, the derivativeP’ = 3a(X? — (D/9?)) has a constant
sign. Hence P is monotone andr, < +/2/2 (see [8]). Using Lemma 6.2, we
shall rename the coordinates and assumelthat 0.

LEMMA6.3. Let P(x) = ax® — (D/3a)x and D > 0. Then the grapH (P)
intersects withc-axis at pointsx = 0, x = ++/D/+/3a and has a local maximum
(resp. local minimumat the point(—+/D/3a, 2D~/D/274?) (resp. at the point
(v'D/3a, —2D~/D/27a?)). O

LEMMA 6.4. Using the notations of Lemn@a3, let0 < yo < 2D+/D/274? and
let A(x4, ya) and B(xp, yg) be two points of intersection of the horizontal line
y = yo with the graphl’(P) such that—+/D/3a € [x,, x3]. Letdist(A, B) = 2R,
then

2V'D — 3a?R%(D — 124°R?)

Yo =

27a?
D — 3a2R? D — 3a2R?
XA:—R—T; and XB:R—T.

Proof. Find the roots of the equatian® — (D/3a)x = yoorx3+ px +¢g =0
with

D Yo
=—-—— <0, =->=<0.
p 3,2 q p

Using Cardano’s formula, we have

2(j—1
xj=2 /—gcosw, je{1,23),

where
q

In our case, cog > 0, i.e. 0< ¢/3 < /6. Hence,

p ¢ 27 p ¢ 27
=2 /—=cos| =+ — and =2 /—=cosl=——).
=473 S<3+3> =473 S(s 3>

COSp = —
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hd ﬂ Yo
‘M !
: ; ®
Lmax B 0
2R

Figure 5.

Knowing that

we obtain

2R =xp — x4 =

3a 3 3

So,¢ = 3arcsin(+/3aR)/+/D and, therefore,

3 3
— oo 2P _ (YD ¢ _3c08”
yo = aq—2< 3) COS(p—Za( = ) (4005”3 30053)

2D/ D .
= \/_cosg(l— 4 sir? %)

2742 3
2D\D 342 R2 342 R?
= 1— 1—4.
27a? D D?
_ 2¢/D —3a?R%(D — 124°R?)
o 27a? ’
VD __¢o+2r /D ¢ @
Xg = g CosT—— = — (—cosg—ﬁang)

_ g(_ /1_3a12)R2_\/§«/\;3a5R):_R_—«/D—35a2RZ'

Finally, x3 = x4 + 2R. Lemma 6.4 is thus proved.

2V D -2 2 2VD .
\/_(cos(p i s(er n): VD 2

53
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LEMMA 6.5. For every fixedR > 0 and for every0 < A < 1, the value of the
function of nonconvexityr p, of polynomial P (x) = ax® + bx? + cx +d at the
point R is more than for sufficiently largey/D andv/D /a.
Proof. We use the notations of Lemma 6.4. Denote(bthe point of the local
maximum and denote i/ the middle point of the segmef, B] (see Figure 5).
Due to the concavity oP over[xy,, xz], we have that

dist(tM, I'(P)) > min{R sina, R sinB},
wherea« = <CAB andp = <CBA. Hence,
hrpy(R) = 8({A, B}, T(P)) > dist(M, I'(P))/R > min{sina, sing}.

So it suffices to show that sin — 1 and sin8 — 1, whenv/D — oo and
V'D/a — oo. Next, we estimate tam and tang. Using Lemmas 6.3 and 6.4 we
have that

Ymax — Yo Ymax — Yo
>

XmaX_XA 2R
1 2

= — ——[DvV'D— D —3a?R¥D — 124°R?)].

2R 2742

tana =

Substituting the variable= +v/D/a, we see that
tana > % [1* — V12— 3R2(1? — 12R?)].

By Lemma 6.1, the second factor is equivalent%ﬁth, whenr — oo. Hence,
tana is more than variable equivalent to

R
So, sit — 1 and, analogously, sjf — 1 when/D/a — oo andv/D — .
Lemma is proved. O

We now begin the proof of Theorem 2.7. Our plan is as follows:

(I) We restrict the polynomiat(x, y) = x° 4+ x3y over linest: y = —p in the
planeR? and letp — +oc.

(I1) Such restrictionz|, is, in fact, a cubic parabola with respect to the variable
t = x5,

(Il So, for a fixedR > 0 and sufficiently largeo > 0, we find (as in Lem-
mas 6.4, 6.5) points = A, andB = A, on the grapHh(z|,) such that
dist(A, B) = 2R, the segmentA, B] is horizontal and the local maximum
of z|, lies betweer andB. Our assertion is that the balls with the diameters

AB = A, B, are approximately inscribed info(P) whenp — +o0.
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Figure 6.

z=2%—-2% r=t—tp

Figure 7.

(IV) We draw the horizontal plané/, : z = z, through the segmen#, B]. The
intersectionH,NI"(z) gives a graph of some functign= y(x) which will be
concave ovefA, B] and will be with unique point = ¢, of maximum. Thus,
we estimate the relative precision of the approximasid, B}, H, NI'(z))
in a similar manner as in Lemma 6.5.

(V) From (D—(1V) we get the desired estimate for the function of nonconvexity
hr in the vertical and horizontal sections. In order to finish the proof, we
lift the planeH,,, up to the levet = z,+ R and we estimate the nonconvexity

of such horizontal sections, as in (IV) (see Figure 6).
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Figure 8.

The main technical problem here is that the restriction o¥er the curvilinear
figure in H,, bounded by the ardC B and by the segmeriid B], is not concave.
So, the polynomiat is given over the liné: y = —p by the formula (see Figure 7):

z=x—x3p=3—1p, 1=x"

With the notations from Lemmas 6.4, 6.5, we see that1 andD = b?> — 3ac =

3p. Hence,w/D/a — +o0 and+/D — +oo, whenp — +o0 and for a fixed
R > 0 and for sufficiently largeo we can always find the pointd and B, as
described in (Il1). The intersection of the horizontal plaigwith I'(z) gives the
line in H, defined by the equation

x9+x3y=zp. 0]
The equality (i) implies that

1 ..
Lo _ g2 8 and y(t) = —i—’z’ —2r = —t—z(zp + 26%). (ii)

Hence,y has a local maximum at the point= (—z,/2)/® and the maximal value
¥, equals to (see Figure 8)

1 3 3z, 3.21% 44
Yo =Y(tp) = Z(Zp —t) = 2z, T 2 z5". (iii)
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LEMMA6.6. lim,_ (o + y,) = +00.

Proof. Equation (iii) gives the expression of via z, andz, we can find as in
Lemma 6.4. We must only be careful with the fact that we know the formula,for
via distance digtd’, B') = 2r between pointst’(x2, z,) and B’ (x3, z,,), not from
the distA, B) = 2R. Clearly,r = r(R, p).

Let us find (or estimate) this dependence. By Lemma 6.4, we know that

V3p — 3r? V3p —3r2

ty =—r————— and tp;=r—
3 ? 3

Hence, by temporary denoting3p — 3r2 = 34, we find that

2R =xp — x4 = t;{s — t}f =(r —i—d)l/3 + (r — d)l/3,

or
8R3=(r+d)+ (r —d) + 3% —d>»¥3.2R.
Hence,
_ 2\ 13 _ 42\ 13
aR3=r+3R(2 -2 ) =r—3r(2=) .
3 3
Finally,
r —4R3 o — 4r? 173 .
3R\ 3 ' )

If for a fixed R > 0, the functionr = r(p) is bounded, then the left side in (iv)
is bounded, whereas the right side is unbounded. Contradiction. Heneet-oo,
whenp — oo. Moreover, we claim that = o(,/p), p — +o0.
Suppose, to the contrary, that for SOI%I& ¢ > 0, the inequalityr®> > ¢ - p

holds, for sufficiently large. Then for the left side in (iv), we have@wer estimate

Ve 4.

Y /p— =R%

3RV’ T3
But for the right side in (iv) we have the followingpper estimate

1—4c\"°
3
(%)
So, we see that fgy — +00, the lower estimate is greater than the upper estimate.
Contradiction.

After having proved the relation = o(,/p), we calculateo + y, viar andp.
So, by Lemma 6.4, we know that= 1, D = 3p, and that

2 20%/? r2 4r2
Zp = 2—7\/3,0 —3r2(3p —12%) = 3372 1- ;(1— 7) (V)
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Therefore

3.21/3 03 2\ 13 452\ 2/3
et (100) (-7)
? 2 P p

Sincer?/p — 0whenp — 400, it follows that

r? 8r? 3% 8t
~ pli— (1= ) (1= | = p| T -1
p+ypp*°°p[ ( 3p>( 30)] p[p 9p2]

= 3% 8 f
9p
But we know that — +o00 andr?/p — 0, whenp — +oc. Thus, Lemma 6.6 is
proved. O

If we return to (i) (see Figure 8), we see that ftame, tang} > (p+y,)/2R —
+o0 and, hence, migging, sing} — 1, whenp — +o0. Due to the concavity of
y = y(x) over[A, B], we see thas({A, B}, H N I'(z)) — 1, whenp — +o0.
This completes steps (1)—(IV) of our plan. To realize step (V), we first prove that
the middle pointM of [A, B] practically coincides ‘at infinity’ with the point of
local maximum of functiory(x) from (i).

LEMMA 6.7.
. R
lim Xat

p—>oo X,

=1

Proof. Due to (v), and to the fact that = o(p) we have forx,

x, = ()P = (—z,/2Y°

72 1/9
= [—(p/:-’>)3/2 1-— (1——)] ~ —(p/3)"".
Y p—>00

On the other hand,

Jp—)”

XA+ R = ta)*+R=R-— ( 7

= R- (ﬁ{ g D —(p/3).

Lemma 6.7 is thus proved. O

b|‘

To finish step (V), we fix0< ¥y < 1,y < y < 1 and draw two horizontal
planes:H, and H, which is an upper parallel shift dt/, onto R along thez-axis
(see Figure 9).
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Figure 9.

We choosep large enough so that dist’, B’) > y R and, hence, for every
horizontal planeH betweenH,, andH,, we have distA’, B') > 7 R. Then, using
our estimates along horizontal planes, we chgos® large, that disv/”, P) >
(y/y)disttM”, B”) > y R for all pointsP € H)NT'(z). Moreover, we can choose
p So large, that the triangl@Z, M”, P] will be practically rectangular — see Lemma
6.7. But then distM, P) > distM”, P) > y R. We omit the technical details.
Theorem 2.7 is thus proved. O

The key step of the proof of Theorem 2.7 is the equality (iv) and the dependence
r = 0(,/p). Such an approach is unsuccessful for third-degree polynomials. More
precisely, instead of the statement of Lemma 6.6 that y, — +o00, we have
for the case of the polynomia?, (x, y) = x* + uxy (for a fixedR > 0) that
p+y, — 3R?/u, whenp — +oo. So, by passing ta«. — 0, we obtain the
same result as in Lemma 6.6, however, dofamily of polynomials{P,}, rather
than fora singlepolynomial as in Lemma 6.6. The remaining steps in the proof of
Theorem 2.8 differ in corresponding places in the proof of Theorem 2.7 only by
routine technical changes. We omit the details. O
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