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Let My be the set of all metrics compatible with a given topology on a locally
contractible space X and let for each triple z = (p, x, &) € My X X X (0,%), A(z)
be the set of all positive & such that the open §-neighborhood of x is contractible
in the open e&-neighborhood of x in metric p. We prove several continuity
properties of the map A: M, X X X (0,) — (0,%) and then, using a selection
theorem for non-lower semicontinuous mappings, show that A admits a continuous
singlevalued selection. Similar, but somewhat different properties are also demon-
strated for the modulus A, of local n-connectedness.  © 1997 Academic Press

1. INTRODUCTION

A topological space X is said to be locally contractible if for every point
x € X and for each of its neighborhoods U C X there exists a neighbor-
hood V' C X of x such that the inclusion V' C U is homotopically trivial.
For a metric space X the notion of local contractibility admits a definition
via the real-valued parameters, namely the radii of neighborhoods U and
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V. More precisely, let M, be the set of all metrics on X compatible with
the given topology on X. The space M, is equipped with topology induced
by the following metric of uniform convergence:

dist( p, d) = sup{min{l p(x,y) —d(x,y)l,1}Ix,y € X}.

For every triple (p, x, &) € My X X X (0,) we define A(p, x, &) as the
set of all positive numbers & such that the 8-neighborhood B( p, x, 6) of
the point x in metric p is contractible in the s-neighborhood B( p, x, £) of
the point x in the same metric p. In this way, we define a multivalued
mapping A : M, X X X (0,%) — (0, ») with nonempty convex values which
we call the modulus of local contractibility of the space X.

The definition of modulus A, of local n-connectedness is very similar to
the definition of modulus of local contractibility—one only needs to
replace the contractibility of the ball B( p, x, 8) inside the ball B(p, x, &)
with the contractibility inside the ball B(p, x, £) of every continuous
image of the n-sphere S” lying in B(p, x, 8).

The goal of the present paper is to investigate some continuity type
properties of A. As a corollary we prove the existence of a continuous
singlevalued choice (selection) of elements of the sets A(p, x, &) (see
Theorem 1.5).

ExAMPLE (1.1). Let X be the half-open interval [0, 1) and let p be the
standard metric on R. Then A( p,0,1) = (0,) and A(p,0, &) = (0, &], for
all e < 1.

This example shows that the map A does not need to be lower semicon-
tinuous and hence in general, the standard Michael selection theory
techniques do not apply. However, for a locally compact space X it is
always possible to find a lower semicontinuous selection of the map A:

THEOREM (1.2). Let X be a locally contractible and locally compact
metrizable space. Define the map V: M, X X X (0,%) — (0,) as follows:
let for each triple (p, x, &) € My X X X (0, )

V(p,x, &) ={8€ A(p,x, &) |the closure of B( p, x, 8) is compact}.

Then the map V is lower semicontinuous.

In general we can only prove the quasi lower semicontinuity of the
closure of the modulus of local contractibility A. We denote by §,( p, x, )
=supA(p, x, &) and A(p, x, &) = (0, 8,(p, x, &)]. Clearly, A(p, x, &) is
the closure of the set A( p, x, &) in the complete metric space R* = ((0, »)
U {eo}, ¢), where

c(t,s) =lt7t =571 and c(t,») =171,
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THEOREM (1.3). Let X be a locally contractible (locally n-connected)
metrizable space. Then the map A: My, X X X (0,%) — R* (respectively, the
map ZH) is a quasi lower semicontinuous mapping into the complete metric
space with closed, convex values.

THEOREM (1.4) (Gutev [5]). Any quasi lower semicontinuous closed
valued mapping from a topological space into a complete metric space admits
a lower semicontinuous closed-value selection.

THEOREM (1.5). Let X be a locally contractible (locally n-connected)
metrizable space. Then there exists a singlevalued continuous function & : My
X X X (0,%0) = (0,%) such that_for every point (p,x,&) € My X X X
(0, ), the neighborhood B( p, x, 8( p, x, £)) is contractible in the neighbor-
hood B(p, x, &) (respectively, every continuous mapping of the n-sphere S"
into B( p, x, 8(p, x, &)) is null homotopic in B( p, x, €)).

Having the values of the multivalued mapping A as convex subsets of R
one can try to use the well-known Deutsch—Kenderov approach [3]. More
precisely, it is natural to start by proving almost lower semicontinuity or
2-lower semicontinuity of A or A (see [3] for definitions). Unfortunately,
their selection theorems work only for compact convex-valued mappings. A
theorem from [6] generalizes the Deutsch—Kenderov theorem, but only for
closed convex-valued mappings into R. So, we chose instead the Gutev
selection theorem [5, Theorem 1.4].

2. PRELIMINARIES

Recall that a multivalued map G: X — Y is said to be a selection of a
multivalued map F: X —» Y if G(x) c F(x), for every x € X. A multival-
ued map F: X — Y is said to be lower semicontinuous if for every open
subset V' C Y, the set F7*(VV) ={x € X|F(x) NV # &} is open in the
space X. For a metric space (Y, p), the lower semicontinuity of F at a
point x can be reformulated as follows: for each positive y the following
implication holds:

yE€F(x)=xeInt(F*(B(p,y,v)))-

DerINITION (2.1) [4, 5, 10]. A multivalued mapping F: X - Y of a
topological space X into a metric space (Y, p) is said to be quasi lower
semicontinuous at a point x € X if for each positive y and for each
neighborhood V(x) there exists a point g(x) € V(x) such that the follow-
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ing implication holds:

y € F(q(x)) =x e Int(F(B(p.y7))).

Quasi lower semicontinuity of F: X — Y means that F is quasi lower
semicontinuous at every point x € X.

Clearly, quasi lower semicontinuity follows from the lower semicontinu-
ity: it suffices to put g(x) = x. However, the converse does not hold. Let
us consider an example:

ExAampPLE (2.2). Let a function f:R — R* be monotone and increas-
ing. Then the map F: ¢ — (0, f(¢)] is quasi lower semicontinuous.

In this example it is easy to construct a lower semicontinuous selection
of F in a straightforward manner: it suffices to put H(¢) = (0, f(z — 0)]
F(#). We can apply the standard Michael selection theorem [8, Theorem
3.1"] to the map H and find a singlevalued continuous selection for H and
hence for F. In particular, such a selection exists for the modulus of the
uniform local contractibility of a metric space (Y, p).

3. PROOFS OF THEOREMS

Proof of Theorem (1.2). Let us check the lower semicontinuity of the
map V at a point (p, x, ) € M, X X X (0,). To this end, we fix &
V(p, x, €) and some of its o-neighborhoods (6 — o, 6 + o). We need to
find a neighborhood ¥ of the point ( p, x, £), such that for all (p’, x', ') €
V, the sets V( p', x, &') intersect with the interval (6 — o, 8 + o).

If §— o0 <0, then the sets V(p’, x', &) intersect with the interval
(6 — 0,6+ o) for all triples (p’, X', &'). In the case when 6 — o > 0 we
choose numbers « and B so that

§—o<B<a<é (1)
and we fix a homotopy
H:B(p,x,8) X[0,1] » B(p,x, &)

which contracts the neighborhood B(p, x, §) into a point.

Let us consider the image H(B( p, x, a) X [0, 1]), where B denotes the
closure of B. Because of the compactness of the set B( p, x, 6) this image
lies in the open ball B(p,x, &) with some “freedom.” More precisely,
there exists a number 0 < A < ¢ such that

H(B(p,x,a) x[0,1]) € B(p, x, A). (2)



90 REPOVS AND SEMENOV

Fix a number w such that A < u < £ and put

r=min{(a = B)/2,(n—1)/2,1}, @)

Let 1, be the r-neighborhood of the metric p in (M, dist), and let V, be
the r-neighborhood of the point x in metric p and let ; = (u, %) be the
neighborhood of the number &¢. Then by the triangle inequality

B(p,x,B) CB(p,x, ) (4)

and
B(p,x,A) €B(p' . x' 1) (5)

for all (o', x') € V; X V,. Hence for each triple (o', x', &) € V=V, X I,
X V3, we have that

H(B(o, ', B) % [0,1]) CH(B( p, x, a) x [0,1])

(¢3) (5)
CB(p,x,A)TB(p . x',n) CB(p,x,¢).

Hence the homotopy H contracts the ball B(p’, x’, ) into a point in
the ball B(p', x', &'). Compactness of B( p’, x’, ) follows from (1), (4),
and from the compactness of B( p, x, 6). Hence the number B lies in the
intersection V(p’, x’, ') N (8 — o, § + o). Theorem (1.2) is thus proved.

LEMMA (3.1). Let Z be a Hausdorff space and suppose that the function
f:Z — R* is locally positive. Then F : z — (0, f(2)] is a quasi lower semicon-
tinuous and closed-valued mapping into the complete metric space R*.

Proof.  Local positivity of f means that for each z € Z, there exists a
neighborhood U(z) such that inf{f(z') |z’ € U(z)} > 0. To check the quasi
lower semicontinuity of F at a point z € Z it suffices to choose points
q(z) in which the values of the function f approximate the above infimum.
More precisely, for a fixed z € Z, fixed y > 0, and a fixed neighborhood
V(z) we put

m =inf{f(z') |z € U(z) nV(z)} > 0.

If m = o then F = R* over the whole neighborhood W = U(z) N V(z)
and in this case we can set g(z) = z. If m < « then we choose a positive A
such that ¢(m,m + A) < y and then we choose a point g(z) € W such
that m < f(g(2)) <m + A.
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Let us check that the following implication holds:
t€F(q(z)) = WcFY(B(ct,7v)).

For each point z' € W, we have that F(z') = (0, m] U (m, f(z)] and
F(gq(2)) = (0,m] U (m, f(g(z))]. Hence only three cases can occur: (a)
t <m; (b) f(z') > f(q(2)); and (c) the numbers ¢ and f(z') lie in the
segment [m, f(g(z))]. In the cases (a) and (b),

teF(Z)NB(c t,y)+J,
whereas in the case (¢), ¢(¢, f(z')) < c(m, m + A) < y and hence
f(Z) e F(Z') N B(c,t,y) # J. |

Proof of Theorem (1.3). By Lemma (3.1) it suffices to check the local
positivity of the function §,: (p, x, &) = sup A(p, x, &), i.e., the property
that for every z = (p, x, &) € Z = M, X X X (0,), there exists a neigh-
borhood U(z) such that

inf{6,(z") |z € U(z)} > 0.

For a fixed point z € Z choose the number 28 from the set A( p, x, £/2)
and put @ = min{¢/6, §/3,1}. Let U(z) be the Cartesian product of the
a-neighborhoods of points p € (M, dist), x € (X, p), £(0,©). We claim
that 8 € A(Z') for all z/ € U(2), i.e., that

inf{8,(z') |z € U(z)} = 6> 0.

In fact, let 2/ = (p', x', &) and dist(p, p') < a <1, p(x,x) < a,|le— &
< a. Then we can conclude from p(x, y) < &/2 that

p'(x',y) <p(x',y) +dist(p,p') <p(x',x) +p(x,y) +a
<p(x,y) —2a<eg/2+2a<es—a<y¢
hence
B(p,x,5/2) CB(p,x, ). (6)
In an analogous manner we obtain from p'(x’, y) < & that
p(x,y) <p'(x,y) +dist(p, p') <p'(x,x) +p'(x',y) +a
<p (¥, y) +a+p(x x') +dist( p, p')
<p(x,y)+3a<86+3ax<28
hence
B(p.x',8) CB(p, x,28). (7)
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By our choice of the number & we have the ball B(p, x,28) is contra-
dictible to a point in the ball B(p, x, £/2) and in the ball B(p, x, &),
because of (6). By (7), the ball B(p’, x', §) contracts into the same point
(under the same homotopy) in the ball B(p', x', £'). Hence & € A(Z'), for
all z/ € U(z). Theorem (1.3) is thus proved. |

Proof of Theorem (1.5). Quasi lower semicontinuity of the map A
implies quasi lower semicontinuity of the map A/2. Note that A/2 is a
selection of A. By Theorem (1.4), there exists a lower semicontinuous
closed-value selection of the map A/2, say F. By Michael’s selection
theorem [8, Theorem 3.1”], the map conv F admits a singlevalued continu-
ous selection. The last selection of the map convF will be a selection of
the map A/2 and will be a selection of the modulus A of the local
contractibility of the space X. Theorem (1.5) is thus also proved. [

4. EPILOGUE

We conclude with some remarks and observations:

(@) Let (X,d) and (Y, p) be metric spaces and let C(X,Y) be the
space of all continuous mappings from X into Y, endowed with the
uniform topology. Then for each triple (f, x, &) € C(X,Y) X X X (0, )
one can consider the set of all positive 6 such that

d(x,x') < 8= p(f(x),f(x)) <e,
i.e., one can define a multivalued mapping
C(X,Y) XX X (0,%) — (0,).

In [11], it was proved that for locally compact X such a mapping is always
lower semicontinuous and hence admits a selection. However, in general,
“modulus of continuity” is non-lower semicontinuous, i.e., the situation is
the same as in the present paper. (See also [7], where the inequality
p(f(x), f(x') < & is replaced by some suitable predicate in variables
f.x,x', e and p.)

(b) In the proof of Lemma (3.1) above, the neighborhood W does
not depend on the choice of ¢ € F(q(z)). Hence we in fact, prove that in
this lemma (and hence also in Theorem (1.3)) the multivalued mapping is
weakly Hausdorff lower semicontinuous (for definition see [1]). But de
Blasi and Myjak’s theorem [1] is not directly applicable due to the
incompleteness of the values F(z) in R.
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(c) Formally, Theorem (1.5) can be proved using our proof of Theo-
rem (1.3), avoiding Theorem (1.4) and the notion of quasi lower semiconti-
nuity. In fact, local positivity of the function 8§, implies the existence of a
local continuous (constant) selection for a map A. Because of paracom-
pactness of the space Z = M, X X X (0, ) we can obtain a global single-
valued selection for A: it suffices to use a suitable continuous partition of
unity.

(d) We conclude by stating interesting open problems. It is known
that every quasi lower semicontinuous mapping F admits some “maximal”
lower semicontinuous selection F,. Moreover, such a selection coincides
with the derived (in the sense of Brown [2]) mapping F’ of the mapping F.

Problem (4.1). Under the assumptions of Theorem (1.2), is it true that
V=A?

Problem (4.2). s it true that V, is lower semicontinuous whenever X is
locally compact?
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