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Let M be the set of all metrics compatible with a given topology on a locallyX
Ž . Ž . Ž .contractible space X and let for each triple z s r, x, « g M = X = 0, ` , D zX

be the set of all positive d such that the open d-neighborhood of x is contractible
in the open «-neighborhood of x in metric r. We prove several continuity

Ž . Ž .properties of the map D : M = X = 0, ` ª 0, ` and then, using a selectionX
theorem for non-lower semicontinuous mappings, show that D admits a continuous
singlevalued selection. Similar, but somewhat different properties are also demon-
strated for the modulus D of local n-connectedness. Q 1997 Academic Pressn

1. INTRODUCTION

A topological space X is said to be locally contractible if for every point
x g X and for each of its neighborhoods U ; X there exists a neighbor-
hood V ; X of x such that the inclusion V ; U is homotopically trivial.
For a metric space X the notion of local contractibility admits a definition
via the real-valued parameters, namely the radii of neighborhoods U and
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V. More precisely, let M be the set of all metrics on X compatible withX
the given topology on X. The space M is equipped with topology inducedX
by the following metric of uniform convergence:

< < <dist r , d s sup min r x , y y d x , y , 1 x , y g X .� 4� 4Ž . Ž . Ž .

Ž . Ž . Ž .For every triple r, x, « g M = X = 0, ` we define D r, x, « as theX
Ž .set of all positive numbers d such that the d-neighborhood B r, x, d of
Ž .the point x in metric r is contractible in the «-neighborhood B r, x, « of

the point x in the same metric r. In this way, we define a multivalued
Ž . Ž .mapping D : M = X = 0, ` ª 0, ` with nonempty convex values whichX

we call the modulus of local contractibility of the space X.
The definition of modulus D of local n-connectedness is very similar ton

the definition of modulus of local contractibility}one only needs to
Ž . Ž .replace the contractibility of the ball B r, x, d inside the ball B r, x, «

Ž .with the contractibility inside the ball B r, x, « of every continuous
n Ž .image of the n-sphere S lying in B r, x, d .

The goal of the present paper is to investigate some continuity type
properties of D. As a corollary we prove the existence of a continuous

Ž . Ž . Žsinglevalued choice selection of elements of the sets D r, x, « see
.Theorem 1.5 .

Ž . w .EXAMPLE 1.1 . Let X be the half-open interval 0, 1 and let r be the
Ž . Ž . Ž . Ž xstandard metric on R. Then D r, 0, 1 s 0, ` and D r, 0, « s 0, « , for

all « - 1.

This example shows that the map D does not need to be lower semicon-
tinuous and hence in general, the standard Michael selection theory
techniques do not apply. However, for a locally compact space X it is
always possible to find a lower semicontinuous selection of the map D:

Ž .THEOREM 1.2 . Let X be a locally contractible and locally compact
Ž . Ž .metrizable space. Define the map = : M = X = 0, ` ª 0, ` as follows:X

Ž . Ž .let for each triple r, x, « g M = X = 0, `X

= r , x , « s d g D r , x , « ¬ the closure of B r , x , d is compact .� 4Ž . Ž . Ž .

Then the map = is lower semicontinuous.

In general we can only prove the quasi lower semicontinuity of the
Ž .closure of the modulus of local contractibility D. We denote by d r, x, «0

Ž . Ž . Ž Ž .x Ž .s sup D r, x, « and D r, x, « s 0, d r, x, « . Clearly, D r, x, « is0
Ž . ŽŽ .the closure of the set D r, x, « in the complete metric space R* s 0, `

� 4 .j ` , c , where

< y1 y1 < y1c t , s s t y s and c t , ` s t .Ž . Ž .



REPOVS AND SEMENOVˇ88

Ž . Ž .THEOREM 1.3 . Let X be a locally contractible locally n-connected
Ž . Žmetrizable space. Then the map D : M = X = 0, ` ª R* respectï ely, theX

.map D is a quasi lower semicontinuous mapping into the complete metricn
space with closed, con¨ex ¨alues.

Ž . Ž w x.THEOREM 1.4 Gutev 5 . Any quasi lower semicontinuous closed
¨alued mapping from a topological space into a complete metric space admits
a lower semicontinuous closed-̈ alue selection.

Ž . Ž .THEOREM 1.5 . Let X be a locally contractible locally n-connected
ˆmetrizable space. Then there exists a singlë alued continuous function d : MX

Ž . Ž . Ž .= X = 0, ` ª 0, ` such that for e¨ery point r, x, « g M = X =X
ˆŽ . Ž Ž ..0, ` , the neighborhood B r, x, d r, x, « is contractible in the neighbor-

Ž . Ž nhood B r, x, « respectï ely, e¨ery continuous mapping of the n-sphere S
ˆŽ Ž .. Ž ..into B r, x, d r, x, « is null homotopic in B r, x, « .

Having the values of the multivalued mapping D as convex subsets of R
w xone can try to use the well-known Deutsch]Kenderov approach 3 . More

precisely, it is natural to start by proving almost lower semicontinuity or
Ž w x .2-lower semicontinuity of D or D see 3 for definitions . Unfortunately,

their selection theorems work only for compact convex-valued mappings. A
w xtheorem from 6 generalizes the Deutsch]Kenderov theorem, but only for

closed convex-valued mappings into R. So, we chose instead the Gutev
w xselection theorem 5, Theorem 1.4 .

2. PRELIMINARIES

Recall that a multivalued map G : X ª Y is said to be a selection of a
Ž . Ž .multivalued map F : X ª Y if G x ; F x , for every x g X. A multival-

ued map F : X ª Y is said to be lower semicontinuous if for every open
y1Ž . � Ž . 4subset V ; Y, the set F V s x g X ¬ F x l V / B is open in the

Ž .space X. For a metric space Y, r , the lower semicontinuity of F at a
point x can be reformulated as follows: for each positive g the following
implication holds:

y g F x « x g Int Fy1 B r , y , g .Ž . Ž .Ž .Ž .

Ž . w xDEFINITION 2.1 4, 5, 10 . A multivalued mapping F : X ª Y of a
Ž .topological space X into a metric space Y, r is said to be quasi lower

semicontinuous at a point x g X if for each positive g and for each
Ž . Ž . Ž .neighborhood V x there exists a point q x g V x such that the follow-
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ing implication holds:

y g F q x « x g Int Fy1 B r , y , g .Ž . Ž .Ž . Ž .Ž .
Quasi lower semicontinuity of F : X ª Y means that F is quasi lower
semicontinuous at every point x g X.

Clearly, quasi lower semicontinuity follows from the lower semicontinu-
Ž .ity: it suffices to put q x s x. However, the converse does not hold. Let

us consider an example:

Ž .EXAMPLE 2.2 . Let a function f : R ª R* be monotone and increas-
Ž Ž .xing. Then the map F : t ¬ 0, f t is quasi lower semicontinuous.

In this example it is easy to construct a lower semicontinuous selection
Ž . Ž Ž .xof F in a straightforward manner: it suffices to put H t s 0, f t y 0 ;

Ž . wF t . We can apply the standard Michael selection theorem 8, Theorem
Z x3.1 to the map H and find a singlevalued continuous selection for H and

hence for F. In particular, such a selection exists for the modulus of the
Ž .uniform local contractibility of a metric space Y, r .

3. PROOFS OF THEOREMS

Ž .Proof of Theorem 1.2 . Let us check the lower semicontinuity of the
Ž . Ž .map = at a point r, x, « g M = X = 0, ` . To this end, we fix d gX

Ž . Ž .= r, x, « and some of its s-neighborhoods d y s , d q s . We need to
Ž . Ž X X X.find a neighborhood V of the point r, x, « , such that for all r , x , « g

Ž X X X. Ž .V, the sets = r , x , « intersect with the interval d y s , d q s .
Ž X X X.If d y s F 0, then the sets = r , x , « intersect with the interval

Ž . Ž X X X.d y s , d q s for all triples r , x , « . In the case when d y s ) 0 we
choose numbers a and b so that

d y s - b - a - d 1Ž .

and we fix a homotopy

w xH : B r , x , d = 0, 1 ª B r , x , «Ž . Ž .

Ž .which contracts the neighborhood B r, x, d into a point.
Ž w x.Let us consider the image H B r , x , a = 0, 1 , where B denotes theŽ .

closure of B. Because of the compactness of the set B r , x , d this imageŽ .
Ž .lies in the open ball B r, x, « with some ‘‘freedom.’’ More precisely,

there exists a number 0 - l - « such that

w xH B r , x , a = 0, 1 ; B r , x , l . 2Ž . Ž . Ž .Ž .
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Fix a number m such that l - m - « and put

r s min a y b r2, m y l r2, 1 . 3� 4Ž . Ž . Ž .

Ž .Let V be the r-neighborhood of the metric r in M , dist , and let V be1 X 2
Ž .the r-neighborhood of the point x in metric r and let V s m, ` be the3

neighborhood of the number « . Then by the triangle inequality

B rX , xX , b ; B r , x , a 4Ž . Ž . Ž .

and

B r , x , l ; B rX , xX , m 5Ž . Ž . Ž .

Ž X X. Ž X X X.for all r , x g V = V . Hence for each triple r , x , « g V s V = V1 2 1 2
= V , we have that3

Ž .4
X X w x w xH B r , x , b = 0, 1 ; H B r , x , a = 0, 1Ž . Ž .Ž . Ž .

Ž . Ž .2 5
X X X X X; B r , x , l ; B r , x , m ; B r , x , « .Ž . Ž . Ž .

Ž X X .Hence the homotopy H contracts the ball B r , x , b into a point in
X X X X XŽ . Ž . Ž .the ball B r , x , « . Compactness of B r , x , b follows from 1 , 4 ,Ž .

and from the compactness of B r , x , d . Hence the number b lies in theŽ .
Ž X X X. Ž . Ž .intersection = r , x , « l d y s , d q s . Theorem 1.2 is thus proved.

Ž .LEMMA 3.1 . Let Z be a Hausdorff space and suppose that the function
Ž Ž .xf : Z ª R* is locally positï e. Then F : z ¬ 0, f z is a quasi lower semicon-

tinuous and closed-̈ alued mapping into the complete metric space R*.

Proof. Local positivity of f means that for each z g Z, there exists a
Ž . � Ž X. X Ž .4neighborhood U z such that inf f z ¬ z g U z ) 0. To check the quasi

lower semicontinuity of F at a point z g Z it suffices to choose points
Ž .q z in which the values of the function f approximate the above infimum.

More precisely, for a fixed z g Z, fixed g ) 0, and a fixed neighborhood
Ž .V z we put

m s inf f zX ¬ zX g U z l V z ) 0.� 4Ž . Ž . Ž .

Ž . Ž .If m s ` then F ' R* over the whole neighborhood W s U z l V z
Ž .and in this case we can set q z s z. If m - ` then we choose a positive l

Ž . Ž .such that c m, m q l - g and then we choose a point q z g W such
Ž Ž ..that m - f q z - m q l.
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Let us check that the following implication holds:

t g F q z « W ; Fy1 B c, t , g .Ž . Ž .Ž . Ž .
X Ž X. Ž x Ž Ž X .xFor each point z g W, we have that F z s 0, m j m, f z and

Ž Ž .. Ž x Ž Ž Ž ..x Ž .F q z s 0, m j m, f q z . Hence only three cases can occur: a
Ž . Ž X. Ž Ž .. Ž . Ž X .t F m; b f z ) f q z ; and c the numbers t and f z lie in the

w Ž Ž ..x Ž . Ž .segment m, f q z . In the cases a and b ,

t g F zX l B c, t , g / B,Ž . Ž .
Ž . Ž Ž X.. Ž .whereas in the case c , c t, f z - c m, m q l - g and hence

X Xf z g F z l B c, t , g / B.Ž . Ž . Ž .
Ž . Ž .Proof of Theorem 1.3 . By Lemma 3.1 it suffices to check the local

Ž . Ž .positivity of the function d : r, x, « ¬ sup D r, x, « , i.e., the property0
Ž . Ž .that for every z s r, x, « g Z s M = X = 0,` , there exists a neigh-X

Ž .borhood U z such that

inf d zX ¬ zX g U z ) 0.� 4Ž . Ž .0

Ž .For a fixed point z g Z choose the number 2d from the set D r, x, «r2
� 4 Ž .and put a s min «r6, dr3, 1 . Let U z be the Cartesian product of the

Ž . Ž . Ž .a-neighborhoods of points r g M , dist , x g X, r , « 0, ` . We claimX
Ž X. X Ž .that d g D z for all z g U z , i.e., that

inf d zX ¬ zX g U z G d ) 0.� 4Ž . Ž .0

X Ž X X X. Ž X. Ž X. < X <In fact, let z s r , x , « and dist r, r - a F 1, r x, x - a , « y «
Ž .- a . Then we can conclude from r x, y - «r2 that

rX xX , y F r xX , y q dist r , rX - r xX , x q r x , y q aŽ . Ž . Ž . Ž . Ž .
- r x , y y 2a - «r2 q 2a F « y a - « XŽ .

hence

B r , x , «r2 ; B rX , xX , « X . 6Ž . Ž . Ž .
XŽ X .In an analogous manner we obtain from r x , y - d that

r x , y F rX x , y q dist r , rX - rX x , xX q rX xX , y q aŽ . Ž . Ž . Ž . Ž .
- rX xX , y q a q r x , xX q dist r , rXŽ . Ž . Ž .
- rX xX , y q 3a - d q 3a F 2dŽ .

hence

B rX , xX , d ; B r , x , 2d . 7Ž . Ž . Ž .
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Ž .By our choice of the number d we have the ball B r, x, 2d is contra-
Ž . Ž X X X.dictible to a point in the ball B r, x, «r2 and in the ball B r , x , « ,

Ž . Ž . Ž X X .because of 6 . By 7 , the ball B r , x , d contracts into the same point
Ž . Ž X X X. Ž X .under the same homotopy in the ball B r , x , « . Hence d g D z , for

X Ž . Ž .all z g U z . Theorem 1.3 is thus proved.

Ž .Proof of Theorem 1.5 . Quasi lower semicontinuity of the map D
implies quasi lower semicontinuity of the map Dr2. Note that Dr2 is a

Ž .selection of D. By Theorem 1.4 , there exists a lower semicontinuous
closed-value selection of the map Dr2, say F. By Michael’s selection

Zw xtheorem 8, Theorem 3.1 , the map conv F admits a singlevalued continu-
ous selection. The last selection of the map conv F will be a selection of
the map Dr2 and will be a selection of the modulus D of the local

Ž .contractibility of the space X. Theorem 1.5 is thus also proved.

4. EPILOGUE

We conclude with some remarks and observations:

Ž . Ž . Ž . Ž .a Let X, d and Y, r be metric spaces and let C X, Y be the
space of all continuous mappings from X into Y, endowed with the

Ž . Ž . Ž .uniform topology. Then for each triple f , x, « g C X, Y = X = 0, `
one can consider the set of all positive d such that

d x , xX - d « r f x , f xX - « ,Ž . Ž . Ž .Ž .

i.e., one can define a multivalued mapping

C X , Y = X = 0, ` ª 0, ` .Ž . Ž . Ž .

w xIn 11 , it was proved that for locally compact X such a mapping is always
lower semicontinuous and hence admits a selection. However, in general,
‘‘modulus of continuity’’ is non-lower semicontinuous, i.e., the situation is

Ž w xthe same as in the present paper. See also 7 , where the inequality
Ž Ž . Ž X..r f x , f x - « is replaced by some suitable predicate in variables

X .f , x, x , « and r.
Ž . Ž .b In the proof of Lemma 3.1 above, the neighborhood W does

Ž Ž ..not depend on the choice of t g F q z . Hence we in fact, prove that in
Ž Ž ..this lemma and hence also in Theorem 1.3 the multivalued mapping is

Ž w x.weakly Hausdorff lower semicontinuous for definition see 1 . But de
w xBlasi and Myjak’s theorem 1 is not directly applicable due to the
Ž .incompleteness of the values F z in R.



ON CONTINUITY PROPERTIES 93

Ž . Ž .c Formally, Theorem 1.5 can be proved using our proof of Theo-
Ž . Ž .rem 1.3 , avoiding Theorem 1.4 and the notion of quasi lower semiconti-

nuity. In fact, local positivity of the function d implies the existence of a0
Ž .local continuous constant selection for a map D. Because of paracom-

Ž .pactness of the space Z s M = X = 0, ` we can obtain a global single-X
valued selection for D: it suffices to use a suitable continuous partition of
unity.

Ž .d We conclude by stating interesting open problems. It is known
that every quasi lower semicontinuous mapping F admits some ‘‘maximal’’
lower semicontinuous selection F . Moreover, such a selection coincides0

Ž w x. Xwith the derived in the sense of Brown 2 mapping F of the mapping F.

Ž . Ž .Problem 4.1 . Under the assumptions of Theorem 1.2 , is it true that
= s D

X?

Ž .Problem 4.2 . Is it true that = is lower semicontinuous whenever X isn
locally compact?
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