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Abstract. The concept of paraconvexity of a subset P C E of a normed space E was first introduced 
by E. Michael. Roughly speaking, it consists of a controlled weakening of the convexity assumption 
for P, where the control is guaranteed via some parameter a E [0, 1). In this paper, we consider 
the case when P is a subset of some (n + 1)-dimensional Euclidean space E and P is the graph 
of some continuous function f : V ~ IIL where V C E is some convex n-dimensional subset of 
E. Our key result is that paraconvexity of such a set P follows from the paraconvexity of sections 
of P by two-dimensional planes, orthogonal to V. As an application, we prove a selection theorem 
for graph-valued mappings whose values have Lipschitzian (with a fixed constant) or monotone 
two-dimensional sections. 
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1. Introduction 

We shall denote by Ek the Euclidean k-dimensional  space without any prescribed 
coordinate system, whereas  I~ k will denote the product  space 

A x 2 ~ x . . . x R  

k copies 

with the standard coordinate system. We shall denote by Conv(]~ n) the class of  
all convex  subsets o f  the space ~ and we shall fix some class F of  continuous 
functions f rom IR n to R with convex  domains  of  definition, i.e. 

F C { f "  Nn ~ ~ i O o m ( f )  E C o n v ( N ~ ) } .  

Let  P ( F )  be the class of  graphs of  all e lements  f E F :  each e lement  of  I?(F)  is 
a subset o f  IR n+~ . We shall denote by F ( F ,  E~+I  ) the fol lowing class of  subsets 

o f  the space En+I :  subset  P C En+ l  belongs to P ( F ,  E ~ + I )  if  and only if  there 
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exist f E F and an isometry T of the Euclidean space I~ ~+~ onto the Euclidean 
space En+l such that P = T(Fy),  where I?f is the graph of the function f E F.  
In other words, I '(F, En+l) is the class of graphs of all continuous functions in 
n variables. Note that r(F) is a subset of F(F, R~+I ) but P (F)  :¢- P(F, R,~+I ) 
since F(F, IR r~+1 ) consists of graphs of functions over all orthonormal coordinate 
systems in the space I~ ~+I . 

In this paper, we shall consider the multivalued maps (m-maps) whose values 
are elements of the class I"(F, E~+I ). More precisely, we are interested in finding 
conditions for the class F which guarantee the existence of singlevalued continuous 
selections for such m-maps. 

Recall that a singlevalued map g : X --+ Y is said to be a selection of an 
m - m a p G  : X ~ Y if and only if g(x) E G(x),  for every point x E X. An 
m-map • : X ---, Y between topological spaces X and Y is said to be lower 
semicontinuous if and only if for every open subset V c Y, the set ~5-~ (V) = 
{x E X : ~5(x) N V ¢ 0} is open in X. 

We shall use the following E. Michael's selection theorem for nonconvex-valued 
m-maps (see [1]): 

THEOREM 1.1 (E. Michael). Let c~ E [0, 1). Then every lower semicontinuous 
m-map ¢b : X ~ B from any paracompact space X into any Banach space B 
whose values are a-paraconvex subsets of 13 admits a singlevalued continuous 

selection. [] 

Recall that a nonempty closed subset P C B of a Banach space B is said to be 
a-paraconvex if for every open ball D with radius r and for every point q from the 
closed convex hull c--6-ffq ( D n P)  of the intersection D f3 P,  the following inequality 
holds: 

dist(q,P) <_ a .  r .  

For graphs of continuous functions, i.e. for elements of the class F(F) ,  we 
need some special versions of the notion of paraconvexity. We define for k E 
{ 1 , 2 , . . . ,  n} the following subclasses Fk of the class F:  

Fk = { f l a i l  e F, z2x c Dom(f), A C Conv(11~),dim A = k}. 

In summary, the main point of this paper is that for paraconvexity of elements 
of the class F (F)  it suffices to verify only the paraconvexity of elements of the 
class F(F~ ), i.e. it suffices to consider only the one-dimensional case. 

We shall denote: 
(a) by [xl, x2, • • •, Xm] the closed convex hull c-b--n-V{xl, x2, •. •, x,,~} of the points 

X l ,  X 2 ~  • . • ~ X r a ;  

(b) by R[xl,  x 2 , . . . ,  Xm] the minimum of the radii of  all closed balls which 
contain all points xl , x2, . • . ,  Xm; and 
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(c) by C[Xl,X2,... ,Xm] the center of the single closed ball with the radius 
R[xl ,  x 2 , . . . ,  x,~] which contains all points Xl, x2 , . . . ,  Xm. 

DEFINITION 1.2. Let 0 < oz < 1 and 0 < /3 < 1. The graph I?f of the element 
f C Fk is said to be (oz,/3)-paraconvex if for every k + 1 points xl, x2,. • •, xk+t E 
Dom(f) ,  there exists a point q E Py such that 

Ile[pl,p2,... ,Pk+l] - ql[ ~ c~. R[pl,P2,... ,pk+l] 

and 

l le[pa,p2, . . .  ,Pk+l] - q']l ~ / 3 "  R[Pa ,P2 , . . .  , Pk÷ l ] ,  

where Pi = (xi, f ( x i ) )  E F I ,  i = I, 2 , . . . ,  k + 1, and q' is the point of  the inter- 
section of the line orthogonal to Dom(f )  and passing through the point q and the 
plane HLvt, p 2 , . . . ,  pk+l] = p~ + span{p2 - p l , - - - , pk+ l  - pl }. 

DEFINITION 1.3. Let 0 < oz < 1. The graph FI  of the element f E Fk is 
said to be (oz, +)-paraconvex if for every k + 1 points Xl, x 2 , . . . ,  xk+l E Dom(f ) ,  
there exists a point q E I'd such that 

t{e[pl ,p2, . . .  ,pk+l]  - ql[ -< oz. R[pl,p2,... ,P~+I] 

and the points q and p are on the same side with respect to the plane II[pl, P2, - - -, Pk+ 1 ], 
where p is the point of the graph Pi which lies on the vertical line passing through 
the point c[pl, P2, • • •, Pk+l]. 

Definitions 1 and 2 are, on the one hand, stronger than the original notion ofpara- 
convexity: there are two inequalities or two conditions which make the controlled 
failure of convexity. But on the other hand, these definitions are weaker restrictions 
than the original notion of paraconvexity. First, we estimate the distance dist(q, I~y) 
only for the center q = c[pl ,p2, . . .  ,Pk+l] of  the simplex [Pl,P2,. . .  ,Pk+l]. Sec- 
ond, and this is in fact, more essential, we consider the simplices [pl, P2 , . . . ,  Pk+l] 
with a fixed dimension k which equals the dimension of the domain of the defini- 
tion of the function f C Fk. 

THEOREM 1.4. Let F C { f :  R n --~ R I Dom(f  ) E Conv(Rn)} and suppose that 
for some cq, fll C [0, 1 ), all elements from the class P(F1 ) are (ozl, fll )-paraconvex 
subsets o f  the space R ~+1 . Then for every k E { 1 , 2 , . . . ,  n }, there exist ozk and flk 
from [0, t) such that all elements from the class P(F~) are ( ozk, flk )-paraconvex 
subsets o f  the space I~ ~+1 . 

THEOREM 1.5. Let F C { f "  1~ n --+ I~ [ Dom(f )  E Conv(I~n)} andsuppose that 
for some al E [0, I), all elements from the class F(F1) are (al ,  +)-paraconvex 
subsets o f  the space R n+l . Then for every k E { 1 , 2 , . . . ,  n}, there exists ak E [0, 1 ) 
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such that all elements from the class F(Fk) are (C~k, + )-paraconvex subsets of  the 
space En+l. 

COROLLARY 1.6. Let F be as in Theorem 1.4 or in Theorem 1.5. Then there 
exists 0 <_ a < 1 such that all closed eIements of  the class F(F)  are a-paraconvex 
subsets of  the space I~ n+1 . 

COROLLARY 1.7. Let F be as in Theorem 1.4 or in Theorem 1.5 and let 
(P • X ~ F-,n+l be a lower semicontinuous map from a paracompact space 
X to the Euclidean space E~+I with closed values such that ~b(x) E F(F, E~+i ), 
for all x E X .  Then • admits a singlevaIued continuous selection. 

COROLLARY t.8. Let Lip(C) = {f  : I~ n --~ R t Dom(f )  E Conv(R '~) and 

If(  z ) - f (Y) l  <- CIIx - Yllf°r a l lx ,  ff c Dom(f)} andletq? : X ~ En+~ b e a  
lower semicontinuous map from a paracompact space X to the Euclidean space 
En+I with closed values such that q?(x) E F(Lip(C)) for all x C X .  Then g? 
admits a singlevalued continuous selection. 

COROLLARY 1.9. Let M o n =  {f  : IR n --~ R I Dom(f )  E Conv(R n) and 
restriction f l l  is a monotone function for every line I} and let g? : X --+ E~+I be 
a lower semicontinuous map from a paracompact space X to the Euclidean space 
E~+I with closed values such that ~ ( x )  E F(Mon) , for  all x E X .  Then • admits 
a singlevalued continuous selection. 

2. Proof  of  the Theorem 1.4 

We proceed by induction on k. The base of induction coincides with the condition 
of the theorem. Suppose now that the theorem holds for 1 < m < k. We shall 
verify the theorem for m = k. 

We fix f E F~ and points p = (xi, f ( x i ) )  E F/,  i C {1 ,2 , . . . ,  k + 1 } and we 
denote by A the simplex [Pl,-. .  ,Pk+l]. We may assume that dim(A) = k since 
in the opposite case it suffices to use the inductive hypothesis. 

Case A. The center c(A) of  the simplex A belongs to one of  the boundary simplices 
V of  this simplex. 

In this case c(A) = c(V), R(A)  = R(V)  and we may use the inductive hypoth- 
esis to the restriction f on V. 

Case B. The center c(A) of  the simplex A is its interior point. 

We choose ¢ > 0 such that ak-1 + c < 1 and ilk-1 + c < 1 and denote by di 
the distance between the center c(A) and the boundary simplex Vi of the simplex 
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A ; i E { 1 , 2 , . . . , k + I } .  

Case BA. There exists i such that di < ~ . R(A).  

We note that di equals to the distance between the center c(A) and the center 
c(Vi) of the boundary symplex Vi. So one can put in this case ozk = O~k-1 + e and 
/3k =/3k-1 + e and use the triangle inequality. 

Case BB. For all i = 1 , 2 , . . . ,  k + 1, the inequality di > e • R (A)  holds. 

First, we will prove that in this case there is an upper estimate that di <_ 
5@) • R(A)  for certain 5(c) < 1. Let S(R ,  ~) be the set of all (k + 1)-simplices 
~r contained in a fixed closed ball with radius R(A)  ---- R, centered at the point 
c(A) = c and which contains the closed ball with radius c. R, centered at the same 
point c. It's easy to check that in the Hausdorff metric, the set S(R ,  ~) is compact 
(see Blaschke's Choice Theorem). For every V C S(R ,  e), we define the number 
5(V) to be the product of the number 1 /R  and the distance between the point c 
and the boundary of the simplex V. Then 5 : S(R ,  e) --+ [0, 1) is a continuous 
function on a compact set and therefore 

5(¢) = max{6(V)  I V ~ Z ( R , e ) }  < 1 .  

Next, we consider for every i E { 1 , 2 , . . . ,  k + 1 } the restriction 9i = f lv~ of the 
function f onto the simplex Vi. Then gi E Fk_ 1 and by the inductive hypothesis, 
we can find points qi E Fg~ C FI  such that 

IIc(V~) - qill ~ ~ k - , "  R(Vg) and lie(V/) - qfll -</~k-1" R(Vg) 

where q~ is the result of the vertical projection of the point qi onto the simplex Vi; 
i C { 1 , 2 , . . . , k  + 1}. We remark that 

I I c ( ~ )  - q~ll 2 

2 ( R 2 ( z x )  _ d 2) = d 2 + I Ic (Vi )  - q~]l 2 ~ d 2 + / 3 k _  1 

- (1 2 2 2 2 2 - - 5k_1) - di - / 3 k _ l R  (A) _< R2(A)  • ((1 - / 3 k - l )  " 52(e) + ¢~k-1)2 

= R a ( A )  - B  2,  0_<Bk < 1. 

Now exactly two cases are possible. 

Case BBA. There exists i # j such that the points qi and qj lie on different 
sides o f theplane 1-I~91 ,P2, . . .  ,Pk+l] = Pl + span{p2 - Pl, • • • ,Pk+l - Pl }," or 
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Fig. 1, 

Case BBB. All points qi lie on the same side o f  this plane. 

In the case BBA we can find, by the continuity of function f over the segment 
[q~, q~], a point q E (Ff N A) such that 

t ic(A)-ql l -< max{lie(A)-  q~ll, No(A) - q~ll} < R(A) .  Bk. 

Moreover, in this case the point q' coincides with the point q and hence the 
distance I[c(D) - q']l allows the same upper estimate. 
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In the case BBB we define vectors vi = c(A) - c(Vi) and wi = qi - c(Vi); 
i E { 1 , 2 , . . . ,  k + 1 }. Let all points qi lie above the plane II[pi ,p2, . . .  ,Pk+l]. 
From the obvious fact that c(A) ~ conv{c(V1 ) , . . . ,  c(Va+i)} we obtain that one 
of the angles between vectors vi and wi  is less than or equal to rr/2 and for such i 
we have that 

2 (R2(zx) _ d~) IIc(/x) - qill 2 ~ d~ + IIc(Vi) - qill 2 ~ d f f+  O~k_ 1 

(1 2 2 a2_flg2(A) < R2(~)  ((1 2 
= - -  O ~ k _ l )  • d i q -  _ • _ . 

~k-,~) ~2(~) + ~2_~) 

= R 2 ( A )  .A~ ;  0 < A k  < 1. 

We have found the upper estimate for distance II c(A) - q~ It in the part BB above. 
In summary, we have the following: 

Case A Case B 

Case BA Case BB 

Case BBA Case BBB 

OZ k Ozk_ 1 O~k_ 1 + e Bk Ak 

/3k /3k_ ~ ~k- 1 + c Bk Bk 

whereBk ((t 2 ).(52(e)+a2 ~t/2 = - /3k-I  ~'k-lJ < t , a n d m a x { a k _ l + e ,  /3k_l+E} < 1. 

= OZ2 ~ 1/2 Ak ( ( t - a 2  i) -(52(e)+ k-lJ  < 1 ,  

Theorem 1.4 is thus proved. [] 

3. Proof  of the Theorem 1.5 

The idea of this proof is similar to the proof of the previous theorem. We shall 
make only the following changes (we may assume that the point p lies above the 
plane 

II~ol,p2,. . .  ,Pk+l] = II[A] = Pl + span{p2 - P l , . . .  ,Pk+l  - P i} )  : 

Case  BA. By the triangle inequality, we can find points qi E ['9~, where gi = f lv~ E 
Fi such that 

I I c ( ~ ) - q i [ [  ~ (o~k_l -+-c) , R ( ~ D  ; i ~ { 1 , 2 , . . . , k +  1}. 

If one of the points qi lies above the plane 1I [A] then we may set ak = a k -  1 + e and 
obtain the (ak, +)-paraconvexity of the graph Ff.  Otherwise we conclude, by the 
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definition of (o~k-1, +)-paraconvexity of the graphs 1-'k-I that the points Pi E Ff 
belonging to the vertical lines passing through the points c(Vi) are below the plane 
II[A]. So by the continuity of the function f we can find a point q~ C [c(A), c(Vi)] 
such that q~ C I 'f.  Moreover, we have the following estimate: 

Ile(zx) - q*il -< IIc(zX)) - c(Vdll  _ c .  R(zx) _ (c~_i  + ~).  R ( ~ ) .  

Case BBA. There exists an integer i E { 1 , 2 , . . . ,  k + 1 } such that the point qi lies 
below the plane II[A] and by an argument similar to the argument in the above 
paragraph, there exists a point q~' E [c(A), c(Vi)] such that q~' C Py. Therefore, 

tic(A)- qTtl <-t ic(A)- c(Vdll_ 6(e). R(LX)). 

Case BBB. If all points qi lie above the plane II[A] the proof coincides with the 
analogous proof of Theorem 1.4. If all points qi lie below the plane Ff[A] then the 
proof coincides with the proof of the case BBA above. 

Case A Case B 

Case BA Case BB 

Case BBA CaseBBB 

a~ ak-1 ak-1 + e 8(c) Ak 

,-,,2 ~1/2 where Ak = ((1 - a2_t )  • ~52(e) + ~k-1] < 1 and ak_~ + e < 1. Theorem 1.5 
is thus also proved. [] 

4. Proofs of Corollaries 

Proof of Corollary 1.6. By the definition, it is clear that 

F c/5 UF2u...UF~. 

Let oel, oz2,. . . ,  c~n be the constants of paraconvexity of the elements of the classes 
Ft,  F2, • • . ,  F,. respectively (see Theorem 1.4). Let oL = max{at ,  a 2 , . . . ,  o~n} < 
1. We fix a function f E F and let z be an arbitrary point from the convex 
hull conv(D A I?f) of the intersection of some open ball D with radius r and 
the graph Pf  of the function f .  By Carath6odory's theorem we can find points 
Yl, Y2,. • . ,  Yn+2 C D M F f  such that 

z C cony{y1, Y2,.. . ,  Y'n+2} • 

The key ingredient in the sequel of the proof is the following result from [3], 
reformulated in accordance with our notations above: 
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THEOREM 4.1. Let f : En ~ ~ be a continuous function with a convex domain 

and let Y l , Y 2 , . . . ,  Yn+2 E Ff  and z E [Yl,Y2,-..,Yn+2] be arbitrary points. 
Then there exist points P l, P2, . . . , P~+ t E ~ f such that z E ~91, P2, . . . , Pn+ l ] and 
the simplex [Pl , P 2 , . . .  ,Pn+l] can be moved into one o f  the faces o f  the simplex 

[ Y l , Y 2 , . . . , Y n + 2 ] .  [] 

So, if Pl,  P2, • • •, Pn+l are the points provided by Theorem 4.1, then 

R = R [ p l , p 2 , . . .  ,Pn+l] <_ R[y l ,Ye , . . . , yn+ 2 ]  _< r .  

By Theorem 1.4, we can find a point q E F I  such that 

IIcLOl,p2,... , p n + l ] -  qll-< c~n _ ~.  r .  

I f  ltc[pl,p2,... ,Pn+l] - zll _ c.  R then Ilq - zll _ (~ + c).  R _< (c~ + c) .r .  
If  for the center c = c[pl ,P2,.  • • ,pn+i] of  the simplex ~vl ,P2, • • • ,P~+I] we have 
that l l c -  z II > c. n then by convexity of  the simplex [pl, P2, • • •, Pn+~] we can find 
a point Pi such that the triangle Aczp~ has an obtuse angle at the vertex z. Hence 

IIz - pill 2 < Itc - pill 2 - ltc - zll 2 < R 2 - ~2R2 _< (1 - e2) • r .  

Therefore the distance between the point z and the graph F f  is less than or equal 

to the product r .  max{o~ + e, (1 - e2)V2}. So we can define e > 0 as a root of  the 
equation 

(O/ -}- X) 2 = 1 - x 2 

and hence the graph P f  of the function f ~ F is an c~0-paraconvex subset of the 
Euclidean space 1R r~+l , where o~0 = o~ + e and o~ = max{oq, oz2, . . . ,  C~r~} < 1 ; here 
eel, c~2, . . . ,  c~n are the constants of paraconvexity of  the elements of  the classes 
F1, F 2 , . . . ,  Fn+l ,  respectively (see Theorem 1.4). Corollary 1.6 is thus proved, n 

Proof  o f  Corollary 1.7. This corollary is a direct consequence of Corollary 1.6 
and E. Michael 's theorem on selections of  paraconvex-valued maps mentioned 
above. [] 

Proof  o f  Corollary 1.8. It is easy to check that the graph P f  of  an arbiu'ary 
function f ( x )  with a convex, closed domain of  definition such that f E Lip(C) ,  
is an ( a l ,  fll )-paraconvex subset of  the Euclidean plane, where Oq = sin(arc tg C) 
and/31 = a~. Consequently, Corollaries 1.6 and 1.7 yield a proof of  Corollary 1.8. [] 

Proof  of  Corollary 1.9. We remark that if  f : ]~ ~ ]~ is a monotone continuous 
function with a convex domain of definition then f is a Lipschitz map, with the 
Lipschitz constant l ,  in some other coordinate system. To see this it suffices to 
rotate the standard coordinate system by an angle of  7r/4 or -7r /4 .  Then we can 
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use the previous corollary. [] 

PROBLEM 4.2. Do these results hold for graphs of continuous maps from ~'~ 
t o ~  ~ i fra  > t? 
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