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SOMMARIO. - Usando uno dei teoremi di selezione di E. Michael si prova il
seguente risultato: siano (X,d) e (Y, p) spazi metrici e sia X localmente com-
patto. Sia C(X,Y) Uinsieme di tutte le mappe continue da X a Y, dotato
della topologia della convergenza uniforme. Allora esiste una funzione con-
tinua ad un valore & C(X,Y) x X x (0,00) — (0,00) tale che per ogni
(fiz,e) € C(X,Y) x X x (0,00) € per ogni ' € X : d(z,3") < S(f,x,e) =
p(f(z), f(z")) < e. Come corollario, si ottiene un'altra dimostrazione del
fatto che il teorema di Cantor sulla uniforme continuita implica il Teorema
div Weierstrass sulla limitatezza delle funzion: continue sut compatts.

SUMMARY. - Using one of E. Michael’s selection theorems we prove the fol-
lowing result: Let (X,d) and (Y, p) be metric spaces and suppose that X is
locally compact. Let C(X,Y) be the set of all continuous maps from X to
Y, endowed with the topology of uniform convergence. Then there exists a
continuous singlevalued function d : C(X,Y)x X x(0,00) — (0,00) such that
Jor every (f,z,e) € C(X,Y) x X x (0,00) and for everyz' € X : d(z,2') <
S(f,x,e) = p(f(z), f(z")) < e. As a corollary, we obtain another proof that
the Cantor theorem on uniform continuity implies the Weierstrass theorem
on boundedness of continuous functions on compacta.

1. Introduction.
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Let (X, d) and (Y, p) be metric spaces and let C(X,Y") be the set of all
continuous maps from X into Y, endowed with the topology of uniform
convergence: (i.e. the e—neighbourhood of a map f € C(X,Y) is the set
{9 € C(X,Y) | p(f(x),9(x)) < e forall x € X}.) For every triple
z = (f,z,¢) from the Cartesian product 7 = C(X,Y) x X x (0,00) there
exists, by the definition of continuity, § > 0 such that for every 2’ € X:
d(z, 2"y < 6 = p(f(x), f(«')) < e. The purpose of this note is to show
that whenever X is a locally compact space, it is possible to choose § > 0
which continuously depends on z = (f, z,¢).

THEOREM 1.1. Let (X, d) and (Y, p) be metric spaces and suppose that
X s locally compact. Then there exists a continuous singlevalued function

d:C(X,Y) x X x (0,00) — (0,00)

such that for every (f,z,e) € C(X,Y) x X x (0,00) and for every ' € X
the following implication holds:

d(z, 2"y < (f,x,¢) = p(f(x), f(z')) < e .

The function § will be constructed as a selection of some lower semicon-
tinuous multivalued map A : C(X,Y) x X x (0,00) = (0, 00) with convex
values. Recall, that a singlevalued map ¢ : A — B is said to be a selection
of a multivalued map ® : A — B if for every point @ € A, we have that
p(a) € ®(a). A multivalued map ® : A — B between topological spaces
A and B is called lower semicontinuous if for every open nonempty subset
(G C B, the following subset ®~1(G) = {a € A | ®(a) NG # 0} is open
in A.

We shall use the following selection theorem for convex-valued but non-
closed valued maps (cf. [1, Theorem (3.1)""’]):

THEOREM 1.2. (E. Michael) For every Hausdorff space X the following
conditions are equivalent:
a) X is perfectly normal; and

b)  Every lower semicontinuous map from X into conver D-type sub-
sets of a separable Banach space has a continuous singlevalued
selection. &

Recall, that a convex subset of a Banach space is said to be of D-type if
it contains all interior (in the convex sense) points of its closure. A point of
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a closed convex subset of a Banach space is said to be interior (in the convex
sense) if it isn’t contained in any supporting hypersubspace. Tt is easy to see
that all finite—dimensional convex sets are examples of convex D—type sets.
In this case the set of all interior, in the convex sense, points coincides with
the set of all interior, in the usual sense, points. Next, the space C(X,Y)
is metrizable and the space 7 = C(X,Y) x X x (0, 00) is metrizable, too.
Hence the space 7 is perfectly normal and so we may indeed use Theorem
(1.2) for lower semicontinuous maps with finite-dimensional convex values.

2. Proof of Theorem 1.1.

We shall denote by V (; ) the open neighborhood of radius § and by A
the closure of a subset A C X in X. Define the multivalued map A : 7 —
(0, 00) as follows:

A(z) = A(f,z,e) = {6 € R} | V(x;6) is compact; and (1)

for every 2’ € X, (d(z,2') < § = p(f(z), f(z')) < 6)} . (2)

The set A(z) is a nonempty subset of (0,00) C R because X is locally
compact and f € C(X,Y). From the obvious inclusion V(z,%) C V(z,d),
0 <t < 1, the convexity of the set A(z) follows.

So, in order to prove Theorem (1.1) we only need to check the lower
semicontinuity of the multivalued map A : Z — R} . Suppose that, to the
contrary, there exists

i) a point zg = (fo, %0,c0) € 7;
ii) a point dy € A(z0) C RY;
iii) a number 0 < o < dg; and
iv) asequence {z, = (fn,%n,en) € 7}, such that z, — z; and
Azy) NV (6g;0) =0 . (3)
If § € A(zy) then t6 € A(z,), for every 0 < t < 1. Hence the condition (3)

1s equivalent to
sup A(zp) < dg— o . (4)
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Since z, — z¢ in X we may assume that for every point z, there exists a
dn—neighborhood in X such that

(Sn > (50 -0 (5)
and
V(xn,0n) C V(zg, 60— 0c/2) . (6)

In particular, V (2, d,) will automatically be compact.
From (5) we have that 6, & A(z,), i.e. there exists 2/, € X such that

z), € V(zy, ) (7)

and
p(fn (@), fa(@n)) > €n (8)

Now, the set V(zg,dp — 0/2) is compact. Therefore, we may assume that
z, —x' € V(xg;d0 —0/2) C V(zg,do) .
Since dg € A(zp) we have that

p(fo(a"), fo(xo)) < eo - (9)

On the other hand, if we pass in (8) to the limit (when n — o0), then we
have that

p(fo(a"), fo(wa)) > €0 (10)

which contradicts (9).
To verify (10) it suffices to check that f,(z,) — fo(zg) and that
fa(zh) — fo(2'). But we have that

p(fn(n), fo(xo)) < p(fn(xn), folzn)) + p(fo(zn), fo(zo)) - (11)

The first term on the right hand side of (11) converges to zero because the
sequence {f, }nen 18 uniformly converging to fo. The second term on the
right hand side of (11) converges to zero because fy is continuous. The
convergence f,(x,) = fo(z’) may be checked in an analogous manner. {

EXAMPLE 2.1. Let X =Y = (=1, 1), fo(z) = « and let
Ay (fo,z,6) = {0 € (0,00) |forevery 2’ € X, (d(z,2") < § = p(fo(x), fo(2')) <
g)} (i.e. in the definition (1) above we omit the condition that V(z;d) is
compact. Then obviously, Ai1(fo,0,1) = R%. However, for every nonzero
z € (—1,1) we have that Ay(fo,z,1) = (0,1]. Hence, the map A; is not
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lower semicontinuous. Note that in this example, V(0,1) = V(0,1) isn’t
compact. So the condition (1) from the definition of the map A above is
indeed necessary for our application of Theorem (1.2). Clearly, if we had
condition (1) added in this example then we would also obtain a lower
semicontinuous map A which would be inscribed into the map A;. So in
this example our proof would also work.

Recall two results from classical analysis: let f : X — R be a continuous
real-valued function on a compact metric space X. Then the Weierstrass
theorem asserts that f is bounded (above and below) and the Cantor the-
orem asserts that f i1s uniformly continuous on X. As an application of
Theorem (1.1) we shall prove the following interesting observation:

COROLLARY 2.2. The Cantor theorem on uniform continuity is a corol-
lary of the Weierstrass theorem on boundedness of continuous functions on
compacta.

Proof. Suppose that X is a compact metric space. Pick any fy €
C(X,R) and £y > 0 and consider the set W = {d(fo,z,¢0) | # € X and
S(fo,x,go) : C(X,R) x X x (0,00) — (0,00) is continuous}. Then by
Theorem (1.1) the set W is nonempty, so pick any So € W. Clearly, one
can consider &y as dy € C(X,R). Apply the Weierstrass theorem to obtain
the minimum &, = min{dy(z) | € X}. Then any § € (0,dy) will provide
the uniform continuity assertion of the Cantor theorem (for fy and eg). &

QUESTION 2.3. Is the hypothesis about the local compactness of X in
Theorem (1.1) necessary? (It certainly is for our proof as Example (2.1)
shows.)*
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