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0. Introduction

The initial motivation for the present paper was two-fold. Probably it was Bing [12] who first asked whether there exists
a continuous function which selects a point from each arc of the Euclidean plane. Hamstrém and Dyer [3] observed that
this problem reduces to the problem of continuous choice of retractions onto arcs. In fact, it suffices to consider the images
of a chosen point with respect to continuously chosen retractions. A simple construction based, for example, on the sin(%)-
curve shows that in general there are no continuously chosen retractions for the family of arcs topologized by the Hausdorff
metric.

Therefore a stronger topology is needed for an affirmative answer. In fact, for any homeomorphic compact subsets A;
and A, of a metric space B one can consider the so-called h-metric d, (A1, A2) defined by:

dn(A1, A2) = sup{dist(x, h(x)): h runs over all homeomorphisms of A1 onto A;}

and consider the completely regular topology on the family of all subarcs, generated by such a metric. With respect to this
topology, Pixley [12] solved in the affirmative the problem of continuous choice of retractions onto subarcs of an arbitrary
separable metric space.
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By returning to the more standard Hausdorff topology on the subspace expar(B) of all compact absolute retracts in B,
one can try to search for a degree of nonconvexity of such retracts. In the simplest situation, for the convex exponent
eXPeony(B) consisting of all compact convex subsets of B, the existence of a continuous choice of retractions is a direct
corollary of the following Michael’s selection theorem [8]:

Convex-Valued Selection Theorem. Any multi-valued mapping F : X — Y admits a continuous single-valued selection f : X — Y,
f(x) € F(x), provided that:

(1) X is a paracompact space;

(2) Y is a Banach space;

(3) F is a lower semicontinuous (LSC) mapping;

(4) forevery x € X, F(x) is a nonempty convex subset of Y ; and

(5) forevery x € X, F(x) is a closed subset of Y.

In fact, let X = expgy,y(B) and let Y be the space C,(B, B) of all continuous bounded mappings of B into itself and
suppose that F : X — Y associates to each A € X the nonempty set of all retractions of B onto A. Then all conditions (1)-(5)
can be verified and the conclusion of the theorem gives the desired continuously chosen retractions.

However, what can one say about nonconvex absolute retracts? In general, there exists an entire branch of mathematics
devoted to various generalizations and versions of convexity. In our opinion, even if one simply lists the various existing
definitions of “generalized convexity” one will find as a minimum, nearly 20 different notions. Among them are Menger’s
metric convexity [7], Levy’s abstract convexity [5], Michael's convex structures [9], Prodanov’s algebraic convexity [13],
Madgerl’s paved spaces [6], van de Vel’s topological convexity [21], decomposable sets [1], Belyawski’s simplicial convexity [2],
Horvath’s structures [4], Saveliev’s convexity [18], and many others.

Typically, creation of “generalized convexities” is usually related to an extraction of several principal properties of the
classical convexity which are used in one of the key mathematical theorems or theories and, consequently deals with anal-
ysis and generalization of these properties in maximally possible general settings. Based on the ingenious idea of Michael
who proposed in [10] the notion of a paraconvex set, the authors of [14-17,19] systematically studied another approach to
weakening or controlled omission of convexity on various principal theorems of multi-valued analysis and topology. Roughly
speaking, to each closed subset P C B of a Banach space we have associated a numerical function, say ap : (0, +00) — [0, 2),
the so-called function of nonconvexity of P. The identity aep =0 is equivalent to the convexity of P and the more «p differs
from zero the “less convex” is the set P.

Classical results about multi-valued mappings such as the Michael selection theorem, the Cellina approximation theorem,
the Kakutani-Glicksberg fixed point theorem, the von Neumann-Sion minimax theorem, and others, are valid with the
replacement of the convexity assumption for values F(x), x € X, of a mapping F by some appropriate control of their
functions of nonconvexity.

In comparison with the usual notions of “generalized convexity”, we never define in our approach, for example, a “gen-
eralized segment” joining x € P and y € P. We look only for the distances between points z of the classical segment [x, y]
and the set P and look for the ratio of these distances and the size of the segment. So the following natural question
immediately arises: Does paraconvexity of a set with respect to the classical convexity structure coincide with convexity
under some generalized convexity structure? Corollaries 2.5 and 2.6, based on continuous choice of a retraction, provide an
affirmative answer.

1. Preliminaries

Below we denote by D(c,r) the open ball centered at the point ¢ with the radius r and denote by D, an arbitrary open
ball with the radius r in a metric space. So for a nonempty subset P C Y of a normed space Y, and for an open r-ball
D, C Y we define the relative precision of an approximation of P by elements of D, as follows:

dist(q, P)
[

§(P, D;) =sup :qeconv(PnN Dr)}.

For a nonempty subset P C Y of a normed space Y the function ap(-) of nonconvexity of P associates to each positive
number r the following nonnegative number

ap(r) = sup{8(P, Dy) | Dy is an open r-ball}.

Clearly, the identity ap(-) =0 is equivalent to the convexity of the closed set P.

Definition 1.1. For a nonnegative number «, a nonempty closed set P is said to be a-paraconvex, whenever o majorates the
function ap(-) of nonconvexity of the set, i.e.

dist(q, P) <« -r, Vqeconv(PNDy).

A nonempty closed set P is said to be paraconvex if it is «-paraconvex for some o < 1.
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Recall, that a multi-valued mapping F : X — Y between topological spaces is called lower semicontinuous (LSC for short-
ness) if for each open set U C Y, its full preimage, i.e. the set

F'U)={xe X |Fx)NU # ¢}

is open in X. Recall also that a single-valued mapping f : X — Y is called a selection (resp. an e-selection) of a multi-
valued mapping F : X — Y if f(x) € F(x) (resp. dist(f(x), F(x)) < ¢), for all x € X. Michael [9] proved the following selection
theorem:

Paraconvex-Valued Selection Theorem. For each number 0 < o < 1 any multi-valued mapping F : X — Y admits a continuous
single-valued selection whenever:

X is a paracompact space;

Y is a Banach space;

F is a lower semicontinuous (LSC) mapping; and
all values F (x), x € X are a.-paraconvex.

T —

1
2
3
4

—~ o~ —~ —~

As a corollary, every a-paraconvex set, o < 1, is contractible and moreover, it is an absolute extensor (AE) with respect to
the class of all paracompact spaces. Therefore, it is an absolute retract (AR). Moreover, by [17], any metric e-neighborhood
of a paraconvex set in any uniformly convex Banach space Y, is also a paraconvex set, and hence is also an AR.

For each number 0 < @ <1 we denote by exp, (B) the family of all o-paraconvex compact subsets and by bexp, (B)
the family of all a-paraconvex bounded subsets of a Banach space B endowed with the Hausdorff metric. Recall that the
Hausdorff distance between two bounded sets is defined as the infimum of the set of all ¢ > 0 such that each of the sets is
a subset of an open e-neighborhood of the other set.

For each retract A C B we denote by Retr(A) the set of all continuous retractions of B onto A. So the multi-valued
mapping Retr associates to each retract A C B the set of all retractions of B onto A. For checking the lower semicontinuity
of mappings into the spaces of retractions and for proving paraconvexity of these spaces, we also need the notion of a
uniform retraction (in terminology of [11]), or a regular retraction (in terminology of [20]). Recall that a continuous retraction
R:B — A is said to be uniform (with respect to A) if

Ve>038>0VxeB: dist(x,A) <8 = dist(x,R(x)) <e.

We emphasize that a uniform retraction in general is not a uniform mapping in the classical metric sense. Clearly, each
continuous retraction onto a compact subset is uniform with respect to the set. So we denote by U Retr(A) the set of all
continuous retractions of B onto A which are uniform with respect to A.

2. The Banach space case
Theorem 2.0. Let 0 < o < % and F : X — bexp, (B) be a continuous multi-valued mapping of a paracompact space X into a Banach

space B. Then there exists a continuous single-valued mapping § : X — Cp(B, B) such that for every x € X the mapping §x : B — B is
a continuous retraction of B onto the value F (x) of F.

Sketch of proof of Theorem 2.0. Proposition 2.4 below is a corollary of the Paraconvex-Valued Selection Theorem due to
Propositions 2.1-2.3 and the fact that 0 < % <l 0<a< % In turn, Theorem 2.0 follows directly from Proposition 2.4,
it suffices to put §=RoF. O

Proposition 2.1. For every 0 < o < 1 and for each bounded «-paraconvex subset P, the set U Retr(P) is a nonempty closed subset of
Cp(B, B).

Proposition 2.2. For every 0 < o < 1 and for every bounded o-paraconvex subset P C B, the set U Retr(P) is an %—paraconvex
subset of Cp(B, B).

Proposition 2.3. For every 0 < o < 1 the restriction U Retr |pexp, (8), P > U Retr(P) is lower semicontinuous.

Proposition 2.4. For every 0 < o < % the restriction U Retr | exp,, (), P+ U Retr(P) admits a single-valued continuous selection

R :bexp,(B) — Cp(B, B), Mp € URetr(P).

Proof of Proposition 2.1. Clearly, for each bounded closed retract A, the sets Retr(A) and U Retr(A) are closed in the Banach
space Cp(B, B). To obtain the nonemptiness of Retr(P) for the «-paraconvex set P it suffices to apply the Paraconvex-
Valued Selection Theorem to the mapping F : B — B, defined by setting F(x) = P for x€ B\ P and F(x) = {x} for x € P.
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To construct a uniform retraction R : B— P one must study more in detail the idea of the proof of the Paraconvex-Valued
Selection Theorem.

Let us denote by d(x) the distance between a point x € B and a fixed «-paraconvex subset P C B. For every x € B\ P
first consider the intersection of the set P with the open ball D(x, 2d(x)). Next, take the convex hull conv{P N D(x, 2d(x))}
and finally, define the convex-valued mapping H; : B\ P — B by setting

Hi(x) = conv{P N D(x,2d(x))}.

This mapping is an LSC mapping defined on the paracompact domain B \ P with nonempty closed convex values in a
Banach space. So the Convex-Valued Selection Theorem guarantees the existence of a continuous single-valued selection,
say hy : B\ P — B, hi(x) € H1(x).
For an arbitrary o < 8 < 1 the «-paraconvexity of P implies the inequalities
dist(h1(x), P) < B-2d(x),  dist(x,h1(x)) <2d(x), x€B\P.

Similarly, define the convex-valued and closed-valued LSC mapping H; : B\ P — B by setting

Hy(x) =conv{P N D(hi(x), B-2d(x))}, xe€B\P.

For its continuous single-valued selection hy : B\ P — B, hy(x) € Hy(x) we see that for every x€ B\ P,

dist(ha(x), P) <o - B-2d(x) < B2-2d(x),  dist(h2(x), h1(x)) < B - 2d(x),

once again due to the o-paraconvexity of P.
One can inductively construct a sequence {h,}7>; of continuous single-valued mappings h; : B\ P — B such that for
every x€ B\ P,

dist(hn1 (%), P) < B! 2d(x),  dist(hpy1 (%), hn (%)) < B™ - 2d(x).

So the sequence {h;};2; is locally uniformly convergent and hence its pointwise limit h(x) = limy_ o hn(x) is well de-
fined and continuous. Moreover, h(x) € P, x € B\ P, due to the closedness of P and the convergence of {h;};?2 ;.

Hence the mapping R : B — P, defined by R(x) =h(x), x€ B\ P, and R(x) =x, x € P, is a retraction of B onto P which
is continuous over the set B\ P by construction.

To finish the proof we estimate that for every x € B\ P:

dist(x, h(x)) < dist(x,h1(x)) + Y _ dist(hn(X). hn11(X))

n=1
<21+ B+p+ +--) =C-d),

2
-8

dist(R(xo), R(x)) = dist(xo, h(x)) < dist(xo, x) + dist(x, h(x))
< dist(xg, x) + C -d(x) < (1 + C)dist(xg, X).

for the constant C = So for xo € P and x € B\ P we have

The continuity of the retraction R : B — P over the closed subset P C B and its uniformity clearly follow from the last
inequality. O

Proof of Propesition 2.2. Pick an open ball D(h,r) of radius r in the space Cp(B, B) centered at the mapping h € C,(B, B)
which intersects with the closed set U Retr(P). Let Ry, R3, ..., R, be elements of the intersection D(h, r) N U Retr(P) and let
Q be a convex combination of R, Ry, ..., R,. We want to estimate the distance between Q and U Retr(P).

Pick a point x € B. Passing from the mappings h, Q, R1, R, ..., Ry € C,(B, B) to their values at x, we find the open ball
D(h(x),r) of radius r in the space B centered at h(x) € B, the finite set {R1(x), R2(x), ..., Rp(x)} of elements of the intersec-
tion D(h(x),r) N P and the point Q (x) € conv(D(h(x),r) N P). Having all fixed continuous mappings h, Q,R{,R2,...,Ry €
Cp(B, B) we see that all points h(x), Q (x), R1(X), R2(X), ..., Ra(x) € B continuously depend on x € B.

Let r(x) be the Chebyshev radius of the compact convex finite-dimensional set

A(x) =conv{R1(x), ..., Rn(®)},

i.e. the infimum (in fact, the minimum), of the set of radii of all closed balls containing A(x). Clearly, r(x) <r, x € X. More-
over, r(x) continuously depends on x and for any positive ¥ > 0 the entire set A(x) lies in the open ball D(C(x),r(x) + y)
for some suitable point C(x) € A(x).

Henceforth, the a-paraconvexity of P implies that for an arbitrary o < 8 the inequality

dist(Q(x), P) < B-0(x), o) =r(X) +y
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holds. Therefore, the multi-valued mapping

Fi1(x) =@mv{P N D(Q(), 8- 0()}

is an LSC mapping with nonempty convex and closed values. Note that for each x € P, all points R1(x), R2(X), ..., Ry (x), Q (x)
coincide with x because all Ry, ..., R, are retractions onto P. So the identity mapping id|p is a continuous selection of Fq|p.
Therefore the mapping G; which is identity on P C B and otherwise coincides with Fi, admits a continuous single-valued
selection, say Q1 : B — B, Q1(X) € G1(x). The ar-paraconvexity of P and our construction imply that

dist(Q1(x), P) < B*-0(®),  dist(Q1(x), Q) <B-0(), Qilp=idlp.
Similarly, the multi-valued mapping defined by setting

F2(x) = Gomv{P N D(Q1 (%), 8% - 0(0))}

admits a continuous single-valued selection, say Q» : B — B such that

dist(Q2(x), P) < B2 -0(x),  dist(Q2(x), Q1(%) < B%-0(x), Qalp =idlp.

Inductively we obtain a sequence {Q};2, of continuous single-valued mappings Q : B — B with the properties that
Qnlp =id|p and

dist(Qns1(x), P) < "2 0(x),  dist(Qni1(x), Qu(®) < B 0(x).

Clearly, the pointwise limit R of the sequence {Q};2 is a continuous retraction of B onto P and, moreover,

dist(Q (x), R(x) < dist(Q (). Q1(0)) + Y _ dist(Qn(x). Quy1(x))

n=1
<ﬁ-(1+ﬂ+ﬁ2+ﬁ3+---)-Q(X)=%-Q(X)-
Hence,

) B B B
dist(Q,Retr(P)) < —— - 0(X) = —— - (r(x) + <——-(r+vy).
(QuRetr(P)) < 1200 = =+ (10 +7) < 7= T+ )
Passing to 8 — « + 0 and y — 0+ 0 we conclude that dist(Q , Retr(P)) < & -r. To finish the proof we must check that
the retractions R(x) = lim;_,» Qn(X), X € X onto P constructed above are uniform with respect to P. To this end, using
uniformity of all retractions R, ..., Ry, for an arbitrary & > 0 choose § > 0 such that

dist(x, P) <8 = dist(x, Ri(x)) <e.

In particular, for every point x with dist(x, P) < §, all values R{(x), ..., Ry(x), Q (x) lie in the open ball D(x, €). Hence
r(x) < € and this is why

dist(x, R(x)) < dist(x, Q (x)) + dist(Q (x), R(x)) < & + % ox) < ﬁ (E+7Y).

Therefore R € U Retr(P) and dist(Q , U Retr(P)) < 125 - . Hence U Retr(P) is % -paraconvex. O
Proof of Proposition 2.3. Pick P € bexp, (B), a uniform retraction R € U Retr(P) and a number & > 0. Let § > 0 be such that
§<(1—a)-¢and

dist(x, P) <8 = dist(x, R(x) <(1—a)-¢.

Consider any P’ € bexp, (B) which is §-close to P with respect to the Hausdorff distance. We must find a uniform
retraction R’ € U Retr(P’) such that dist(R,R") < e&.

The multi-valued mapping F’: B — B such that F/(x) = {x}, x € P/, and F’(x) = P’ otherwise, is an LSC mapping with
«-paraconvex values. Any selection of F’ is a retraction onto P’. So let us check that R is almost a selection of F/ and hence,
almost a retraction onto P’.

For every x € B\ P’ we have

dist(R(x), F'(x)) = dist(R(x), P') <8 < (1 — )¢
because R(x) € P and the set P lies in the §-neighborhood of the set P’. If x € P’ then

dist(R(x), F'(x)) = dist(R(x),x) < (1 —a)e
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because the set P’ lies in the §-neighborhood of the set P and due to the choice of the number §. Hence the retraction R
of B onto the set P is a continuous single-valued &’-selection of the mapping F’ for &’ = (1 — a)e¢.

Following the proofs of Propositions 2.1 and 2.2 we can improve the &’-selection R of F’ to a selection R’ of F’ such
that dist(R, R') < 1%& =¢&. So R’ is a continuous retraction onto P’ and the checking of uniformity of R’ can be performed
by repeating the arguments about Chebyshev radii from the proof of Proposition 2.2. O

Note that the proof of Theorem 2.0 for the case of compact paraconvex sets is much easier, because for any compact
retract A C B each continuous retraction B — A is automatically uniform with respect to A. Therefore, one can apply
directly Retr(A) instead of U Retr(A).

Corollary 2.5. Under the assumptions of Theorem 2.0, if in addition all values F (x), x € X, are pairwise disjoint the metric subspace
Y = yex F (%) C B admits a convex metric structure o (in the sense of [9]) such that each value F (x) is convex with respect to o.

Proof. By Theorem 2.0, let R(x) : B— F(x), x € X, be a continuous family of uniform continuous retractions onto the values
F(x). One can define a convex metric structure o on Y = J,.x F(x) by setting that o -convex combinations are defined only
for finite subsets {y1, ¥2,..., ¥n} Which are entirely displaced in a value F(x) and

0 — Ve {Y1. Y2 ... yn} = RX)(convp{y1.y2.....ya}). O

Corollary 2.6. Let f : Y — X be a continuous single-valued surjection and let all point-inverses f~1(x), x € X, be c-paraconvex
subcompacta of Y with o < % Then Y admits a convexity metric structure such that each point-inverse is convex with respect to this
structure.

3. The Hilbert space case

Hilbert spaces have many advantages inside the class of all Banach spaces. In this chapter we demonstrate such an
advantage related to paraconvexity. Briefly, we prove that the estimate & for paraconvexity of the set Retr(P) onto o-
paraconvex set P can be improved by

a(l+a?) a 1+4+0a? o
= . < .
1—o? 1-a 1+a 11—«

Hence in Theorem 2.0 one can substitute the root of the equation & +«? 4+ a3 =1 in place of % In fact, a generalization
of this type can be obtained for any uniformly convex Banach space and it differs from the case of a Hilbert space only in
technical details.

Theorem 3.0. Let H be a Hilbert space and F : X — bexp, (H) a continuous mapping of a paracompact space X, where a + % +
a3 < 1. Then there exists a continuous single-valued mapping § : X — Cy(H, H) such that for every x € X the mapping §x: H — H
is a continuous retraction of H onto the value F (x) of F.

We repeat the original definition of «e-paraconvexity of P but with the appropriate estimate for distances between points
of simplices and points of P inside open balls.

Definition 3.1. Let 0 < o < 1. A nonempty closed subset P C B of a Banach space B is said to be strongly «-paraconvex if for
every open ball D C B with radius r and every q € conv(P N D) the distance dist(q, P N D) is less than or equal to « - 1.

Clearly, strong «-paraconvexity of a set implies its a-paraconvexity. In a Hilbert space the converse is almost true: for
some suitable 1 > 8 > «, a-paraconvexity implies strong S-paraconvexity.

Proposition 3.2. Any a-paraconvex subset P of a Hilbert space is its strong ¢ («)-paraconvex subset, where p(a) = /1 — (1 — )2 =
V20 — a2,

Proposition 3.2 is an immediate corollary of the following purely geometrical lemma:

Lemma 3.3. Let D = D, be an open ball of radius r in a Hilbert space H. Let z be a point of the convex hull conv(P N D) of the
intersection of D with a set P and let dist(z, P) < « - r. Then dist(z, PN D) < () - 1.
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Proof. Pick an arbitrary & <y <1 and let c be the center of the open ball D = D(c,r).
If dist(c,z) < (1 — y) - r then the whole open ball D(z, y -r) lies inside D. Hence, a point p € P which is (y - r)-close to
z automatically lies in D. So

dist(z, PN D) < dist(z,p) <y -r<@(y)-T.

Consider the opposite case when z is “close” to the boundary of the ball D, i.e. when (1 —y)-r < dist(c, z) < r. Draw the
hyperplane IT supporting the ball D(c, dist(c, z)) at the point z. Such the hyperplane IT divides the ball D into two open
convex parts: the center ¢ belongs to the “larger” part D, whereas the point z belongs to the boundary of “smaller” part
D_. Clearly, Clos(D_) contains a point p € P (if, to the contrary, P N D is subset of D then z € conv(P N D) C D). Hence,
the distance dist(z, P N D) is majorated by

r<@(y)-r.

dist(z, p) < max{dist(z,u): u € Clos(D_)} = w(@)

So in both cases dist(z, P N D) < ¢(y) - r and passing to y — o + 0 we see that dist(z, PN D) < ¢(x)-r. O

Recall that for a multi-valued mapping F : X — Y and for a numerical function ¢ : X — (0, +00) a single-valued mapping
f:X—Y is said to be an &-selection of F if dist(f(x), F(x)) < &(x), x € X.

Proposition 3.4. et 0 < o < 1 and let F : X — H be an «a-paraconvex-valued LSC mapping from a paracompact domain into a
Hilbert space. Then

2 . . : .
(1) for each constant C > }fgz,for every continuous function € : X — (0, +00) and for every continuous &-selection f. : X — H of

the mapping F there exists a continuous selection f : X — H of F such that

dist(fe(x), f(x)) <C-e(x), x€X;
(2) F admits a continuous selection f.
Proof. Clearly (1) implies (2): the mapping x — [1 4+ dist(0, F(x)), +00), X € X, is an LSC mapping with nonempty closed
and convex values and therefore it admits a continuous selection, say € : X — (0, +00). Therefore f. =0 is an &-selection
of F.

To prove (1) let @(t) = +/2t —t2, 0 <t < 1, choose any y € («, 1) and denote by D(x) = D(f:(x),&(x)). As above, the
multi-valued mapping

Fix)=comv{F(x)ND(x)}, xe€X,

admits a single-valued continuous selection, say f1:X — H.
For each x € X the point f;(x) belongs to the convex hull conv{F(x) N D(x)} and dist(f1(x), F(x)) <« - &(x) due to the
a-paraconvexity of the value F(x). Lemma 3.3 implies that

dist(f1(x), F®) N D(x)) < (@) - (x) < @(y) - £(X).
Therefore, the multi-valued mapping F, : X — H defined by
Fa(x) =conv{F(x) N D(x) N D(f1(x), 9(¥) - £(x))}, x€X,

is an LSC mapping with nonempty closed and convex values. Hence there exists a selection of Fy, say f;: X — H.

For each x € X the point f(x) belongs to the convex hull conv{F(x) N D(x)} and dist(f2(x), F(x)) < o - @(y) - €(x) due to
the o-paraconvexity of the value F(x) and because f>(x) € conv{F(x) N D(f1(x), p(y) - £(x))}.

Lemma 3.3 implies that

dist(f20), F0) <@(a- (1)) - e(®) <@(y - 9(¥)) -0, xeX.
Put

F3(x) = conv{F(x) N D(fe(x).£(0)) ND(f2(2).0(y - @(¥)) -e®)}. x€X,

and so on. Hence we have constructed a sequence {f; : X — H}32; of continuous single-valued mappings such that
dist(fe(x), fn®) <e®),  dist(fr(x), FX) < yn-e()

where y1 =y and Ypt1 =¥ - @(Vn)-
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The sequence {yn} is monotone, decreasing and converges to the (positive!) root of the equation t =y - ¢(t), i.e. to the

number t = 132’)/2 > 1+a2 Therefore we can choose numbers N € N and A such that

2y2 20
—_— > —.
1+y2 1+4+a?
Hence, the mapping g1 = fy is a (A - €)-selection of F and
dist(fe (x), g1(x)) < £(x).

Starting with g1 one can find A2 - -selection g, of F such that

1
1>1—E>k>yN>

dist(g1(x), g2(x)) <A - £(x).

Continuation of this construction produces a continuous selection f =lim,_ o gz of F such that

dist(fe(x), f(x)) <&(x)- (+A+A1+u)=lik-am<c-am,xex. O

Proposition 3.4 implies the following analog of Proposition 2.2:

Corollary 3.5. For every 0 < @ < 1 and every bounded «-paraconvex subset P C H the set Retr(P) is an 0‘(1’“" )

of Cp(H, H).

-paraconvex subset

Proof of Theorem 3.0. It suffices to repeat the proof of Theorem 2.0, using Corollary 3.5 instead of Proposition 2.2. O
4. Concluding remarks

Roughly speaking, we have proved that «-paraconvexity of a given set implies S-paraconvexity of the set of all retractions
onto this set with 8 = (o) = L Such an estimate for g = f(«) naturally appears as a result of the usual geometric
progression procedure. However 1t is unclear to us whether the constant 1% is the best possible?

Some examples in the Euclidean plane show that in some special cases (for certain curves) the constant 8 = B()
admits more precise estimates. Unfortunately, calculations in these examples are based on geometric properties of concrete
«-paraconvex curves which in general fail for arbitrary oz-paraconvex subsets of the plane.

Hence the question about continuous choice of retractions onto bounded «-paraconvex sets with % < «a < 1 remains
open. Even the case of subsets of the Euclidean plane presents an obvious interest. The main obstructions to constructing
various counterexamples are related to problems of producing retractions with certain prescribed constraints.
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