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Abstract
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0. Introduction

Every functionf :X ×Y → R defined on the Cartesian product of two sets satisfies
inequality

sup
x∈X

inf
y∈Y

f (x, y) � inf
y∈Y

sup
x∈X

f (x, y).

John von Neumann [10] proved the equality

max
x∈X

{
min
y∈Y

{
f (x, y)

}} = min
y∈Y

{
max
x∈X

{
f (x, y)

}}
for any finite-dimensional simplicesX andY and any bilinear functionf . Ky Fan [1] and
Sion [14] minimax theorems prove the above minimax equality for any pair of co
subcompactaX andY of locally convex topological linear spaces and for any real-va
functionf :X × Y → R which satisfies the following assumptions:

(1) for eachc ∈ R and eachx0 ∈ X the set{y ∈ Y : f (x0, y) � c} is convex and compact
(2) for eachd ∈ R and eachy0 ∈ Y the set{x ∈ X: f (x, y0) � d} is convex and compac

Note, that(1) implies openness of all sets of the form{y ∈ Y : f (x0, y) > c}, i.e. lower
semicontinuity of the functionf with respect to the second coordinate. By compactn
of Y , the function

x �→ min
{
f (x, y): y ∈ Y

}
is well defined and upper semicontinuous on the compactumX. Thus the numberb =
maxx∈X{miny∈Y {f (x, y)}} indeed exists. In the same manner one can check the exis
of the numbera = miny∈Y {maxx∈X{f (x, y)}}, b � a.

There exist many generalizations of this fundamental theorem of von Neum
Ky Fan–Sion. Most of them deal with various kinds of generalized, topological, o
iomatically defined convexities in (1) and (2) (see [3,5,6]). After the fundamental res
Ky Fan [2], the key role in all approaches to minimax theorems was played by the so-
Knaster–Kuratowski–Mazurkiewicz (KKM) principle concerning finite intersection p
erty of values of KKM-mappings [7]. Having in mind this principle, many authors did
exploit precisely the convexity assumption, but only the basic hereditary property th
intersection of convex sets is also convex. Moreover, due to results [15,17] it is clea
convexity of such intersections can as a rule be simply replaced by connectedness,

n⋂
i=1

{{
x ∈ X: f (x, yi) � d

}
: yi ∈ Y

}
,

k⋂
j=1

{{
y ∈ Y : f (xi, y) � c

}
: xj ∈ X

}
are connected whenever they are nonempty [3,6,7].

The present paper deals with another principal property, somewhat symmetricain-
tersections, namely that theunion of directly ordered family of arbitrary convex sets
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also convex. So as a base for obtaining minimax theorems we shall use the select
ory of multivalued mappings instead of versions of the KKM-principle. More precis
we shall use the selection theorem for multivalued mappings withα-paraconvexvalues
[12,13]. Therefore our minimax theorem includes cases when the latter finite inters
of sublevel and uplevel sets is nonempty but not connected.

1. Preliminaries

We shall denote the open ball in a Banach space, centered at the pointy, of radiusr by
D(y, r). Let P be a nonempty closed subset of a normed spaceB. The number

δ(P,D) = sup
{
dist(q,P )/r: q ∈ conv(P ∩ D)

}
is a natural upper estimate for the relative precision of nonconvexity of the intersect
the setP with the open ballD of radiusr .

Definition 1.1. The function of nonconvexityαP (·) of the setP associates to each numb
r > 0 the supremum of the set{δ(P,D)} over all open balls of radiusr .

Clearly, the identityαP (·) ≡ 0 means that the closed setP is convex. The more functio
αP (·) differs from zero, the “less convex” is the setP .

Definition 1.2. A nonempty closed subsetP of a Banach space is said to beα-paraconvex
provided that functionα(·) pointwisely majorates the function of nonconvexityαP (·) of
this set:αP (r) < α(r), r > 0.

Geometrically,α-paraconvexity of a subsetP ⊂ B means that for every open ballD of
radiusr which intersectsP and for each pointq of the closed convex hull conv(P ∩ D),
the distance dist(q,P ) betweenq andP is less thanα(r) · r .

The following selection theorem was proved in [13].

Theorem 1.3. Suppose that the right upper limits of the functionα : (0,∞) → (0,1) are
less than1 over the closed ray[0,∞). LetΦ :E → B be a lower semicontinuous mappi
from a paracompact spaceE into a Banach spaceB with all valuesα-paraconvex. Then
Φ admits a continuous single-valued selection.

For a constant functionα this theorem was proved by Michael [9]—he introduced
notion of α-paraconvexity for aconstantα. As a corollary, we prove thatα-paraconvex
sets have the same maximally fine topological properties as the usual convex
sets: they are contractible and locally contractible and moreover, the collectionΠα(B)

of all α-paraconvex subsets of a given Banach spaceB is equilocally connected famil
(Πα(B) ∈ ELC). Graphs of Lipschitz functions of several real variables are typica
amples of paraconvex sets [11]. Clearly, intersection of two such sets can have
components of connectedness.
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In what follows we shall assume thatα : (0,∞) → (0,1) is a fixed function with the
right upper limits less than 1 over the closed ray[0,∞). We shall also use the notatio
α(·) < β(·) for pointwise inequality between real valued functions.

Theorem 1.4. Let f :X × Y → R be a real-valued function on Cartesian product of t
AR subcompactaX andY of a Banach space and suppose that:

(1) for eachc ∈ R and eachx0 ∈ X, the set{y ∈ Y : f (x0, y) � c} is α-paraconvex com
pact; and

(2) for eachd ∈ R and eachy0 ∈ Y , the set{x ∈ X: f (x, y0) � d} is α-paraconvex com
pact for a fixedα : (0,∞) → [0,1).

ThenmaxX{minY {f (x, y)}} = minY {maxX{f (x, y)}}.

Recall that a multivalued mappingF :X → Y is said to belower semicontinuous(LSC)
if the setF−1(U) = {x ∈ X: F(x) ∩ U 	= ∅} is open inX wheneverU is open inY .
A single-valued mappingf :X → Y is a selectionof multivalued mappingF whenever
f (x) ∈ F(x) for all x ∈ X. If a multivalued mappingF maps a setX into itself then
x0 ∈ X is said to be afixed pointof F provided thatx0 ∈ F(x0).

Recall also that eachARcompactum has the fixed point property for single-valued c
tinuous mappings into itself. In fact, such compacta are closed subsets of suitable Tik
cubes and moreover are retracts of these cubes. Finally, a real-valued single-value
tion h :X → R is said to beupper (lower) semicontinuousif all preimagesh−1(−∞, c)

(respectively,h−1(d,∞)) are open subsets ofX, for anyc, d ∈ R. We preserve the term
“function” for mappings to real line and use the abbreviation LSC only for nonsin
valued mappings.

2. Two lemmas

Lemma 2.1. For any functionsα(·) < β(·) < 1 and sequenceP1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ · · ·
of α-paraconvex subsets of a Banach spaceB, the closure of the unionP = Cl(

⋃
n Pn) is

a β-paraconvex subset ofB.

Proof. It suffices to check thatαP (·) � α(·). Suppose to the contrary, that for somer > 0
the inequalityαP (r) > α(r) holds. Then there exist an open ballD of radiusr and a point
q ∈ conv(P ∩ D) such that dist(q,P ) > α(r) · r . We can assume then that dist(q ′,P ) >

α(r) · r for all pointsq ′ from some sufficiently small neighborhoodD(q, ε) ⊂ D of the
pointq. If

q =
m∑

i=1

λiyi, yi ∈ P ∩ D, λi � 0,
∑

λi = 1,

then every pointyi ∈ P ∩D can be represented as the limit of a sequence{yk
i }∞k=1 of points

from the intersectionD ∩ (
⋃∞

Pn).
n=1
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For everyi ∈ {1,2, . . . ,m} one can find a point

y
ki

i ∈ D ∩ D(yi, ε) ∩
( ∞⋃

n=1

Pn

)
.

Let N = max{k1, k2, . . . , km} andq ′ = ∑m
i=1 λiy

ki

i , where coefficientsλi are taken from
the above representation of the pointq as the convex combination. Then

P1 ⊂ P2 ⊂ · · · ⊂ PN, q ′ ∈ D(q, ε) ∩ conv(PN ∩ D)

and therefore

αPN
(r) · r � dist(q ′,PN) � dist(q ′,P ) > α(r) · r

which contradicts with the inequalityαPN
(r) < α(r). �

Lemma 2.2. For any functionsα(·) < β(·) < 1, the Cartesian product of any twoα-para-
convex subsets of Banach spacesB1 and B2 is a β-paraconvex subset of the Cartesi
productB1 × B2 with respect to the norm∥∥(x1, x2)

∥∥ = max
{‖x1‖1,‖x2‖2

}
.

Proof. Pick an open ballD = D((x0, y0), r) in the Banach spaceB = B1 × B2 which
intersects the Cartesian productP = P1 ×P2 of two α-paraconvex sets. Choose any poi
(xi, yi) ∈ P ∩ D, i = 1,2, . . . ,m, and consider their convex combination

q =
m∑

i=1

λi(xi, yi), λi � 0,
∑

λi = 1.

Denoteq1 = ∑m
i=1 λixi andq2 = ∑m

i=1 λiyi . Due to the definition of the norm inB, we
have that max{‖xi − x0‖,‖yi − y0‖} < r , for everyi = 1,2, . . . ,m. By definition of func-
tions of nonconvexity, one can find for every positiveε pointsp1 ∈ P1 andp2 ∈ P2 such
that

‖qi − pi‖ < dist(qi,Pi) + ε � aPi
(r) · r + ε < α(r) · r + ε, i ∈ {1,2}.

Hence we can find for everyε > 0 a pointp = (p1,p2) ∈ P such that

‖q − p‖ = max
{‖q1 − p1‖,‖q2 − p2‖

}
< α(r) · r + ε.

If ε → 0, then dist(q,P ) � α(r) · r . Passing to the supremum over allq and all open balls
of fixed radiusr , we conclude thatαP (r) � α(r) for all positiver . �

Note, that in Lemmas 2.1 and 2.2 we can assume that all right upper limits of funcβ

are also less than 1. Hence Theorem 1.3 also applies to Cartesian products and to
of increasing sequences ofα-paraconvex sets.
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3. Proof of Theorem 1.4

We shall follow the usual strategy of the proof in which the inequality

b = max
x∈X

{
min
y∈Y

{
f (x, y)

}}
< a = min

y∈Y

{
max
x∈X

{
f (x, y)

}}
implies a contradiction. But instead of a single one we shall usetwo separation number
betweenb anda. Recall thatb anda exist andb � a, see the Introduction.

Suppose to the contrary thatb < d < c < a. Define the multivalued mappingF :
X × Y → X × Y by setting

F(x, y) = {
x′ ∈ X: f (x′, y) > c

} × {
y′ ∈ Y : f (x, y′) < d

}
and letΦ :X × Y → X × Y be its pointwise closure:

Φ(x,y) = Cl
(
H(x,y)

)
, (x;y) ∈ X × Y.

We claim that then:

(i) Theorem 1.3 applies to the mappingΦ, i.e. Φ admits a single-valued continuou
selectionϕ :X × Y → X × Y ;

(ii) ϕ has a fixed point(x0, y0) ∈ X × Y ; and
(iii) the inequality c � ϕ(x0, y0) � d holds, which contradicts our assumption thatb <

d < c < a.

Let us verify (i)–(iii). First, note that (ii) holds becauseϕ is a continuous mapping o
theARcompactumX × Y into itself. Second,(x0, y0) ∈ Cl(F (x0, y0)) implies that

(x0, y0) = lim
n→∞(xn, yn), (xn, yn) ∈ F(x0, y0).

In other words, for eachn ∈ N we have thatf (xn, y0) > c andf (x0, yn) < d . However,
the functionf :X × Y → R is upper semicontinuous with respect to the first coordin
and is lower semicontinuous with respect to the second coordinate. Therefore, by p
to the limit withn → ∞, we obtain (iii):c � f (x0, y0) � d.

So, it only remains to verify (i). Suppose thatF(x, y) = ∅, for some(x, y) ∈ X ×Y and
to be certain, let the second factor ofF(x), i.e. the set{y′ ∈ Y : f (x, y′) < d} be empty.
Thenf (x, y′) � d for all y′ ∈ Y and min{f (x, y′): y′ ∈ Y } � d . Hence

b = max
X

{
min

Y

{
f (x, y)

}}
� d > b.

Contradiction. So all values ofF are indeed nonempty.
The assumptions(1) and(2) together with the equalities

F(x, y) = {
x′ ∈ X: f (x′, y) > c

} × {
y′ ∈ Y : f (x, y′) < d

}
=

( ⋃
n∈N

{
x′ ∈ X: f (x′, y) � c + n−1})

×
( ⋃{

y′ ∈ Y : f (x, y′) � d − n−1})

n∈N
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show that the values ofF are Cartesian products of increasing sequences ofα-paraconvex
sets. By applying Lemmas 2.1 and 2.2 we conclude that all values ofΦ are nonempty
β-paraconvex subsets ofX × Y .

Therefore in order to complete the proof we must check thatΦ = Cl(F ) is a LSC
mapping. It certainly suffices to show thatF is a LSC mapping. Checking this is a we
known verification that all point preimages of the mappingF are open subsets ofX × Y

and henceF−1(A) is open for everyA ⊂ X × Y :

F−1(x, y) = {
(x′, y′): (x, y) ∈ F(x′, y′)

}
= {

x′ ∈ X: f (x′, y) < d
} × {

y′ ∈ Y : f (x, y′) > c
}
.

However, the latter two factors are open subsets ofX andY , respectively, by upper sem
continuity off (·, y) and lower semicontinuity off (x, ·). This completes the proof.�

Clearly, in the proof of Theorem 1.4 we never used any specific (geometric or
logical) property of paraconvex sets. We simply reduced the proof to Lemmas 2.1
selection Theorem 1.2 and to the fixed-point property ofARcompacta. This is why Theo
rem 1.4 holds for arbitrary classes of subsets, provided that such classes satisfy hyp
of these lemmas and theorem.

4. Some generalizations

Here is an abstract version of Theorem 1.4. For a familyΩ of nonempty sets denote b
Ωσ↑ the family which consists of all unions of countable increasing (with respect t
inclusion) sequences of elements ofΩ . For a familyΩ of subsets of a topological spa
denote by Cl(Ω) the family of all closures of the elements ofΩ .

We also say that a familyΩ of nonempty closed subsets of a topological spaceY is
selectionablein Y whenever for each paracompact spaceE, every lower semicontinuou
mappingΦ :E → Y with values fromΩ , admits a single-valued continuous selection. T
families of all nonempty convex closed subsets or allα-paraconvex subsets of a Bana
spaces are typical examples of selectionable families.

Theorem 4.1. Let Ω andΓ be families of nonempty closed subsets of Fréchet spaceB1
andB2, respectively, such that the familyCl(Ωσ↑ × Γσ↑) is selectionable inB1 × B2. Let
f :X ×Y → R be a real-valued function on the Cartesian product of two AR subcomp
of B1 andB2, respectively, and suppose that:

(1) for eachc ∈ R and eachx0 ∈ X, the set{y ∈ Y : f (x0, y) � c} is an element ofΓ ; and
(2) for eachd ∈ R and eachy0 ∈ Y , the set{x ∈ X: f (x, y0) � d} is an element ofΩ .

ThenmaxX{minY {f (x, y)}} = minY {maxX{f (x, y)}}.

The proof of Theorem 4.1 repeats the proof of Theorem 1.4 above. We believ
some other specific examples of families, satisfying the hypothesis of Theorem 4.1
constructed.
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Finally, we present a generalization of another type of minimax theorems [8]: we
ply replace the hypothesis “compact finite-dimensional ANR” on the second factorY by
the assumption thatY is compact and has theC-property. A spaceY is said to have the
C-propertyif for any sequence{µn: n ∈ N} of open coverings ofY there exists a sequenc
{λn: n ∈ N} of disjoint families of open sets inY such that eachλn refinesµn and the
union

⋃
n λn is a covering ofY .

Every finite-dimensional paracompact and every countably-dimensional metric
has theC-property. It is still an open problem whether (for the metric case) the cla
spaces withC-property coincides with the class of all weakly infinite-dimensional spa

Theorem 4.2. Let X be an acyclic ANR space,Y a compact space withC-property, and
f a real valued function onX × Y . Suppose that

b = sup
x∈X

{
min
y∈Y

{
f (x, y)

}}
, a = min

y∈Y

{
sup
x∈X

{
f (x, y)

}}
.

and that the following conditions are satisfied:

(1) f is lower semicontinuous with respect to the second coordinate;
(2) the set{(x;y): f (x;y) > b} is open;
(3) for eachy ∈ Y , the set{x ∈ X: f (x;y) > b} is contractible or empty; and
(4) for eachx ∈ X, the set{y ∈ Y : f (x;y) � b} is acyclic.

Then the equalitya = b holds.

The proof of Theorem 4.2 repeats the argument used in the proof of McClendon
orem, as it was presented, for example, in [4, p. 332], and reduces the minimax theo
a statement concerning intersections of two subsets inX × Y .

However, in proving that statement we use a recent Uspenskii’s selection th
[16]—he has established the existence of continuous selections for arbitrary open
mapping with domain having theC-property and with all values infinitely connected. U
fortunately, it seems that this method does not work outside the class ofC-domains becaus
the selection theorem [16] actually gives acharacterizationof theC-property of domains
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