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Abstract

We apply the selection theorem for multivalued mappings with paraconvex values (rather than
various versions of KKM-principle) to prove several minimax theorems. In contrast with well-known
minimax theorems for coordinatewise semicontinuous functions, in our theorems finite intersections
of sublevel or uplevel sets can be nonempty and nonconnected.

0 2005 Elsevier Inc. All rights reserved.

Keywords:Paraconvexity; Convex-valued mapping; Continuous selection; Banach space; Lower semicontinuous
and upper semicontinuous map

* Corresponding author.

E-mail addressesdusan.repovs@guest.arnes.si (D. Repovs), pavels@orc.ru (P.V. Semenov).
1 The first author was supported by the MHEST research program No. P1-0292-0101-04.
2 The second author was supported by the RFBR grant No. 05-01-00993.

0022-247X/$ — see front matted 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.04.002



538 D. Repovs, P.V. Semenov / J. Math. Anal. Appl. 314 (2006) 537-545

0. Introduction

Every functionf : X x ¥ — R defined on the Cartesian product of two sets satisfies the
inequality
supmf fx,y) < |nf supf(x,y).

xeX YeY Yxex

John von Neumann [10] proved the equality

max; min = min{ max ,
xeX{ {f(x y) } er{xeX {f(x y)}}

for any finite-dimensional simplice¥ andY and any bilinear functiorf. Ky Fan [1] and
Sion [14] minimax theorems prove the above minimax equality for any pair of convex
subcompact& andY of locally convex topological linear spaces and for any real-valued
function f: X x Y — R which satisfies the following assumptions:

(1) foreachc € R and eachyg € X the sef{y € Y: f(xo,y) < ¢} is convex and compact;
(2) for eachd € R and eachy € Y the set{x € X: f(x, yo) > d} is convex and compact.

Note, that(1) implies openness of all sets of the fofme Y: f(xo, y) > ¢}, i.e. lower
semicontinuity of the functiory with respect to the second coordinate. By compactness
of Y, the function

xr—>min{f(x,y): er}

is well defined and upper semicontinuous on the compacturithus the numbeb =
max.ex {Min,cy{f (x, y)}} indeed exists. In the same manner one can check the existence
of the number = minycy{max.ex{f(x, y)}}, b <a.

There exist many generalizations of this fundamental theorem of von Neumann—
Ky Fan-Sion. Most of them deal with various kinds of generalized, topological, or ax-
iomatically defined convexities in (1) and (2) (see [3,5,6]). After the fundamental result of
Ky Fan [2], the key role in all approaches to minimax theorems was played by the so-called
Knaster—Kuratowski—Mazurkiewicz (KKM) principle concerning finite intersection prop-
erty of values of KKM-mappings [7]. Having in mind this principle, many authors did not
exploit precisely the convexity assumption, but only the basic hereditary property that the
intersection of convex sets is also convex. Moreover, due to results [15,17] it is clear that
convexity of such intersections can as a rule be simply replaced by connectedness, the sets

n
m{{x e X: f(x,yi) >d} Vi € Y}
i=1
k
ﬂ{{y eY: f(xi,y) gc}: Xj EX}
j=1
are connected whenever they are nonempty [3,6,7].
The present paper deals with another principal property, somewhat symmetiiical to
tersections namely that thaunion of directly ordered family of arbitrary convex sets is



D. Repovs, P.V. Semenov / J. Math. Anal. Appl. 314 (2006) 537-545 539

also convex. So as a base for obtaining minimax theorems we shall use the selection the-
ory of multivalued mappings instead of versions of the KKM-principle. More precisely,
we shall use the selection theorem for multivalued mappings adgfaraconvexvalues
[12,13]. Therefore our minimax theorem includes cases when the latter finite intersection
of sublevel and uplevel sets is nonempty but not connected.

1. Preliminaries

We shall denote the open ball in a Banach space, centered at they pofmmadiusr by
D(y,r). Let P be a nonempty closed subset of a normed s@acehe number

8(P, D) =sup{dist(q, P)/r: g € conMP N D)}

is a natural upper estimate for the relative precision of nonconvexity of the intersection of
the setP with the open ballD of radiusr.

Definition 1.1. The function of nonconvexity p (-) of the setP associates to each number
r > 0 the supremum of the sgt(P, D)} over all open balls of radius

Clearly, the identityrp (-) = 0 means that the closed geis convex. The more function
ap () differs from zero, the “less convex” is the set

Definition 1.2. A nonempty closed subsét of a Banach space is said to gparaconvex
provided that functionx(-) pointwisely majorates the function of nonconvexity(-) of
this setiap(r) < a(r),r > 0.

Geometricallyx-paraconvexity of a subsét c B means that for every open bdll of
radiusr which intersects? and for each poing of the closed convex hull cot? N D),
the distance disg, P) betweery and P is less tham(r) - r.

The following selection theorem was proved in [13].

Theorem 1.3. Suppose that the right upper limits of the function(0, co) — (0, 1) are
less tharll over the closed raj0, co). Let® : E — B be a lower semicontinuous mapping
from a paracompact spacg into a Banach spac® with all valuesx-paraconvex. Then
@ admits a continuous single-valued selection.

For a constant function this theorem was proved by Michael [9]—he introduced the
notion of a-paraconvexity for a&onstante. As a corollary, we prove thai-paraconvex
sets have the same maximally fine topological properties as the usual convex closed
sets: they are contractible and locally contractible and moreover, the colld@tioR)
of all e-paraconvex subsets of a given Banach spads equilocally connected family
(11, (B) € ELC). Graphs of Lipschitz functions of several real variables are typical ex-
amples of paraconvex sets [11]. Clearly, intersection of two such sets can have several
components of connectedness.
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In what follows we shall assume that (0, co) — (0, 1) is a fixed function with the
right upper limits less than 1 over the closed f8yoco). We shall also use the notation
a(-) < B(-) for pointwise inequality between real valued functions.

Theorem 1.4. Let f: X x Y — R be a real-valued function on Cartesian product of two
AR subcompactX andY of a Banach space and suppose that

(1) for eachc € R and eachxg € X, the set{y € Y: f(xo,y) < ¢} is a-paraconvex com-
pact and

(2) for eachd € R and eachyg € Y, the set{x € X: f(x, yo) > d} is a-paraconvex com-
pact for a fixedx : (0, c0) — [0, 1).

Thenmaxy {miny { f (x, y)}} = miny {maxy{f (x, y)}}.

Recall that a multivalued mapping: X — Y is said to bdower semicontinuou@.SC)
if the set F~1(U) = {x € X: F(x) N U # ¢} is open inX wheneverU is open inY.
A single-valued mapping : X — Y is aselectionof multivalued mappingF’ whenever
f(x) € F(x) for all x € X. If a multivalued mappingF’ maps a sefX into itself then
xo € X is said to be dixed pointof F provided thatcg € F (xg).

Recall also that eachR compactum has the fixed point property for single-valued con-
tinuous mappings into itself. In fact, such compacta are closed subsets of suitable Tikhonov
cubes and moreover are retracts of these cubes. Finally, a real-valued single-valued func-
tion 4: X — R is said to beupper (lower) semicontinuous all preimagesh—(—oo, ¢)
(respectively~1(d, 00)) are open subsets &, for anyc, d € R. We preserve the term
“function” for mappings to real line and use the abbreviation LSC only for nonsingle-
valued mappings.

2. Two lemmas

Lemma 2.1. For any functionsx(-) < 8(-) < 1 and sequenc®; C P, C---C P, C ---
of a-paraconvex subsets of a Banach sp&cehe closure of the unio® = CI((J, P,) is
a B-paraconvex subset df.

Proof. It suffices to check thatp(-) < (). Suppose to the contrary, that for some 0
the inequality p (r) > a(r) holds. Then there exist an open bAllof radiusr and a point
g € conM P N D) such that disyy, P) > a(r) - r. We can assume then that digt P) >
a(r) - r for all pointsq’ from some sufficiently small neighborhoddl(¢, ¢) C D of the
pointg. If
g=) hiyi, ¥ePND. 3>0 ) r=1
i=1

then every poiny; € P N D can be represented as the limit of a seque{mﬁgjil of points
from the intersectioD N (U2 ; Pn)-
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For everyi € {1,2,...,m} one can find a point
o
Y e DN D, e)N (U P,,).
n=1

Let N = maxkay, ko, ..., k,} andqg’ = Zf":l)»iyf'. where coefficients.; are taken from
the above representation of the pajnas the convex combination. Then

PrCPC---C Py, q' € D(gq,&) Ncon Py N D)
and therefore
apy (r)-r >distq’, Py) >dist(g’, P) > a(r) - r
which contradicts with the inequalityp, (r) < a(r). O
Lemma 2.2. For any functionsx(-) < B8(-) < 1, the Cartesian product of any two-para-

convex subsets of Banach spadsand B; is a g-paraconvex subset of the Cartesian
productB; x By with respect to the norm

[ Gea, x2) || = max llxallz. llx2ll2}.

Proof. Pick an open ballD = D((xo, yo0), ) in the Banach spac8 = By x B2 which
intersects the Cartesian produtt= P; x P, of two a-paraconvex sets. Choose any points
(xi,yi)e PND,i=12,...,m, and consider their convex combination

m
g=> rCxi.y), *=0 Y x=L1
i=1

Denoteqy = > 1" 1 Ajx; andgz = Y /- ; A;y;. Due to the definition of the norm iB, we
have that ma¥|x; — xoll, |ly; — yoll} < r, foreveryi =1,2, ..., m. By definition of func-
tions of nonconvexity, one can find for every positiv@oints p; € P; and p € P, such
that

lgi — pill < dist(q;, ;) +e<ap(r)-r+e<a@)-r+e, ie{l 2}
Hence we can find for every> 0 a pointp = (p1, p2) € P such that
lg — pll=max{lig1 — pill, llgz — p2ll} <a(r) - r+e.

If ¢ — 0, then disty, P) < «a(r) - r. Passing to the supremum overglnd all open balls
of fixed radius-, we conclude thak p (r) < «(r) for all positiver. O

Note, thatin Lemmas 2.1 and 2.2 we can assume that all right upper limits of fugiction
are also less than 1. Hence Theorem 1.3 also applies to Cartesian products and to closures
of increasing sequences @fparaconvex sets.
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3. Proof of Theorem 1.4

We shall follow the usual strategy of the proof in which the inequality

v=mamipl )] < =miplmad s v}

implies a contradiction. But instead of a single one we shalltwseseparation numbers
betweerb anda. Recall thath anda exist andb < a, see the Introduction.

Suppose to the contrary thaét< d < ¢ < a. Define the multivalued mapping :
X x Y — X x Y by setting

F,y)={x"eX: f&",y)>c} x{yey: f(x,y)<d}
and let® : X x Y — X x Y be its pointwise closure:
®(x,y)=Cl(H(x,y)), (x;y)eXxY.

We claim that then:

(i) Theorem 1.3 applies to the mappid®, i.e. @ admits a single-valued continuous
selectionp: X xY - X x Y;
(ii) ¢ has a fixed pointxo, yo) € X x Y; and
(iii) the inequality ¢ < ¢(xo, yo0) < d holds, which contradicts our assumption that
d<c<a.

Let us verify (i)—(iii). First, note that (ii) holds becaugeis a continuous mapping of
the ARcompactumX x Y into itself. Second(xg, yo) € CI(F (xg, yo)) implies that

(xO’ y0) = Ilm (-xl’la yn)a (-xl’la Yn) € F(XO, y0)~
n—0o0

In other words, for each € N we have thatf (x,,, yo) > ¢ and f (xg, y,) < d. However,
the functionf : X x ¥ — R is upper semicontinuous with respect to the first coordinate
and is lower semicontinuous with respect to the second coordinate. Therefore, by passing
to the limit withn — oo, we obtain (iii):c < f(xo0, yo) < d.

So, it only remains to verify (i). Suppose th&tx, y) = @, for some(x, y) € X x Y and
to be certain, let the second factor Bfx), i.e. the sefy’ € Y: f(x,y’) < d} be empty.
Thenf(x,y") >dforall y' e Y and mif{ f(x,y): y' € Y} >d. Hence

b= m};’ax{myin{f(x, y)}} >d>b.

Contradiction. So all values df are indeed nonempty.
The assumptiongl) and(2) together with the equalities

Fx,y)={x"eX: f&",y)>c}x{y ey: f(x,y) <d}

:(U{x/eX: &',y >c+nl}>

neN

X (U{y’eY: f(x,y/)éd—nl})

neN
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show that the values df are Cartesian products of increasing sequencespzraconvex
sets. By applying Lemmas 2.1 and 2.2 we conclude that all valugs afe nonempty
B-paraconvex subsets &f x Y.

Therefore in order to complete the proof we must check that CI(F) is a LSC
mapping. It certainly suffices to show thAtis a LSC mapping. Checking this is a well-
known verification that all point preimages of the mappi@re open subsets &f x Y
and hence”~1(A) is open for everyA c X x Y:

F70, ) = {0, ) (e y) € FOYL )}
={x"eX: ' y) <d} x{y eY: f(x,y)>c}
However, the latter two factors are open subset’ andY, respectively, by upper semi-
continuity of £ (-, y) and lower semicontinuity of (x, -). This completes the proof.0

Clearly, in the proof of Theorem 1.4 we never used any specific (geometric or topo-
logical) property of paraconvex sets. We simply reduced the proof to Lemmas 2.1, 2.2,
selection Theorem 1.2 and to the fixed-point propertpBftompacta. This is why Theo-
rem 1.4 holds for arbitrary classes of subsets, provided that such classes satisfy hypothesis
of these lemmas and theorem.

4. Some generalizations

Here is an abstract version of Theorem 1.4. For a fa®ilgf nonempty sets denote by
244+ the family which consists of all unions of countable increasing (with respect to the
inclusion) sequences of elementss®f For a family 2 of subsets of a topological space
denote by Cl$2) the family of all closures of the elements &f

We also say that a family2 of nonempty closed subsets of a topological spade
selectionablen Y whenever for each paracompact spagesvery lower semicontinuous
mapping® : E — Y with values from¢2, admits a single-valued continuous selection. The
families of all nonempty convex closed subsets oraflaraconvex subsets of a Banach
spaces are typical examples of selectionable families.

Theorem 4.1. Let £2 and I be families of nonempty closed subsets of Fréchet spaces
and By, respectively, such that the famiBl(£2,4 x I';4) is selectionable irB1 x By. Let

f:X x Y — R be areal-valued function on the Cartesian product of two AR subcompacta
of B1 and By, respectively, and suppose that

(1) for eachc € R and eachyg € X, the set{y € Y: f(xp, y) < c}is anelementof’; and
(2) for eachd € R and eachyg € Y, the setf{x € X: f(x, yo) > d} is an element of?2.

Thenmaxy {miny { f (x, y)}} = miny {maxx { f (x, y)}}.
The proof of Theorem 4.1 repeats the proof of Theorem 1.4 above. We believe that

some other specific examples of families, satisfying the hypothesis of Theorem 4.1 can be
constructed.
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Finally, we present a generalization of another type of minimax theorems [8]: we sim-
ply replace the hypothesis “compact finite-dimensional ANR” on the second féadbgr
the assumption thal is compact and has thé-property. A space’ is said to have the
C-propertyif for any sequencéu,: n € N} of open coverings of there exists a sequence
{X,: n € N} of disjoint families of open sets iif such that each, refinesu, and the
union(J, A, is a covering ofY .

Every finite-dimensional paracompact and every countably-dimensional metric space
has theC-property. It is still an open problem whether (for the metric case) the class of
spaces withfC-property coincides with the class of all weakly infinite-dimensional spaces.

Theorem 4.2. Let X be an acyclic ANR spac#, a compact space witfy-property, and
f areal valued function oX x Y. Suppose that

b= i =mi :
sur ry‘glp{f(x, y)}}, a ryryp{feuf{f(x, y)}}
and that the following conditions are satisfied

(1) f is lower semicontinuous with respect to the second coordinate

(2) the set{(x; y): f(x;y) > b} is open

(3) for eachy €Y, the se{x € X: f(x;y) > b} is contractible or emptyand
(4) foreachx € X, thesefly e Y: f(x;y) <b}is acyclic.

Then the equality = b holds.

The proof of Theorem 4.2 repeats the argument used in the proof of McClendon’s the-
orem, as it was presented, for example, in [4, p. 332], and reduces the minimax theorem to
a statement concerning intersections of two subseXsiny .

However, in proving that statement we use a recent Uspenskii's selection theorem
[16]—he has established the existence of continuous selections for arbitrary open-graph
mapping with domain having thé-property and with all values infinitely connected. Un-
fortunately, it seems that this method does not work outside the classlomains because
the selection theorem [16] actually givestzaracterizatiorof the C-property of domains.
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