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Abstract—To each closed subset P of a Banach space, a real function αP characterizing
the nonconvexity of this set is associated. Inequalities of the type αP ( · ) < 1 ensure good
topological properties of the set P , such as contractibility, the property of being an extensor,
etc. In this paper, examples of sets whose nonconvexity functions substantially differ from the
nonconvexity functions of arbitrarily small neighborhoods of these sets are constructed. On the
other hand, it is shown that, in uniformly convex Banach spaces, conditions of the type “the
function of nonconvexity is less than one” are stable with respect to taking ε-neighborhoods
of sets.
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1. INTRODUCTION

Let P be a nonempty closed subset of a normed space B , and let D be an open ball of radius r
intersecting P . The number

δ(P , D) = sup

{
dist(q, P )

r

∣∣∣∣ q ∈ conv(P ∩D)

}

is a natural measure of the relative nonconvexity of the intersection of P with D .

Definition 1.1. (a) The function of nonconvexity αP ( · ) takes each number r > 0 to the supre-
mum of the set of all numbers δ(P , D) over all open balls D of radius r .

(b) A set P is called α-paraconvex if its function of nonconvexity does not exceed (pointwise)
a function α on (0,∞) .

(c) A set P is called α-paraconvex with fixed accuracy δ > 0, if its function of nonconvexity
does not exceed (pointwise) a function α on (δ,∞) .

For a constant function α , Definition 1.1(b) coincides with the definition of paraconvexity
suggested by Michael in [1]. Clearly, 0-paraconvexity is equivalent to convexity. Functional para-
convexity was considered in [2]; in explicit form, the functions of nonconvexity were introduced
in [3]. Definition 1.1(a) admits various modifications useful in particular situations. Replacing
open balls in this definitions by closed ones, we obtain the definition of closed functions of non-
convexity. Considering only the Chebyshev centers (or the Chebyshev center, if the norm in B is
uniformly convex) of the convex bounded set conv(P ∩D) rather than all points q ∈ conv(P ∩D) ,
we obtain the definition of the central function of nonconvexity. It is also natural to consider the
number

δ∗(P , K) = sup

{
dist(q, P )

r

∣∣∣∣ q ∈ conv K

}
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for every finite subset K ⊂ P of Chebyshev radius r and define the inner function of nonconvexity
of the set P , which takes a number r to the supremum of the set of all numbers δ∗(P , K) over
all finite sets K ⊂ P of Chebyshev radius r . The nonconvexity-type functions satisfy certain
relations; thus, if αinP is the inner function of nonconvexity of a set P and αclP is the closed
function of nonconvexity of this set, then

αP (r) ≤ αinP (r) ≤ αclP (r) = αP (r + 0)

for all r > 0. In particular, the functions of nonconvexity have right limits (and are in fact left
continuous).

Controlling the nonconvexity of a set actually reduces to controlling the behavior of certain
iterations of the nonconvexity function of this set. To control this behavior, we associate each
function α : (0,∞)→ [0,∞) to the “geometric progression of ratio α”

q0α(t) = t, q1α(t) = α(t) · t, qn+1α (t) = α(qnα(t)) · qnα(t).

The function α is extended to zero as α(0) = 0.

Definition 1.2. (a) A function α : (0,∞)→ [0,∞) is called geometrically summable if the func-
tional series

∑∞
n=0 q

n
α( · ) pointwise converges everywhere.

(b) A function α is less than one from the left (symbolically, α < 1−0) if it has a geometrically
summable strict majorant.

It is easy to see [2] that, if all right upper limits of a function α : (0,∞)→ [0,∞) are less than
one on the semiaxis [0,∞) , then α < 1−0 .

The problem of controllable rejection of convexity in selection theorems for set-valued maps
admits the following solution (see [4–8] for basic information about set-valued maps).

Theorem 1.3 [3, 9]. Let F : X → 2Y be a lower semicontinuous closed-valued map of a paracom-
pact space X to a Banach space Y . If

sup{αF (x) | x ∈ X} < 1−0 ,

then F has a continuous single-valued selection.

Therefore, if the function of nonconvexity of some set is less than one from the left, then this
set is topologically ideal in that it is an absolute extensor (and a local absolute extensor) for the
class of paracompact spaces. In particular, it is contractible and locally contractible.

In this paper, we examine the stability of similar properties of sets with respect to taking metric
neighborhoods of these sets. To be more precise, we consider the following question. Let the
nonconvexity function of some set P be less than one from the left. Are then the nonconvexity
functions of the ε-neighborhoods of this set also less than one from the left?

In this paper, we construct an example showing that in general the answer to this ques-
tion is negative (see Theorem 2.1): paraconvex sets may have arbitrarily small nonparaconvex
ε -neighborhoods even in a four-dimensional Banach space. However, in Banach spaces with suf-
ficiently smooth unit spheres, the answer is positive (see Theorem 2.3). On the other hand (see
Proposition 2.4), even in the Euclidean plane, there exists a curve such that the nonconvexity
functions of its ε-neighborhoods do not converge to the nonconvexity function of the curve itself
as ε → 0; thus the degree of nonconvexity of arbitrarily small neighborhoods of such a curve can
essentially differ from the degree of nonconvexity of the curve (and still be strictly less than one).
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THE NONCONVEXITY OF A SET AND OF ITS ε-NEIGHBORHOODS 223

2. STATEMENTS OF THE RESULTS

Theorem 2.1. The four-dimensional Banach space Y = l3∞ ⊕2 R with the norm

‖(x, y, z , t)‖ =
√

(max{|x|, |y|, |z|})2 + t2

has a one-dimensional q-paraconvex subset P with 0 ≤ q < 1 such that, for some sequence
of positive numbers εn → 0 , the nonconvexity functions αPn of the closed εn-neighborhoods
D(P , εn) = Pn of P are identically equal to one on some intervals (0, τn) ⊂ (0,∞) .

We stress that the equality to one is the “worst” possible case for functions of nonconvexity.
The proof of Theorem 2.1 is, roughly speaking, based on the observation that the Banach space
Y = l3∞ ⊕2 R contains many triples of noncollinear points for which the triangle equality is valid.
The main technical details are collected in the following proposition.

Proposition 2.2. In the Banach space Y = l3∞ ⊕2 R , there exists a straight line l ⊂ l3∞ with
the following property : for any positive numbers R and ε , the plane Π = l ⊕2 R contains a q-
paraconvex (0 ≤ q < 1) graph A ⊂ Π of a continuous function f : l → R such that the non-
convexity function αAε of the closed ε-neighborhood Aε of this graph equals one at the point R .
Moreover, a monotonically increasing function of the ratio R/ε can be taken for q (see Fig. 1).

Fig. 1

In Banach spaces with “good” norms, there are no examples with such peculiar geometric
properties.

Theorem 2.3. For any uniformly convex Banach space Y , any function α( · ) < 1−0 , and any
ε > 0 , there exists a function β( · ) < 1−0 such that the closed ε-neighborhood D(P , ε) of an
arbitrary α-paraconvex set P is β-paraconvex.

The following proposition occupies an intermediate position between Theorems 2.1 and 2.3. On
the one hand, it lies in the domain of applicability of Theorem 2.3. On the other hand, it shows that
the functions β = β(α, ε) whose existence is asserted by Theorem 2.3 cannot converge pointwise
to the function α as ε→ 0 even on the Euclidean plane. At the same time, the situation described
in Theorem 2.1 with β( · ) = 1 at some points cannot occur in this case.

Proposition 2.4. In the Euclidean plane, for an arbitrary 0 ≤ q < 1 , there exist a number
p ∈ (q, 1) , a q-paraconvex compact subset K , and a sequence of positive numbers εn → 0 such
that the neighborhoods D(K, εn) are not p-paraconvex.
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3. PROOF OF THEOREM 2.1

Derivation of Theorem 2.1 from Proposition 2.2. Let us take arbitrary numbers τ0 > 0,
τ ∈ (0, τ0) , R > 0, and ε > 0 such that R/ε = τ . By Proposition 2.2, there exists a q(τ)-
paraconvex set A = A(R, ε) ⊂ Π = l ⊕2 R which is the graph of some function f : l → R . Since
q( · ) is a monotone function of the ratio R/ε , the set A is q(τ0)-paraconvex for q(τ0) = q0 < 1;
at the same time,

αD(A,ε)(R) = 1.

Now, take a sequence εn → 0 and consider all rational numbers Rn,m ∈ (0, εn · τ0) , where
m ∈ N , for each εn . As above, we construct the sets An,m = A(Rn,m , εn) and arrange isometric
copies (parallel translations) of these sets in the Euclidean plane Π along the straight line l in
such a way that the endpoints of the arcs An,m lie on l “very far apart,” i.e., the distances
between neighboring copies are substantially larger than the sums of their diameters. We join all
neighboring copies by segments of l . The set P ⊂ Π thus obtained is the graph of some continuous
function.

Let us show that this set is q-paraconvex for some q ∈ (q0 , 1) . For this purpose, we apply the
inner function of nonconvexity. Let ∆ be an arbitrary simplex with vertices from P . Since P is
the graph of a continuous function, we can assume that ∆ is a straight line segment (see [3]). If its
endpoints belong to different copies, then the length of the segment ∆ is very large as compared to
the diameters of these copies. Therefore, the relative remoteness of the points of ∆ from the set P
is bounded from above by a small number. There remain only two cases: either the endpoints
of the segment ∆ lie in the same set An,m or one of its endpoints lies in An,m and the other
endpoint lies on the segment going away from an endpoint of the arc An,m . In the first case, the
distance from the points of ∆ to P is bounded by virtue of the q0-paraconvexity of the arc An,m .

In the second case, the relative remoteness does not exceed
√

2/2 (see [3]).
Now, consider the closed εn-neighborhood D(P , εn) = Pn of the set P . By construction, for

each rational Rn,m ∈ (0, τn) , where τn = εnτ0 , there exists a point θn,m whose distance from Pn
is Rn,m which is the center of some segment of length 2Rn,m with endpoints from Pn . Clearly, the
minimal distance from θn,m to the straight line l is attained at some point between the endpoints
of the arc An,m . Therefore, αPn(Rn,m) = 1 for all m ∈ N . The left continuity of the functions
of nonconvexity implies that the function of nonconvexity of the set Pn identically equals one on
the interval (0, τn) . �
Proof of Proposition 2.2. Take

a = (1, 0, 1, 0), b = (0, 1, 1, 0), c = (0, 0, 1, 0),

x = Ra + εb = (R, ε, R + ε, 0), y = −Ra− εc = (−R, 0, −R− ε, 0), l = span{x, y}.

We have ‖x‖ = R + ε = ‖y‖ and ‖x− y‖ = ‖(2R, ε, 2R + 2ε, 0)‖ = 2R + 2ε = ‖x‖+ ‖ − y‖ .
The norm of an arbitrary point z(t) = (1 − t)x + ty in the segment [x, y] can be evaluated

explicitly; it equals
‖z(t)‖ = max{ε(1− t), (R + ε)|1 − 2t|}.

The function ‖z(t)‖ attains its minimum at the point t0 = (R + 2ε)/(2R + 3ε) ; the minimum
value equals

‖z0‖ = ‖z(t0)‖ =
(R + ε)ε

2R + 3ε
.

Consider the Euclidean plane Π = l ⊕2 R ⊂ Y and the graph A of the function

f(z(t)) =
√

(R + ε)2 − ‖z(t)‖2 , f : [x, y]→ R
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THE NONCONVEXITY OF A SET AND OF ITS ε-NEIGHBORHOODS 225

on the segment [x, y] in this plane. The function f is unimodal; to be more precise, it increases
on [x, z(t0)] and decreases on [z(t0), y] .

Since the endpoints of [x, y] lie in A , the points ±Ra belong to the closed ε-neighborhood
D(A, ε) = Aε of the set A . Therefore, the origin θ lies in conv(Aε) . At the same time, by
construction, all points of the set Aε are precisely distance R + ε apart θ . Hence αAε(R) = 1,
and it only remains to verify the paraconvexity of the set A , which is the graph of a continuous
function on a line segment.

Unfortunately, this function is not Lipschitz, and we only have the estimate

|f(z(t1))− f(z(t2))|
‖z(t1)− z(t2)‖ =

∣∣‖z(t2)‖ − ‖z(t1)‖∣∣
‖z(t1)− z(t2)‖ · ‖z(t2)‖+ ‖z(t1)‖

f(z(t1)) + f(z(t2))
≤ 2(R + ε)

f(z(t1)) + f(z(t2))
.

The last fraction becomes infinite at the endpoints of the segment; so, we cannot directly apply
the technique developed in [2, 3].

Lemma 3.1. Suppose that, in the notation introduced above,

t0 =
R + 2ε

2R + 3ε
, f0 = f(z(t0)), p =

f0
R + ε

=

√
1−
(

ε

2R + 3ε

)2
,

λ is a number in the interval (1, p−1) , and µ is a number in the interval (0,
√
λ2 − 1/(pλ)) .

Then the graph of the function f (i.e., the set A ) is q-paraconvex for

q = max
{
pλ, sin(arctan(L′))

}
, where L′ = tan

arctan(L) + π/2

2
, L =

1

pµ

(see Fig. 2).

Fig. 2

Proof. Let us draw a horizontal line at the altitude µf0 . The function f takes the value µf0 at
precisely two points z1 < z2 on the segment [x, y] . Let us find the difference ‖z2 − z1‖ . We have

f(zi) = (R + ε)
√

1− (1 − 2ti)2 = µf0 = µ(R + ε)p,

(1− 2ti)
2 = 1− µ2p2 , |t2 − t1| =

√
1− µ2p2.

Therefore,

‖z2 − z1‖ = ‖(1 − t2)x + t2y − (1− t1)x− t1y‖ = |t2 − t1| · ‖x− y‖
= |t2 − t1| · 2(R + ε) = 2

√
1− µ2p2(R + ε).
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To estimate the degree of paraconvexity of the graph of an arbitrary continuous function, it is
sufficient to consider only straight line segments with endpoints on this graph [3]. Moreover, it
suffices to find an upper bound of only the distances from the midpoints of these segments to the
graph of the function. Indeed, for points close to the midpoint of a segment, the upper bound is
almost the same, and the points significantly different from the midpoint are close to the endpoints
of the segment, which lie on the graph. We also use the following simple geometric observation [3].
If the endpoints of a straight line segment of length 2r lie on the graph of a function Lipschitz
with constant K , then the midpoint of this segment is within distance sin(arctan(K)) · r from the
graph of the function.

Let us return to our function f : [x, y] → R . Take any segment with endpoints on the graph
of this function. For the projection of such a segment on the “horizontal” axis span{x, y} , the
following three cases are possible:

(a) the left endpoint belongs to [x, z1] and the right endpoint belongs to [z2 , y] ;
(b) the right endpoint belongs to [x, z2] ;
(c) the left endpoint belongs to [z1 , y] .

Case (a). The length of the segment is in this case no less than ‖z2 − z1‖ , and the distances
from the points of the segment to the graph of the function are no larger than f0 . Therefore,
in the case under consideration, the relative remoteness of the midpoint of this segment from the
graph of the function f is bounder from above by the ratio

2f0
‖z2 − z1‖ =

p√
1− µ2p2

< λp ;

the last inequality is implied by the choice of µ ∈ (0,
√
λ2 − 1/(pλ)) .

Case (b). First, note that we have already estimated the Lipschitz constant of the function f
restricted to the segment [z1 , z2] ; indeed, for any t′1 and t′2 from the segment [t1 , t1] , we have

|f(z(t′1))− f(z(t′2))|
‖z(t′1)− z(t′2)‖

≤ 2(R + ε)

f(z(t′1)) + f(z(t′2))
≤ 2(R + ε)

f(z1) + f(z2)
=

R + ε

µf0
=

1

µp
= L.

Take an arbitrary point M on the graph such that its horizontal projection lies on [x, z2] . First,
consider the left angle with vertex at this point formed by a vertical line directed downward and
a ray with negative slope equal to arctan(L) in absolute value. Certainly, this angle is less than
the straight angle. We claim that the graph of the function f on the left of M lies in this angle,
whose measure is

π

2
+ arctan(L) = 2(arctan(L) + γ), γ =

π/2− arctan(L)

2
.

For the points on the graph whose horizontal projections are larger than z1 , this assertion follows
from (a), and for the points of the interval [x, z1] , it holds because the function f increases on
this interval, and the graph on the left of its arbitrary point lies in the third quadrant.

To the right of the point M , the graph of f (up to the point z2) lies in the angle of measure
2 arctan(L) with vertex at M and horizontal bisector. Therefore, it lies in the right angle formed by
a vertical line directed upward and the continuation of the oblique ray constructed above. In other
words, we have constructed two angles symmetric about the point M , both of size 2(arctan(L)+γ) ,
such that their union contains the graph of the function f restricted to the interval [x, z2] .

Thus, in the coordinate system obtained by rotating the initial coordinate system counterclock-
wise through the angle γ , the fragment of the graph of f under consideration is the graph of a
function Lipschitz with constant

L′ = tan(arctan(L) + γ) = tan
arctan(L) + π/2

2
.
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Therefore, the relative remoteness of the midpoint of an arbitrary segment with endpoints
on the graph of the function f on the interval [x, z2] is bounded from above by the number
sin(arctan(L′)) .
Case (c) is considered similarly.
This completes the proof of the lemma. �

We continue the proof of Proposition 2.2. It remains to explicitly express the paraconvexity index q
of the set A in terms of R , ε , and τ = R/ε . By definition, we have

p =

√
1−
(

ε

2R + 3ε

)2
=

√
1−
(

1

2τ + 3

)2
.

Therefore, p = p(τ) monotonically increases from p(0) = 2
√

2/3 to p(∞) = 1. Next, according
to Lemma 3.1, we can assume that the function λ = λ(τ) is equal to (p+1)/(2p) and the function

µ = µ(τ) , to
√
λ2 − 1/(2pλ) . Then both λ and µ monotonically decrease, while

L =
1

µp
, L′ = tan

arctan(L) + π/2

2
, and λp =

p + 1

2

monotonically increase. Therefore, the upper bound q(τ) = q = max
{
λp, sin(arctan(L′))

}
of the

nonconvexity function of the set A can also be assumed monotonically increasing with respect to
the variable τ = R/ε . This completes the proof of Proposition 2.2 and Theorem 2.1. �

4. THE PROOFS OF THEOREM 2.3 AND PROPOSITION 2.4

We shall use the following lemma proved in [9] for the case of a Hilbert space. Roughly speaking,
this lemma asserts that the “altitudes” of a triangle are small if one of its sides is almost equal to
the sum of the two other sides. Recall that a Banach space Y is called uniformly convex if the
modulus of convexity of the unit sphere in this space is positive, i.e.,

0 < δ(ε) = inf

{
1−
∥∥∥∥x + y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
, ε ∈ (0, 2].

Lemma 4.1. Let (Y , ‖ · ‖) be a uniformly convex Banach space. Then, for any λ > 0 , there
exists a continuous function σλ : (0,∞) × (0,∞) → (0, 1) such that the relations ‖x − y‖ = a ,
‖y − z‖ = b , and ‖x − z‖ ≥ σλ(a, b) · a + b imply the inequality dist(z, span{x, y}) ≤ λb (see
Fig. 3).

Fig. 3
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Proof. Let ny and nz be the unit vectors whose directions coincide with those of y − x and
z − y , respectively. Then

y = x + any , z = y + bnz = x + any + bnz.

Let us take the point u = tx + (1 − t)y with t = −b/a on the straight line passing through x
and y and find the distance between z and u . We have

‖z − u‖ = ‖tz + (1− t)z − tx− (1− t)y‖ = ‖t(z − x) + (1− t)(z − y)‖
= ‖t(any + bnz) + (1− t)bnz‖ = b‖ny − nz‖.

Therefore, dist(z, span{x, y}) ≤ b‖ny − nz‖ . It remains to gain the inequality ‖ny − nz‖ ≤ λ or
δ(‖ny − nz‖) ≤ δ(λ) , where δ( · ) is the modulus of convexity of the unit sphere in the space Y .

First, consider the case a ≥ b . The crucial technical point (adding and subtracting bny) was
suggested to us by V. M. Kadets, to whom we express our thanks. We have

σλ(a, b)a + b ≤ ‖z − x‖ = ‖any + bnz + bny − bny‖ ≤ (a− b) + 2

∥∥∥∥ny + nz
2

∥∥∥∥
≤ (a− b) + 2b

(
1− δ(‖ny − nz‖)

)
= a + b− 2bδ(‖ny − nz‖).

Therefore,

δ(‖ny − nz‖) ≤ a

2b

(
1− σλ(a, b)

)
.

Thus, for the inequality δ(‖ny − nz‖) ≤ δ(λ) to hold, it suffices to ensure that

a

2b

(
1− σλ(a, b)

) ≤ δ(λ).

In other words, the formula

σλ(a, b) = max

{
0, 1− 2b

a
δ(λ)

}
gives the required result.

Now, let us show that we can put σ(a, b) = σ(a, a) for a < b . Consider the triangle with
vertices z , x , and y + anz . The length of its side [x, y + anz] is no less than the difference
between the lengths of the two other sides; hence

‖y + anz − x‖ ≥ ‖z − x‖ − (b− a)‖nz‖ ≥ σ(a, b)a + b− b + a = σ(a, a)a + a.

Therefore, the argument used in the preceding case applies to the triangle with vertices x , y ,
and y + anz ; thus the distance from the point y + anz to the straight line span{x, y} does not
exceed λ · a . Considering the homothety with factor b/a and center y , we see that the distance
from the point z to the straight line span{x, y} does not exceed λ · b . �

Note that, by virtue of the continuity of the modulus of convexity, the function σ constructed
above is also continuous with respect to λ .

Uniformly convex Banach spaces retain many geometric properties of Hilbert spaces. For in-
stance, the distance from a point to a convex closed set is attained at a unique point of this set.
In addition, a bounded subset of a uniformly convex Banach space has a unique Chebyshev cen-
ter [10]. We use yet another property of this kind: If the convex hull of an (n+ 1)-element set has
dimension n , and if this hull contains its Chebyshev center, then all distances from the Chebyshev
center to points of this set are equal to the Chebyshev radius of this set.

In the proof of Theorem 2.3, we estimate the inner function of nonconvexity of the set under
consideration rather than the nonconvexity function proper. In other words, we take finite subsets
of the given set, consider their Chebyshev centers, and estimate the remoteness of these centers
from the set itself in terms of a suitable real-valued function of the Chebyshev radii of these finite
sets.
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THE NONCONVEXITY OF A SET AND OF ITS ε-NEIGHBORHOODS 229

Proof of Theorem 2.3. Let P be a set whose nonconvexity function αP is majorized by a
function α < 1−0 on the half-line (0,∞) . Let us estimate the function of nonconvexity of the
set D(P , ε) = Q from above on this half-line. Take an arbitrary open ball Dr = D of radius r
intersecting the set Q .

Suppose that K = {y1 , . . . , yn} ⊂ D ∩ Q and y ∈ conv{y1 , . . . , yn} . We must estimate the
distance dist(y, Q) from above. To this end, we take points zi ∈ P ε-close to the corresponding
points yi . If some distance ‖yi−zi‖ is less than ε , then we take a point ui such that ‖yi−ui‖ = ε
on the interval [yi , zi) .

Consider the situation where y is the Chebyshev center of the polyhedron conv{y1 , . . . . . . , yn}
(it has a unique Chebyshev center, because the unit sphere in the space Y is uniformly convex).
If the dimension of the polyhedron conv{y1 , . . . , yn} is less than n− 1 or y lies on the boundary
of this polyhedron, then we can pass to a smaller number of points and argue by induction. Thus,
it is sufficient to consider the case where all the distances ‖y − yi‖ are equal to the same number,
namely, to the Chebyshev radius r of the polyhedron.

So we are given a function α < 1−0 and positive numbers r and ε . We put λ = 1−α(r + ε) ∈
(0, 1] and consider the function σλ( · , · ) whose existence is asserted by Lemma 4.1. Three are
three possible cases:

(a) σ(r, ε)r + ε < r and ‖y − ui‖ < σ(r, ε)r + ε for some i ;
(b) r ≤ σ(r, ε)r + ε and ‖y − ui‖ < σ(r, ε)r + ε for some i ;
(c) ‖y − ui‖ ≥ σ(r, ε)r + ε for all ui .

In case (a), one of the sides incident to the vertex y in the triangle ∆yyiui has length r and the
other is shorter. By uniform convexity, we have dist(y, P ) ≤ ‖y − zi‖ < r , and hence dist(y, Q)
vanishes if r ≤ ε and is less than r − ε if r > ε . As a result, we have

dist(y, Q)

r
≤ max

{
0, 1− ε

r

}

in this case.
In case (b), the consideration of the same triangle gives the estimate

dist(y, P ) ≤ ‖y − zi‖ < σ(r, ε)r + ε,

whence
dist(y, Q)

r
< σ(r, ε).

In case (c), Lemma 4.1 applies to each triangle ∆yyiui with λ = 1 − α(r + ε) ∈ (0, 1] . The
points ui and zi are then (λε)-close to the straight lines passing through y and yi , and the points
y′i at which the distance λε is attained are the endpoints of the segments [y, y′i] , which contain the
points yi . Therefore, y lies in the convex hull conv{y′1 , y′2 , . . . , y′n} of points which are (λε)-close
to the set P .

Therefore, the point y is (λε)-close to some point z of the polyhedron conv{z1 , . . . , zn} . By
assumption, the distance of such a point from the set P obeys the estimate

dist(z, P ) ≤ αP (r + ε) · (r + ε) < α(r + ε) · (r + ε).

Therefore,

dist(y, P ) < λε + α(r + ε) · (r + ε) = (1− α)(r + ε) · ε + α(r + ε) · (r + ε) = ε + α(r + ε) · r
by the choice of the parameter λ . Hence dist(y, Q)/r < α(r + ε) . As a result, we have

dist(y, Q)

r
< max

{
α(r + ε), σλ(r, ε), 1− ε

r
, 0

}
.
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The right-hand side of the last inequality gives the required upper bound β( · ) < 1−0 for
the central function of nonconvexity of the set Q . By Lemma 14 from [9], the usual function
of nonconvexity of this set also has a geometrically summable majorant depending only on the
majorant β( · ) found above and on the modulus of uniform convexity of the space Y . This
concludes the proof of Theorem 2.3. �
Proof of Proposition 2.4. For a given number 0 ≤ q < 1, we define the number p ∈ (q, 1) as
a solution to the equation √

1 + q2 − 1

p− q
= 2 · p− q/

√
1 + q2

1− p2
.

Both sides of this equation are continuous with respect to the variable p ∈ (q, 1) . At p = 1, the
left-hand side is finite and the right-hand side is infinite, and at p = q , vice versa. Therefore, the
interval (q, 1) indeed contains a solution of this equation.

For an arbitrary ε > 0, consider the points C± = (±R, 0) , where R is the product of ε by the
left-hand (= right-hand) side of the equation written above, in the Euclidean plane R2 . Let A±
be the points obtained from C± by the translation along the OX-axis by ±εq/√1 + q2 and the

lift along the OY -axis by 1/
√

1 + q2 , and let B± be the points obtained by lifting the points A±
along the OY -axis by q · x(A+) .

Consider the set Kε defined to be the polygonal line A−B−B+A+ . This set is q-paraconvex
by construction. In addition, the points C± are ε-close to the points A± ; therefore, the origin θ

lies in conv(D(Kε , ε)) . Clearly, the minimum distance between θ and the points of the set Kε is
attained at the endpoints A± of the set Kε and at the point B = (B−+B+)/2. But the numbers
R > 0 and p ∈ (q, 1) are chosen so that

dist(θ, A±) = dist(θ, B) = pR + ε.

Therefore, dist(θ, D(Kε , ε)) = pR , and the set D(Kε , ε) is not p-paraconvex, because the value
of its (closed) function of nonconvexity at the point R is precisely p .

Note that a similar effect occurs for the value of the nonconvexity function at the point λR
of the closed (λε)-neighborhood of a set homothetic to Kε with factor λ > 0. It remains to
take a convergent series of positive numbers λn , arrange λn-homothetic copies of Kε at suitable
distances apart on a fixed straight line, join them by segments of this line, and add one limit point.
The compact set K thus obtained is q-paraconvex, but, for each n ∈ N , the nonconvexity function
of its closed (λnε)-neighborhood takes a value p > q at the point λnR . This completes the proof
of Proposition 2.4. �

5. CONCLUSION

Examination of upper semicontinuous set-valued maps is usually reduced to the case of single-
valued maps by means of (graphic) approximations rather than selections. A single-valued map
f : X → Y of metric spaces is called an ε-approximation of a set-valued map F : X → 2Y if
the graph of f lies in the (ε × ε)-neighborhood of the graph of F . The approximability (i.e.,
the existence of ε-approximations for all ε > 0) of an upper semicontinuous closed-valued map
of a compact absolute extensor (= AE) X to itself ensures the existence of fixed points for this
map [4–7]. For an n-dimensional (possibly noncompact) space X , the approximability of an upper
semicontinuous compact-valued map F : X → Y is a corollary of the following purely topological
property of the values F (x) known as the UV n-property: for any neighborhood U of the set F (x) ,
there exists a smaller neighborhood V such that the identity embedding V ↪→ U is homotopically
trivial in dimension n . In full generality, this result has recently been obtained by Shchepin
and Brodskii [11], who used the ideas of [12, 13]. For an infinite-dimensional compact absolute
neighborhood extensor (=ANE) X , the approximability of a map F : X → X is ensured by the

MATHEMATICAL NOTES Vol. 70 No. 2 2001



THE NONCONVEXITY OF A SET AND OF ITS ε-NEIGHBORHOODS 231

UV (∞)-property of the values of F . This result is due to Granas, Gorniewicz, and Kryszewsky
[14]; Kryszewsky [15] generalized it to locally finite-dimensionally polyhedral spaces X . In the
case of an arbitrary infinite-dimensional domain X , the approximability problem has no purely
topological solution even for compact spaces X . The point is that the approximable cell-like
surjections of compact spaces do not increase the Lebesgue dimension [16], while general cell-like
surjections may increase it [17]. At the same time, adding the assumption that the map F is
convex-valued, we arrive immediately to a solution of this problem, even if we do not assume this
map to be compact-valued; this is the classical von Neumann–Cellina approximation theorem [6, 7].

Thus, in the search for a nonconvex-valued analog of the von Neumann–Cellina approximation
theorem for infinite-dimensional domains, the question about the correlation between the noncon-
vexity properties of a set and those of its ε-neighborhoods naturally arises. Theorem 2.3 shows
that the neighborhoods of paraconvex subsets of uniformly convex Banach spaces are topologically
trivial. In particular, such paraconvex sets are UV (∞)-subsets of the ambient space. As a con-
sequence, any upper semicontinuous α-paraconvex-valued map of a metric space to a uniformly
convex Banach space is approximable for α < 1−0 . We believe that this approximation result is
valid for any normed space.

To conclude, we mention several points about paraconvexity with given accuracy (see Defini-
tion 1.1(c) ). The property of being paraconvex is not stable with respect to the Hausdorff metric in
the exponent of a Banach space. Even small (with respect to the Hausdorff metric) deformations of
a paraconvex set may yield nonparaconvex and even topologically nontrivial sets. On the contrary,
paraconvexity with given accuracy is stable in this sense. The inequality Hausd(P , Q) < λ in
the statement of the following proposition means that the sets P and Q lie in each other’s λ-
neighborhoods.

Proposition 5.1. For every normed space Y and any numbers q ∈ [0, 1) , δ > 0 , and p ∈ (q, 1) ,
there exists a number λ ∈ (0, δ) such that, if P ⊂ Y is q-paraconvex with accuracy δ and
Hausd(P , Q) < λ , then Q is p-paraconvex with the same accuracy δ .

Finally, we state an analog of Theorem 2.3 for paraconvexity with given accuracy.

Theorem 5.2. For any uniformly convex Banach space Y , any function α( · ) < 1−0 , and any
positive numbers ε and δ , there exists a function β( · ) < 1−0 such that the closed ε-neighborhood
D(P , ε) of an arbitrary set P α-paraconvex with accuracy δ is β-paraconvex with accuracy δ .

The proof of Theorem 5.2 is a mere repetition of the proof of Theorem 2.3 with the only
alteration that all finite subsets under consideration must have Chebyshev radii larger than the
given accuracy δ .
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