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1 Introduction

The classical Hilbert 5th problem [14] asks whether every (�nite-dimensional)
locally Euclidean topological group is necessarily a Lie group. It was solved,
in the a�rmative, by von Neumann [23] for compact groups in 1933, and
by Gleason [11] and by Montgomery and Zippin [20] for locally compact
groups in 1952. A more general version of the Hilbert 5th problem, called the
Hilbert-Smith Conjecture, asserts that among all locally compact groups only
Lie groups G can act e�ectively on (�nite-dimensional) manifolds M (i.e. each
g ∈ G\{e} moves at least one point of M) [28]. It follows from the work of
Newman [24] and Smith [29] that this conjecture is equivalent to its special
case when the acting group G is the group of p-adic integers Ap.

In 1946 Bochner and Montgomery [3] proved the Hilbert-Smith Conjecture
for groups G acting e�ectively on a manifold M by di�eomorphisms. A sim-
pler, geometrical proof was obtained by Skopenkov and the authors [25] using
the idea of smooth homogeneity: a compact subset K ⊂ M of a smooth mani-
fold M is said to be smoothly ambiently homogeneous, i.e. for each x; y ∈ K
there exists a di�eomorphism h : (M;K; x)→ (M;K; y). It was shown that this
property implies that K is a smooth submanifold of M (therefore G ∼= K is a
Lie group). The proof reveals a close relationship between homogeneity and
taming theory for compact subsets of Rn, which are pinched by tangent
balls (the latter problem was investigated in the past by various authors
[6,10,12,16,17]). See also a very interesting paper by Hahn [13].
An interesting approach to the Hilbert-Smith conjecture is via wild Cantor

sets in Rn with strong homogeneity properties. Note that the Antoine necklace
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[1] is an ambiently homogeneous Cantor set in R3. For further examples of
this type see [5, 26, 27, 30]. However, neither one of these examples can be
extended to e�ective actions of Ap on Rn (see also [2, 8]).
Male�si�c proved in 1994 that the standard Cantor set in R2 is Lipschitz

ambient homogeneous. He also constructed Antoine’s necklace in R3 which
is also Lipschitz ambiently homogeneous [18]. Intersections of self-similar ob-
jects like those in Male�si�c’s construction are of fractal nature. This was our
motivation to apply the Hausdor� dimension to prove the Lipschitz case of the
Hilbert-Smith conjecture:

Theorem (1.1). The group of p-adic integers Ap (p any prime) cannot
act e�ectively by Lipschitz homeomorphisms on any (�nite-dimensional)
Riemannian manifold.

2 The proof of Theorem 1.1

Suppose, to the contrary, that for some prime p, the group G = Ap acted
e�ectively on some Riemannian n-manifold M, with a Riemannian metric �
on M, considered embedded in some Euclidean space Rk . Then the classical
Lebesgue (covering) dimension and the (fractal) Hausdor� dimension (with
respect to this metric �) of M agree: dimM = dim� M (cf. e.g. [9] and [22]).
Without losing generality we may assume M to be closed.
Suppose further, that the action is Lipschitz, i.e. that for every autohomeo-

morphism g ∈ G of M , there exists lg¿1 such that

1
lg
5
�(g(x); g(y))
�(x; y)

5 lg :

Apply now the Baire Category theorem to the following countable family of
closed sets (whose union is obviously the entire group G):

En =
{
g ∈ G

∣∣∣∣ 1n 5 �(g(x); g(y))
�(x; y)

5 n for every x-y ∈ M
}
:

We can conclude that there must exist L ¿ 1 and a nonempty open set N in G,
such that lg 5 L for each g ∈ N . Since the p-adic integers G = Ap are of
“fractal” nature, N will always contain a copy of the entire group Ap. So
without losing generality, we may assume that lg 5 L for each g ∈ G.

The above argument can actually be generalized (avoiding the use of the
fractal nature of the p-adic integers) to arbitrary compact groups G – by using
a �nite covering of G by the sets g1N; : : : ; gs N and by simply invoking the
obvious inequality lgh 5 lglh.

There is a Haar measure on the group G. We can thus de�ne an equivariant
metric �G on the manifold M as follows:

�G(x; y) =
∫
G
�(g(x); g(y))dg :
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Let p : M → M=G be the canonical projection onto the orbit space. Consider
the induced metric on M=G given by

�G(p(x); p(y)) = min
g∈G

{�G(x; g(y))} :

The key argument now follows from the following sequence of (in)equalities:

n = dimM =
(1)
dim� M =

(2)
dim�G M

=
(3)
dim�G (M=G)=

(4)
dim(M=G)=

(5)
dimZ(M=G) =

(6)
n+ 2 :

Here, (1) follows by our choice of the metric � above. Since the action
is by hypothesis Lipschitz, metrics � and �G are equivalent, and the equality
(2) follows. Since the projection p: M → M=G does not increase distance be-
tween points, the inequality (3) follows. The inequality (4) follows e.g. by [15,
Theorem 7.3], whereas (5) is a classical theorem of cohomological dimension
theory [7]. Finally, the equality (6) follows by a well-known theorem of Yang
[31] (see also [4]) since by hypothesis the action of G is e�ective and G = Ap.

3 Epilogue

Analogously to [25] one can prove that a locally compact Cn-smoothly ambi-
ently homogeneous subset of a Cn-manifold M is a Cn-submanifold of M . We
conjecture the following:

Conjecture (3.2). A locally compact; analytically ambiently homogeneous sub-
set of Cn (or analytic) n-manifold M is an analytic submanifold of M.

Added in proof. The authors wish to acknowledge comments from F. Raymond,
S. Illman, and the referee.
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