A classification of 3-thickenings of 2-polyhedra

Dušan Repovš ${ }^{\text {a,* }}$, Nikolaj B. Brodskij ${ }^{\text {b }}$, Arkadij B. Skopenkov ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia
${ }^{\mathrm{b}}$ Faculty of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia
Received 8 August 1997; received in revised form 20 January 1998

Abstract

We classify 3-thickenings (i.e., 3-dimensional regular neighborhoods) of a given 2-polyhedron P up to a homeomorphism rel P. The partial case of our theorem is that for some class of 2-polyhedra, containing fake surfaces, 3-thickenings of P are classified by the restriction of their first StiefelWhitney class to P. The corollary is that for every two homotopic embeddings of a polyhedron P from our class into interior of a 3-manifold M, the regular neighborhoods of their images are homeomorphic.

We also prove that a fake surface is embeddable into some orientable 3-manifold if and only if it does not contain a union of the Möbius band with an annulus (one of the boundary circles of the annulus attached to the middle circle of the Möbius band with a map of degree 1). © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Thickening; Regular neighborhood; Special 2-polyhedron; Orientation; Embedding of a graph into plane; Faithful embedding; Stiefel-Whitney class; Fake surface

AMS classification: 57M20; 57N10; 57M05; 57M15; 57Q35; 57Q40

1. Introduction

If an (orientable) n-manifold M is a regular neighborhood of a polyhedron $P \subset \operatorname{Int} M$, then the pair (M, P) is called an (orientable) n-thickening of P. Note that a 3-thickening of a 2 -surface is an I-bundle (possibly, twisted) over this surface. Thickenings of P are equivalent if they are PL homeomorphic, relatively to P. When the polyhedron P is fixed, we shall briefly denote its thickening (M, P) by M. The problems of existence, uniqueness, and classification of n-thickenings of polyhedra were investigated in [2-4,9-17,19,22,24], [6, Theorems 3.2.2, 3.2.3]. The notion of a thickening is analogous and closely related

[^0]

Fig. 1.
to that of a fibre bundle [9], [17, Section 4]. The main result of the present paper is the classification of 3-thickenings of 2-polyhedra. It generalizes [2], [10, p. 222] and the following well-known fact: Extensions of an I-bundle μ over a boundary ∂N of a compact surface N are in 1-1-correspondence with the elements $v \in H^{1}(N)$, such that (if $\partial N \neq \emptyset$) $\left.\nu\right|_{\partial N}=w_{1}(\mu)$.

Let us introduce some notations and definitions. Throughout this paper we shall work in the PL category; by [1] the same results hold in the topological category. In our notations we follow [18]. Denote by $R_{Y}(X)$ the regular neighborhood of a subpolyhedron X in a polyhedron Y. A link of a point of X is its link in some sufficiently small triangulation of X. A vertex of a graph is hanging if its degree is one. An edge of a graph is hanging if one of its endpoints is hanging. Denote by $\mathcal{T}^{n}(P)$ the set of all n-thickenings of P. We use (co)homologies with \mathbb{Z}_{2}-coefficients. For a 2-polyhedron P we shall denote by P^{\prime} its 1subpolyhedron, which is the set of points of P^{\prime} having no neighborhood homeomorphic to the 2 -disk. By $P^{\prime \prime}$ we shall denote the (finite) set of points of P^{\prime}, having no neighborhood homeomorphic to a book with n sheets for some $n \geqslant 1$. For any component of P^{\prime} containing no points of $P^{\prime \prime}$, take a point in it. Denote by F the union of $P^{\prime \prime}$ and these points. Then P^{\prime} is a graph whose vertices are either hanging or they are points of F. Let $H^{1}(P) \xrightarrow{i} H^{1}\left(P^{\prime}\right) \xrightarrow{\delta} H^{2}\left(P, P^{\prime}\right)$ be a fragment of the exact sequence of the pair $\left(P, P^{\prime}\right)$.

Let us begin with a special case and corollaries of our main Theorem 1.3. A 2polyhedron P is said to be a fake surface if each of its points has a neighborhood, homeomorphic to one of those in Fig. 1 [7]. A graph is called 3-connected if no two of its points split it into two graphs with more than one edge in each [20].

Corollary 1.1. Suppose that P is a 2 -polyhedron such that $1 \mathrm{lk} A$ is 3 -connected for each $A \in F$ (in particular, if P is fake surface). Then:
(a) (cf. [10, p. 292]) 3-thickenings of P are classified by the restrictions of their first Stiefel-Whitney classes to P : either $\mathcal{T}^{3}(P) \cong \emptyset$ or $\mathcal{T}^{3}(P) \cong \operatorname{Ker} i$.
(b) (cf. [2], [16, p. 419], [3, Proposition 5]) For each 3-manifold M and every two homotopic embeddings $P \rightarrow \operatorname{Int} M$, the regular neighborhoods of their images are homeomorphic.

Corollary 1.2 (cf. [24]). A fake surface is orientably 3-thickenable if and only if it does not contain a union of the Möbius band with an annulus (one of the boundary circles of the annulus attached to the middle circle of the Möbius band with a map of degree 1).

An example illustrating Corollary 1.2 is an embedding of the Klein bottle into some orientable 3-manifold. Indeed, let

$$
S^{1}=\{z \in \mathbb{C}| | z \mid=1\}
$$

Then the 3-manifold $S^{1} \times[-1,1] \times[0,1] /(z, t, 0) \sim(\bar{z},-t, 1)$ is orientable and contains the Klein bottle

$$
S^{1} \times\{0\} \times[0,1] /(z, 0,0) \sim(\bar{z}, 0,1)
$$

Another example of an orientable 3-thickening of nonorientable 2-manifold is the regular neighborhood of $R P^{2}$, standardly embedded into $R P^{3}$.
Now we shall formulate our Main Theorem 1.3. Suppose that $\bigcup_{A \in F} \mathrm{lk} A$ is embeddable into S^{2}. Take a collection of embeddings $\left\{g_{A}: \operatorname{lk} A \rightarrow S^{2}\right\}_{A \in F}$. Take a nonhanging edge $d \subset P^{\prime}$ and denote its vertices by A and B (possibly, $A=B$). The edge d meets $1 \mathrm{k} A \cup \mathrm{lk} B$ at two points (distinct, even when $A=B$). Regular neighborhoods U and V of these points in $1 \mathrm{k} A$ and in $\operatorname{lk} B$ are n-ods, which could be identified with the cone over $\operatorname{lk} d$. If for each such d the maps g_{A} and g_{B} give the same or the opposite orders of rotation of the pages of the book at d then the collection $\left\{g_{A}\right\}$ is called faithful. This definition differs from that of [13]. What they call 'faithful' we should call 'orientably faithful'. Two faithful collections of embeddings $\left\{f_{A}: \operatorname{lk} A \rightarrow S^{2}\right\}_{A \in F}$ and $\left\{g_{A}: \operatorname{lk} A \rightarrow S^{2}\right\}_{A \in F}$ into (nonoriented) spheres are said to be isopositioned, if there is a family of homeomorphisms $\left\{h_{A}: S^{2} \rightarrow S^{2}\right\}_{A \in F}$ such that $h_{A} \circ f_{A}=g_{A}$, for each $A \in F$. Evidently, isopositioned collections are faithful or not simultaneously. Denote by $E(P)$ the set of faithful collections up to isoposition.

Let us define e-invariant $e: \mathcal{T}^{3}(P) \rightarrow E(P)$. Suppose that M is a 3-thickening of P. Take any point $A \in F$ and consider its regular neighborhood $R_{M}(A)$. Since $\partial R_{M}(A)$ is a sphere, we have a collection of embeddings $1 \mathrm{k} A \rightarrow \partial R_{M}(A)$. Since for each edge d of P^{\prime}, $R_{P}(d)$ is embedded into M, this collection of embeddings is faithful. Let $e(M)$ be its class in $E(P)$. Equivalent thickening yield isopositioned collections of embeddings. Thus $e(M)$ is well-defined.

Let us construct a map $\beta: E(P) \rightarrow H^{1}\left(P^{\prime}\right)$. For each $\varepsilon \in E(P)$ take its representative $\left\{g_{A}: \operatorname{lk} A \rightarrow S^{2}\right\}_{A \in F}$. For each nonhanging edge d of P^{\prime}, recall the rotations (the same or the opposite) from the definition of faithful collection of embeddings. Let $\beta(\varepsilon)$ be the class of the cocycle

$$
b(d)= \begin{cases}0, & \text { the rotations are the opposite }, \\ 1, & \text { the rotations are the same } .\end{cases}
$$

For collections of embeddings, isopositioned via a family of homeomorphisms $\left\{h_{A}: S^{2} \rightarrow\right.$ $\left.S^{2}\right\}_{A \in \operatorname{lk} F}$ the cocycles b differ by a coboundary of a cochain $\varkappa \in C^{0}\left(P^{\prime}\right)$, defined by

$$
\varkappa(A)= \begin{cases}1, & \text { if } h_{A} \text { reverses orientation of } S^{2} \\ 0, & \text { if } h_{A} \text { preserves orientation of } S^{2}\end{cases}
$$

Thus $\beta(\varepsilon)$ is well-defined.
Theorem 1.3. Thickenings M_{1}, M_{2} of P are homeomorphic rel P if and only if $\left.w_{1}\left(M_{1}\right)\right|_{P}=\left.w_{1}\left(M_{2}\right)\right|_{P}$ and $e\left(M_{1}\right)=e\left(M_{2}\right)$. Moreover, $e \times\left. w_{1}\right|_{P}$ is $1-1$ correspondence between $\mathcal{T}^{3}(P)$ and $\left\{(\varepsilon, \omega) \in E(P) \times H^{1}(P)|\beta(\varepsilon)=\omega| P_{P^{\prime}}\right\}=\beta^{-1}(\operatorname{Im} i) \times \operatorname{Ker}(i)$.

The "only if" part in Theorem 1.3 is obvious, the "if" part and the "moreover" part follows from Lemmas 2.1-2.3 of Section 2. Note that $w_{1} \mid P$-invariant is a partial case of invariant $c_{n}: \mathcal{T}^{n}(P) \rightarrow K(P)$ [9], where K is a real K-functor.

The set of embeddings of a given graph into plane up to isoposition was described for 2 -connected graphs [23], and there is a simple (folklore) generalization of this description for arbitrary graphs $1 \mathrm{k} F$. Notice the similarity between the classification of 3-thickenings of 2-polyhedra and that of graph manifolds [21] and integrable Hamiltonian systems [5].

A polyhedron P is said to be (orientably) n-thickenable if it is embeddable into some (orientable) n-manifold. The criteria of (orientable) 3 -thickenability [12,19] can be restated as a special case of Theorem 1.3 (cf. [13, Theorem 3.2]): A 2-polyhedron P is (orientably) 3-thickenable if and only if there exists a faithful embedding $\varepsilon \in E(P)$ such that $(\beta(\varepsilon)=0)$ $\delta \beta(\varepsilon)=0$. For partial cases there are simpler criteria of 3-thickenability [10,13-15,24]. Our proof of Corollary 1.2 is based on the above restatement of [12,19]. We also construct a counterexample to the following conjectures, analogous to Corollary 1.2, which arose during a discussion with S.V. Matveev:

Conjecture 1.4.

(a) A fake surface is 3-thickenable if and only if it does not contain the union of the Möbius band and a 2 -surface with one boundary circle (the boundary circle is attached to the middle circle of the Möbius band with a map of degree 1).
(b) A special 2-polyhedron is 3-thickenable if and only if it does not contain the union of the Möbius band with a disk (the boundary circle of the disk attached to the middle circle of the Möbius band with a map of degree 1).

A fake surface P is called a special 2-polyhedron if $P \backslash P^{\prime}$ and $P^{\prime} \backslash P^{\prime \prime}$ are disjoint unions of open 2 - and 1 -cells, respectively.

2. Proofs

Lemma 2.1. If $e\left(M_{1}\right)=e\left(M_{2}\right)$ and $\left.w_{1}\left(M_{1}\right)\right|_{P}=\left.w_{1}\left(M_{2}\right)\right|_{P}$ then $M_{1} \cong M_{2}$ rel P.
Proof. The first two steps are analogous to [2,10], but we present them for completeness.

Construction of a homeomorphism $R_{M_{1}}(F) \cong R_{M_{2}}(F)$ rel P. Choose regular neighborhoods $R_{M_{1}}(F)$ and $R_{M_{2}}(F)$ such that $P \cap R_{M_{1}}(F)=P \cap R_{M_{2}}(F)$. Take a representative $\left\{g_{A}^{i}\right\}_{A \in F}$ of $e\left(M_{i}\right)$ described in the construction of e. Take autohomeomorphisms $\left\{h_{A}\right\}_{A \in F}$ rel lk A from the definition of isoposition between $\left\{g_{A}^{1}\right\}_{A \in F}$ and $\left\{g_{A}^{2}\right\}_{A \in F}$. Extend h_{A} canonically to a homeomorphism $h_{A}^{\prime \prime}: R_{M_{1}}(A) \rightarrow R_{M_{2}}(A)$. Since $P \cap R_{M_{1}}(A)$ is a cone over $1 \mathrm{k} A$ and h_{A} is the identity on $\operatorname{lk} A, h_{A}^{\prime \prime}$ is the identity on $P \cap R_{M_{1}}(A)$. Let $h^{\prime \prime}: P \cup R_{M_{1}}(F) \rightarrow P \cup R_{M_{2}}(F)$ be the extension of id ${ }_{P}$ to $P \cup R_{M_{1}}(F)$ by $\bigsqcup_{A \in F} h_{A}^{\prime \prime}$ on the set $R_{M_{1}}(F)$.

Construction of a homeomorphism $R_{M_{1}}\left(P^{\prime}\right) \cong R_{M_{2}}\left(P^{\prime}\right)$ rel P. We have that $N_{i}=$ $\partial R_{M_{i}}(F)$ is a disjoint union of 2 -spheres. For every edge $d \subset P^{\prime}$ choose a regular neighborhood $D_{d}^{1}=R_{N_{1}}\left(d \cap N_{1}\right)$. This is one or two disks in N_{1}. We can assume without loss of generality that if d and d^{\prime} are edges in P^{\prime}, then $D_{d}^{1} \cap D_{d^{\prime}}^{1}=\emptyset$. Denote $h_{0}\left(D_{d}^{1}\right)$ by D_{d}^{2}. Choose regular neighborhoods $R_{M_{1}}(d)$ and $R_{M_{2}}(d)$ such that $R_{M_{1}}(d) \cap N_{1}=D_{d}^{1}$ and $R_{M_{2}} \cap N_{2}=D_{d}^{2}$, and $R_{M_{1}}(d) \cap P=R_{P}(d)=R_{M_{2}}(d) \cap P$. Denote by T_{d} the closure of $R_{M_{1}}(d) \backslash R_{M_{1}}(F)$. Then T_{d} is homeomorphic to a cylinder $D^{2} \times I$ with one or two of its bases glued to $R_{M_{1}}(F)$. Obviously, we may assume that $T_{d} \cap T_{d^{\prime}}=\emptyset$ for any edges $d, d^{\prime} \subset P^{\prime}$. In T_{d} we have a cylinder $C_{d}=P \cap T_{d}$. For any component V of the set $T_{d} \backslash P$ the pair $\left(\mathrm{Cl}(V), \mathrm{Cl}\left(\partial V \backslash \partial R_{M_{1}}\left(P^{\prime}\right)\right)\right)$ is homeomorphic to the pair $\left(I^{2} \times I, I^{2} \times\{0\}\right)$. Hence we can extend $h^{\prime \prime}$ over V independently for each component V. In this way, we obtain a homeomorphism $h^{\prime}: P \cup R_{M_{1}}\left(P^{\prime}\right) \rightarrow P \cup R_{M_{2}}\left(P^{\prime}\right)$ which is the identity on P.

Construction of a homeomorphism $R_{M_{1}}(P) \cong R_{M_{2}}(P)$ rel P. Take a triangulation T of P and a cocycle $a \in Z^{1}(T)$, representing $\left.w_{1}\left(M_{1}\right)\right|_{P}=\left.w_{1}\left(M_{2}\right)\right|_{P}$. Let T^{\prime} and $T^{\prime \prime}$ be the 1 -skeleton and 0 -skeleton of T, respectively. Extend h^{\prime} 'along a ' to a homeomorphism

$$
R_{M_{1}}\left(T^{\prime}\right) \cong R_{M_{2}}\left(T^{\prime}\right) \operatorname{rel} R_{P}\left(T^{\prime}\right) .
$$

Then this new homeomorphism extends to that of $R_{M_{1}}(P) \cong R_{M_{2}}(P)$ rel P. Therefore our lemma follows from the uniqueness of regular neighborhoods.

More precisely, consider $M_{i}^{\prime \prime}=R_{M_{i}}\left(P^{\prime} \cup T^{\prime \prime}\right)$ such that $M_{1}^{\prime \prime} \cap P=M_{2}^{\prime \prime} \cap P$. Clearly, for $i \in\{1,2\}$ we can fix orientation in every connected component of $M_{i}^{\prime \prime}$ such that (1) h^{\prime} is orientation-preserving homeomorphism and (2) for any edge $d \subset T^{\prime} \backslash P^{\prime}$ going along d in M_{i} reverses orientation if $a(d)=1$ and preserves orientation if $a(d)=0$. Let $h_{0}: P \cup R_{M_{1}}\left(P^{\prime} \cup T^{\prime \prime}\right) \rightarrow P \cup R_{M_{2}}\left(P^{\prime} \cup T^{\prime \prime}\right)$ be an orientation-preserving extension of h^{\prime} to the balls $\left\{R_{M_{1}}(A)\right\}_{A \in T^{\prime \prime} \backslash P^{\prime}}$. Since going along the edge d reverses or preserves orientation simultaneously in M_{1} and M_{2}, we can apply the construction from the first and the second step and extend h_{0} to a homeomorphism $h_{1}: P \cup R_{M_{1}}\left(T^{\prime}\right) \rightarrow P \cup R_{M_{2}}\left(T^{\prime}\right)$ which is the identity on P.

Note that $\mathrm{Cl}\left(P \backslash R_{P}\left(T^{\prime}\right)\right)$ is a disjoint union of 2-disks. The regular neighborhood of $\mathrm{Cl}\left(P \backslash R_{P}\left(T^{\prime}\right)\right)$ in $\mathrm{Cl}\left(M_{i} \backslash\left(R_{M_{i}}\left(T^{\prime}\right)\right)\right.$ is a disjoint union of 3-balls. These 2-disks and 3balls are in one-to-one correspondence with the 2-simplices of T. Let D be one of these 2disks and B_{i} the corresponding 3-ball. Then $\left(B_{i} ; D, B_{i} \cap R_{M_{i}}\left(T^{\prime}\right)\right) \cong\left(D^{2} \times[-1,1] ; D^{2} \times\right.$ $\left.\{0\}, \partial D^{2} \times[-1,1]\right)$. Since the homeomorphism h_{1} is already defined on $D^{2} \times\{0\}$ and $\partial D^{2} \times[-1,1]$, we can extend it to a homeomorphism $B_{1} \rightarrow B_{2}$. By extending
h_{1} independently for each disk D of $\mathrm{Cl}\left(P \backslash R_{P}\left(T^{\prime}\right)\right)$, we obtain a homeomorphism $h: R_{M_{1}}(P) \rightarrow R_{M_{2}}(P)$ which is the identity on P.

Lemma 2.2. For every 3-thickening M of $P, \beta(e(M))=\left.w_{1}(M)\right|_{P^{\prime}}$.
Proof. It suffices to prove that for any $\gamma \in Z_{1}\left(P^{\prime}\right)$ carried by a simple closed curve J, $\langle\beta(e(M)), \gamma\rangle=\left\langle w_{1}(M), \gamma\right\rangle$. Indeed, suppose that J is formed by edges d_{1}, \ldots, d_{n} of the graph P^{\prime}. From the definition of the cocycle b it easily follows that if $\sum_{i=1}^{n} b\left(d_{i}\right)=1 \bmod 2$ then going around the curve J reverses orientation on M. Similarly, if $\sum_{i=1}^{n} b\left(d_{i}\right)=$ $0 \bmod 2$ then going around J does not change the orientation on M. It follows that if $\langle\beta(e(M)), \gamma\rangle=1$ then going around J reverses the orientation in the bundle $t^{-1}(J) \rightarrow$ J (where $t: T M \rightarrow M$ is the tangent bundle). Therefore by the definition of $w_{1}(M)$, $\left\langle w_{1}(M), \gamma\right\rangle=1$. If, however, $\langle\beta(e(M)), \gamma\rangle=0$ then going around J does not change the orientation in the bundle $t^{-1}(J) \rightarrow J$. In this case $\left\langle w_{1}(M), \gamma\right\rangle=0$. So $\langle\beta(e(M)), \gamma\rangle=$ $\left\langle w_{1}(M), \gamma\right\rangle$.

Lemma 2.3. For any $\varepsilon \in E(P), \omega \in H^{1}(P)$ such that $\beta(\varepsilon)=\left.\omega\right|_{P^{\prime}}$ there exists a thickening $M \in \mathcal{T}^{3}(P)$ such that $e(M)=\varepsilon$ and $\left.w_{1}(M)\right|_{P}=\omega$.

Proof. Take a triangulation T of P and a cocycle $a \in Z^{1}(T)$, representing ω. Let T^{\prime} and $T^{\prime \prime}$ be the 1 -skeleton and 0 -skeleton of T, respectively. Since $\left.\omega\right|_{P^{\prime}}=\beta(\varepsilon)$, using technique from [12] we can construct a 3-manifold M^{\prime} such that ($M^{\prime}, \partial M^{\prime}$) is a regular neighborhood of $\left(R_{P}\left(T^{\prime}\right), R_{P}\left(T^{\prime}\right) \cap \mathrm{Cl}\left(P \backslash R_{P}\left(T^{\prime}\right)\right)\right.$ and $e\left(M^{\prime}\right)=\varepsilon,\left.w_{1}\left(M^{\prime}\right)\right|_{T^{\prime}}=[a] \in$ $H^{1}\left(T^{\prime}\right)$. Since a is a cocycle, $\langle a, \partial \sigma\rangle=\langle\delta a, \sigma\rangle=0$ for any 2-simplex σ of T. Hence the regular neighborhood of a simple closed curve $\sigma \cap \partial M^{\prime}$ is an annulus (not Möbius band). Therefore M^{\prime} extends to a 3-thickening M of P. Clearly, $\left.w_{1}(M)\right|_{P}=\omega$ and $e(M)=e\left(M^{\prime}\right)=\varepsilon$.

Proof of Corollary 1.1. (a) Since $1 \mathrm{k} A$ is 3 -connected, there is at most one embedding $1 \mathrm{k} A \subset S^{2}[6$, Theorem 1.6.6]. Therefore $|E(P)| \leqslant 1$. Thus Conjecture 1.1(a) follows from Corollary 1.2.
(b) Let $h=g f^{-1}: f(P) \rightarrow g(P)$ be homeomorphism. Since f, g are homotopic, $h^{*}\left(\left.w_{1}(M)\right|_{g(P)}\right)=\left.w_{1}(M)\right|_{f(P)}$. Therefore Conjecture 1.1(b) follows from Conjecture 1.1(a).

Proof of Corollary 1.2. The "only if" part is obvious, so let us prove the "if" part. Since $1 \mathrm{k} A$ is planar and 3 -connected for each $A \in F$, there is a unique embedding $\mathrm{lk} A \subset S^{2}[6$, Theorem 1.6.6]. Since $|\mathrm{lk} d|=3$ for every edge $d \subset P^{\prime}$, this collection ε of embeddings is faithful. Thus $|E(P)|=1$. Below we prove that if P does not contain N then $\beta(E(P))=0$. Thus Corollary 1.2 follows from the above restatement of $[12,19]$.

Let T be a triod. Since $1 \mathrm{k} A$ is 3 -connected for each $A \in P^{\prime}$, it follows by Menger's theorem that for each two vertices B, C of $1 \mathrm{k} A$, whose degrees are more than 2 , there are three paths, joining B to C and intersecting only at B, C [20]. Because of this, for every simple closed curve $J \subset P^{\prime}$, there is a T-fibre bundle over J, embedded in P, where
'zero-section' is identified with J (cf. [24]). There are three types of such bundles. They are obtained from $T \times I$ by identifying $T \times\{0\}$ and $T \times\{1\}$ by autohomeomorphism of T, defined by either identity or 3-cycle or 2-cycle permutation of edges of T, respectively. If P does not contain N then for each J this bundle is of the first or the second type. It is easy to see that then $\beta(E(P))=0$.

Note that these considerations can be applied to prove a criterion for 3-thickenability of a wider class of 2-polyhedra.

Corollary 2.4 (cf. [10, p. 293], [8, Remark 1 on p. 310]). Suppose that P is a 2-polyhedron such that $1 \mathrm{k} A$ is 3 -connected for each $A \in P^{\prime \prime}$ (in particular, if either P is a fake surface or $\left.P^{\prime \prime}=\emptyset\right)$. Then P is (orientably) 3-thickenable if and only if the class $\beta(P)$ is defined (see below) and $(\beta(P)=0) \delta \beta(P)=0$.

We define $\beta(P)$ independently on connected components of P^{\prime}, containing at least one point of $P^{\prime \prime}$, and on those, containing no points of $P^{\prime \prime}$. If $1 \mathrm{k} A$ is not planar for some $A \in P^{\prime \prime}$, then $\beta(P)$ is undefined. Otherwise there is a unique collection of embeddings $\left\{\mathrm{lk} A \subset S^{2}\right\}_{A \in P^{\prime \prime}}[6$, Theorem 1.6.6]. If it is faithful, then it determines the restriction of $\beta(P)$ to those connected components of P^{\prime} that contain at least one point of $P^{\prime \prime}$ (see the introduction for definition). Otherwise $\beta(P)$ is undefined. Suppose that $J \subset P^{\prime}$ is a connected component of P^{\prime}, containing no points of $P^{\prime \prime}$ (then J is either arc or simple closed curve). Let us define $\langle\beta(P), J\rangle$ in case J is simple closed curve. Clearly, $R_{P}(J)$ is homeomorphic to a cylinder of a map of finite number of circles onto J. If degrees of the maps of these circles are the same, then put $\langle\beta(P), J\rangle=0$. If one or two circles have degree 1 and others have degree 2 , then put $\langle\beta(P), J\rangle=1$. If for some J none of these two cases hold, then $\beta(P)$ is undefined.

Construction of the counterexample to Conjectures 1.4(a) and 1.4(b). Let P^{\prime} be a graph with three vertices V_{1}, V_{2}, V_{3} and six edges: $e_{1}=\overrightarrow{V_{1} V_{2}}, e_{2}=\overrightarrow{V_{2} V_{3}}, e_{3}=\overrightarrow{V_{3} V_{1}}$ and loops e_{4}, e_{5}, e_{6} with basepoints V_{1}, V_{2}, V_{3}, respectively. Fix orientation on the loops e_{4}, e_{5} and e_{6}. Glue three 2 -disks to P^{\prime} along loops $e_{1} e_{5}^{-1} e_{2} e_{6}^{-1} e_{3} e_{4}^{-1}, e_{1} e_{2} e_{6}^{2} e_{3} e_{4}^{2}$ and $e_{1} e_{5}^{2} e_{2} e_{3}$. We obtain the polyhedron P. Since none of these disks is embedded in P, P does not contain polyhedra from Conjectures 1.4(a) and 1.4(b). Denote the first disk by D. We have that $\langle\delta \beta(P), D\rangle=\langle\beta(P), \partial D\rangle=1 \bmod 2$. Then nonthickenability of P follows from Corollary 2.4.

Acknowledgements

The first author was supported in part by the Ministry for Science and Technology of the Republic of Slovenia research grant No. J1-7039-0101-95. The second and the third author were supported in part by the Russian Fundamental Research grant No. 96-0101166A.

We wish to acknowledge A.T. Fomenko, S.V. Matveev, V.V. Šarko and M.A. Štan'ko for discussions and the referee for comments.

References

[1] R.H. Bing, The Geometric Topology of 3-Manifolds, Amer. Math. Soc. Colloq. Publ. 40 (Providence, RI, 1983).
[2] B.G. Casler, An embedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965) 559-556.
[3] A. Cavicchioli, Imbeddings of polyhedra in 3-manifolds, Ann. Mat. Pura Appl. 162 (1992) 157-177.
[4] A. Cavicchioli and F. Hegenbarth, Knot manifolds with isomorphic spines, Fund. Math. 145 (1994) 79-89.
[5] A.T. Fomenko and H. Zieschang, A topological invariant and a criterion for equivalence of integrable Hamiltonian systems with two degrees of freedom, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990) 546-575 (in Russian); English translation: Math. USSR-Izv. 36 (1991) 567-596.
[6] J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley-Interscience, New York, 1987).
[7] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971) 9-36.
[8] M. Kranjc, Embedding 2-complexes in \mathbb{R}^{4}, Pacific J. Math. 133 (1988) 301-313.
[9] W.B.R. Lickorish and L.C. Siebenmann, Regular neighborhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969) 207-230.
[10] S.V. Matveev, Special skeletons of PL manifolds, Mat. Sb. 92 (1973) 282-293 (in Russian).
[11] W.J.R. Mitchell, J.H. Przytycki and D. Repovš, On spines of knot spaces, Bull. Acad. Polon. Sci. 37 (1989) 563-565.
[12] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Phil. Soc. 64 (1968) 603-613.
[13] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds I, Amer. J. Math. 96 (1974) 454-471.
[14] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds II, Amer. J. Math. 234 (1977) 213-243.
[15] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds III, Amer. J. Math. 234 (1977) 245-251.
[16] D. Repovš, Regular neighborhoods of homotopically PL embedded compacta in 3-manifolds, Proc. Conf. Topol. Trieste, 1986, Suppl. Rend. Circ. Mat. Palermo 18 (1988) 415-422.
[17] C.P. Rourke and B.J. Sanderson, Block bundles I, Ann. of Math. (2) 87 (1968) 1-28.
[18] C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergebn. Math. 69 (Springer, Berlin, 1972).
[19] A.B. Skopenkov, A generalization of Neuwirth's theorem on thickenings of 2-dimensional polyhedra, Mat. Zametki 56 (2) (1994) 94-98 (in Russian); English translation: Math. Notes 58 (5) (1995) 1244-1248.
[20] W.P. Tutte, Graph Theory (Addison-Wesley, New York, 1984).
[21] F. Waldhausen, Eine Klasse von 3-dimensional Mannigfaltigkeiten I, Invent. Math. 3 (1967) 308-333.
[22] C.T.C. Wall, Classification problems in differential topology IV. Thickenings, Topology 5 (1966) 73-94.
[23] H. Whitney, Planar graphs, Fund. Math. 21 (1933) 73-84.
[24] P. Wright, Covering 2-dimensional polyhedra by 3-manifolds spines, Topology 16 (1977) 435439.

[^0]: * Corresponding author. E-mail: dusan.repovs@uni-lj.si.

