

Topology and its Applications 94 (1999) 307-314

www.elsevier.com/locate/topol

A classification of 3-thickenings of 2-polyhedra

Dušan Repovš^{a,*}, Nikolaj B. Brodskij^b, Arkadij B. Skopenkov^b

^a Institute for Mathematics, Physics and Mechanics, University of Ljubljana, P.O. Box 2964, 1001 Ljubljana, Slovenia

^b Faculty of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia Received 8 August 1997; received in revised form 20 January 1998

Abstract

We classify 3-thickenings (i.e., 3-dimensional regular neighborhoods) of a given 2-polyhedron P up to a homeomorphism rel P. The partial case of our theorem is that for some class of 2-polyhedra, containing fake surfaces, 3-thickenings of P are classified by the restriction of their first Stiefel–Whitney class to P. The corollary is that for every two homotopic embeddings of a polyhedron P from our class into interior of a 3-manifold M, the regular neighborhoods of their images are homeomorphic.

We also prove that a fake surface is embeddable into some orientable 3-manifold if and only if it does not contain a union of the Möbius band with an annulus (one of the boundary circles of the annulus attached to the middle circle of the Möbius band with a map of degree 1). © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Thickening; Regular neighborhood; Special 2-polyhedron; Orientation; Embedding of a graph into plane; Faithful embedding; Stiefel–Whitney class; Fake surface

AMS classification: 57M20; 57N10; 57M05; 57M15; 57Q35; 57Q40

1. Introduction

If an (orientable) *n*-manifold *M* is a regular neighborhood of a polyhedron $P \subset \text{Int } M$, then the pair (M, P) is called an (orientable) *n*-thickening of *P*. Note that a 3-thickening of a 2-surface is an *I*-bundle (possibly, twisted) over this surface. Thickenings of *P* are equivalent if they are PL homeomorphic, relatively to *P*. When the polyhedron *P* is fixed, we shall briefly denote its thickening (M, P) by *M*. The problems of existence, uniqueness, and classification of *n*-thickenings of polyhedra were investigated in [2–4,9–17,19,22,24], [6, Theorems 3.2.2, 3.2.3]. The notion of a thickening is analogous and closely related

^{*} Corresponding author. E-mail: dusan.repovs@uni-lj.si.

^{0166-8641/99/}\$ – see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0166-8641(98)00036-4

to that of a fibre bundle [9], [17, Section 4]. The main result of the present paper is the classification of 3-thickenings of 2-polyhedra. It generalizes [2], [10, p. 222] and the following well-known fact: *Extensions of an I-bundle* μ over a boundary ∂N of a compact surface N are in 1–1-correspondence with the elements $v \in H^1(N)$, such that (if $\partial N \neq \emptyset$) $v|_{\partial N} = w_1(\mu)$.

Let us introduce some notations and definitions. Throughout this paper we shall work in the PL category; by [1] the same results hold in the topological category. In our notations we follow [18]. Denote by $R_Y(X)$ the regular neighborhood of a subpolyhedron X in a polyhedron Y. A *link* of a point of X is its link in some sufficiently small triangulation of X. A vertex of a graph is *hanging* if its degree is one. An edge of a graph is *hanging* if one of its endpoints is hanging. Denote by $T^n(P)$ the set of all *n*-thickenings of P. We use (co)homologies with \mathbb{Z}_2 -coefficients. For a 2-polyhedron P we shall denote by P' its 1subpolyhedron, which is the set of points of P' having no neighborhood homeomorphic to the 2-disk. By P'' we shall denote the (finite) set of points of P', having no neighborhood homeomorphic to a book with n sheets for some $n \ge 1$. For any component of P' containing no points of P'', take a point in it. Denote by F the union of P'' and these points. Then P' is a graph whose vertices are either hanging or they are points of F. Let $H^1(P) \xrightarrow{i} H^1(P') \xrightarrow{\delta} H^2(P, P')$ be a fragment of the exact sequence of the pair (P, P').

Let us begin with a special case and corollaries of our main Theorem 1.3. A 2-polyhedron P is said to be a *fake surface* if each of its points has a neighborhood, homeomorphic to one of those in Fig. 1 [7]. A graph is called 3-*connected* if no two of its points split it into two graphs with more than one edge in each [20].

Corollary 1.1. Suppose that P is a 2-polyhedron such that lk A is 3-connected for each $A \in F$ (in particular, if P is fake surface). Then:

(a) (cf. [10, p. 292]) 3-thickenings of P are classified by the restrictions of their first Stiefel–Whitney classes to P: either $\mathcal{T}^3(P) \cong \emptyset$ or $\mathcal{T}^3(P) \cong \text{Ker } i$.

(b) (cf. [2], [16, p. 419], [3, Proposition 5]) For each 3-manifold M and every two homotopic embeddings P → Int M, the regular neighborhoods of their images are homeomorphic.

Corollary 1.2 (cf. [24]). A fake surface is orientably 3-thickenable if and only if it does not contain a union of the Möbius band with an annulus (one of the boundary circles of the annulus attached to the middle circle of the Möbius band with a map of degree 1).

An example illustrating Corollary 1.2 is an embedding of the Klein bottle into some *orientable* 3-manifold. Indeed, let

 $S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}.$

1

Then the 3-manifold $S^1 \times [-1, 1] \times [0, 1]/(z, t, 0) \sim (\overline{z}, -t, 1)$ is orientable and contains the Klein bottle

$$S^{1} \times \{0\} \times [0, 1]/(z, 0, 0) \sim (\overline{z}, 0, 1).$$

Another example of an orientable 3-thickening of nonorientable 2-manifold is the regular neighborhood of RP^2 , standardly embedded into RP^3 .

Now we shall formulate our Main Theorem 1.3. Suppose that $\bigcup_{A \in F} \mathbb{I} \mathbb{k} A$ is embeddable into S^2 . Take a collection of embeddings $\{g_A : \mathbb{k} A \to S^2\}_{A \in F}$. Take a nonhanging edge $d \subset P'$ and denote its vertices by A and B (possibly, A = B). The edge d meets $\mathbb{k} A \cup \mathbb{k} B$ at two points (distinct, even when A = B). Regular neighborhoods U and V of these points in $\mathbb{k} A$ and in $\mathbb{k} B$ are n-ods, which could be identified with the cone over $\mathbb{k} d$. If for each such d the maps g_A and g_B give the same or the opposite orders of rotation of the pages of the book at d then the collection $\{g_A\}$ is called *faithful*. This definition differs from that of [13]. What they call 'faithful' we should call 'orientably faithful'. Two faithful collections of embeddings $\{f_A : \mathbb{k} A \to S^2\}_{A \in F}$ and $\{g_A : \mathbb{k} A \to S^2\}_{A \in F}$ into (nonoriented) spheres are said to be *isopositioned*, if there is a family of homeomorphisms $\{h_A : S^2 \to S^2\}_{A \in F}$ such that $h_A \circ f_A = g_A$, for each $A \in F$. Evidently, isopositioned collections are faithful or not simultaneously. Denote by E(P) the set of faithful collections up to isoposition.

Let us define *e*-invariant $e: T^3(P) \to E(P)$. Suppose that *M* is a 3-thickening of *P*. Take any point $A \in F$ and consider its regular neighborhood $R_M(A)$. Since $\partial R_M(A)$ is a sphere, we have a collection of embeddings $\mathbb{Ik} A \to \partial R_M(A)$. Since for each edge *d* of *P'*, $R_P(d)$ is embedded into *M*, this collection of embeddings is faithful. Let e(M) be its class in E(P). Equivalent thickening yield isopositioned collections of embeddings. Thus e(M) is well-defined.

Let us construct a map $\beta : E(P) \to H^1(P')$. For each $\varepsilon \in E(P)$ take its representative $\{g_A : \text{lk } A \to S^2\}_{A \in F}$. For each nonhanging edge *d* of *P'*, recall the rotations (the same or the opposite) from the definition of faithful collection of embeddings. Let $\beta(\varepsilon)$ be the class of the cocycle

 $b(d) = \begin{cases} 0, & \text{the rotations are the opposite,} \\ 1, & \text{the rotations are the same.} \end{cases}$

For collections of embeddings, isopositioned via a family of homeomorphisms $\{h_A : S^2 \rightarrow S^2\}_{A \in lk F}$ the cocycles *b* differ by a coboundary of a cochain $\varkappa \in C^0(P')$, defined by

 $\varkappa(A) = \begin{cases} 1, & \text{if } h_A \text{ reverses orientation of } S^2, \\ 0, & \text{if } h_A \text{ preserves orientation of } S^2. \end{cases}$

Thus $\beta(\varepsilon)$ is well-defined.

Theorem 1.3. Thickenings M_1 , M_2 of P are homeomorphic rel P if and only if $w_1(M_1)|_P = w_1(M_2)|_P$ and $e(M_1) = e(M_2)$. Moreover, $e \times w_1|_P$ is 1–1 correspondence between $T^3(P)$ and $\{(\varepsilon, \omega) \in E(P) \times H^1(P) | \beta(\varepsilon) = \omega|_{P'}\} = \beta^{-1}(\operatorname{Im} i) \times \operatorname{Ker}(i)$.

The "only if" part in Theorem 1.3 is obvious, the "if" part and the "moreover" part follows from Lemmas 2.1–2.3 of Section 2. Note that $w_1|_P$ -invariant is a partial case of invariant $c_n: \mathcal{T}^n(P) \to K(P)$ [9], where K is a *real* K-functor.

The set of embeddings of a given graph into plane up to isoposition was described for 2-connected graphs [23], and there is a simple (folklore) generalization of this description for arbitrary graphs lk *F*. Notice the similarity between the classification of 3-thickenings of 2-polyhedra and that of graph manifolds [21] and integrable Hamiltonian systems [5].

A polyhedron *P* is said to be (orientably) *n*-thickenable if it is embeddable into some (orientable) *n*-manifold. The criteria of (orientable) 3-thickenability [12,19] can be restated as a special case of Theorem 1.3 (cf. [13, Theorem 3.2]): A 2-polyhedron *P* is (orientably) 3-thickenable if and only if there exists a faithful embedding $\varepsilon \in E(P)$ such that ($\beta(\varepsilon) = 0$) $\delta\beta(\varepsilon) = 0$. For partial cases there are simpler criteria of 3-thickenability [10,13–15,24]. Our proof of Corollary 1.2 is based on the above restatement of [12,19]. We also construct a counterexample to the following conjectures, analogous to Corollary 1.2, which arose during a discussion with S.V. Matveev:

Conjecture 1.4.

- (a) A fake surface is 3-thickenable if and only if it does not contain the union of the Möbius band and a 2-surface with one boundary circle (the boundary circle is attached to the middle circle of the Möbius band with a map of degree 1).
- (b) A special 2-polyhedron is 3-thickenable if and only if it does not contain the union of the Möbius band with a disk (the boundary circle of the disk attached to the middle circle of the Möbius band with a map of degree 1).

A fake surface *P* is called a *special 2-polyhedron* if $P \setminus P'$ and $P' \setminus P''$ are disjoint unions of open 2- and 1-cells, respectively.

2. Proofs

Lemma 2.1. If $e(M_1) = e(M_2)$ and $w_1(M_1)|_P = w_1(M_2)|_P$ then $M_1 \cong M_2$ rel P.

Proof. The first two steps are analogous to [2,10], but we present them for completeness.

Construction of a homeomorphism $R_{M_1}(F) \cong R_{M_2}(F)$ rel *P*. Choose regular neighborhoods $R_{M_1}(F)$ and $R_{M_2}(F)$ such that $P \cap R_{M_1}(F) = P \cap R_{M_2}(F)$. Take a representative $\{g_A^i\}_{A \in F}$ of $e(M_i)$ described in the construction of *e*. Take autohomeomorphisms $\{h_A\}_{A \in F}$ rel lk *A* from the definition of isoposition between $\{g_A^1\}_{A \in F}$ and $\{g_A^2\}_{A \in F}$. Extend h_A canonically to a homeomorphism $h''_A : R_{M_1}(A) \to R_{M_2}(A)$. Since $P \cap R_{M_1}(A)$ is a cone over lk *A* and h_A is the identity on lk *A*, h''_A is the identity on $P \cap R_{M_1}(A)$. Let $h'' : P \cup R_{M_1}(F) \to P \cup R_{M_2}(F)$ be the extension of id_P to $P \cup R_{M_1}(F)$ by $\bigsqcup_{A \in F} h''_A$ on the set $R_{M_1}(F)$.

Construction of a homeomorphism $R_{M_1}(P') \cong R_{M_2}(P')$ rel P. We have that $N_i = \partial R_{M_i}(F)$ is a disjoint union of 2-spheres. For every edge $d \subset P'$ choose a regular neighborhood $D_d^1 = R_{N_1}(d \cap N_1)$. This is one or two disks in N_1 . We can assume without loss of generality that if d and d' are edges in P', then $D_d^1 \cap D_{d'}^1 = \emptyset$. Denote $h_0(D_d^1)$ by D_d^2 . Choose regular neighborhoods $R_{M_1}(d)$ and $R_{M_2}(d)$ such that $R_{M_1}(d) \cap N_1 = D_d^1$ and $R_{M_2} \cap N_2 = D_d^2$, and $R_{M_1}(d) \cap P = R_P(d) = R_{M_2}(d) \cap P$. Denote by T_d the closure of $R_{M_1}(d) \setminus R_{M_1}(F)$. Then T_d is homeomorphic to a cylinder $D^2 \times I$ with one or two of its bases glued to $R_{M_1}(F)$. Obviously, we may assume that $T_d \cap T_{d'} = \emptyset$ for any edges $d, d' \subset P'$. In T_d we have a cylinder $C_d = P \cap T_d$. For any component V of the set $T_d \setminus P$ the pair (Cl(V), Cl($\partial V \setminus \partial R_{M_1}(P')$)) is homeomorphic to the pair ($I^2 \times I, I^2 \times \{0\}$). Hence we can extend h'' over V independently for each component V. In this way, we obtain a homeomorphism $h': P \cup R_{M_1}(P') \to P \cup R_{M_2}(P')$ which is the identity on P.

Construction of a homeomorphism $R_{M_1}(P) \cong R_{M_2}(P)$ rel *P*. Take a triangulation *T* of *P* and a cocycle $a \in Z^1(T)$, representing $w_1(M_1)|_P = w_1(M_2)|_P$. Let *T'* and *T''* be the 1-skeleton and 0-skeleton of *T*, respectively. Extend *h'* 'along *a*' to a homeomorphism

 $R_{M_1}(T') \cong R_{M_2}(T') \operatorname{rel} R_P(T').$

Then this new homeomorphism extends to that of $R_{M_1}(P) \cong R_{M_2}(P)$ rel *P*. Therefore our lemma follows from the uniqueness of regular neighborhoods.

More precisely, consider $M''_i = R_{M_i}(P' \cup T'')$ such that $M''_1 \cap P = M''_2 \cap P$. Clearly, for $i \in \{1, 2\}$ we can fix orientation in every connected component of M''_i such that (1) h' is orientation-preserving homeomorphism and (2) for any edge $d \subset T' \setminus P'$ going along d in M_i reverses orientation if a(d) = 1 and preserves orientation if a(d) = 0. Let $h_0: P \cup R_{M_1}(P' \cup T'') \rightarrow P \cup R_{M_2}(P' \cup T'')$ be an orientation-preserving extension of h' to the balls $\{R_{M_1}(A)\}_{A \in T'' \setminus P'}$. Since going along the edge d reverses or preserves orientation simultaneously in M_1 and M_2 , we can apply the construction from the first and the second step and extend h_0 to a homeomorphism $h_1: P \cup R_{M_1}(T') \rightarrow P \cup R_{M_2}(T')$ which is the identity on P.

Note that $\operatorname{Cl}(P \setminus R_P(T'))$ is a disjoint union of 2-disks. The regular neighborhood of $\operatorname{Cl}(P \setminus R_P(T'))$ in $\operatorname{Cl}(M_i \setminus (R_{M_i}(T')))$ is a disjoint union of 3-balls. These 2-disks and 3-balls are in one-to-one correspondence with the 2-simplices of T. Let D be one of these 2-disks and B_i the corresponding 3-ball. Then $(B_i; D, B_i \cap R_{M_i}(T')) \cong (D^2 \times [-1, 1]; D^2 \times \{0\}, \partial D^2 \times [-1, 1])$. Since the homeomorphism h_1 is already defined on $D^2 \times \{0\}$ and $\partial D^2 \times [-1, 1]$, we can extend it to a homeomorphism $B_1 \to B_2$. By extending

 h_1 independently for each disk D of $\operatorname{Cl}(P \setminus R_P(T'))$, we obtain a homeomorphism $h: R_{M_1}(P) \to R_{M_2}(P)$ which is the identity on P. \Box

Lemma 2.2. For every 3-thickening M of P, $\beta(e(M)) = w_1(M)|_{P'}$.

Proof. It suffices to prove that for any $\gamma \in Z_1(P')$ carried by a simple closed curve J, $\langle \beta(e(M)), \gamma \rangle = \langle w_1(M), \gamma \rangle$. Indeed, suppose that J is formed by edges d_1, \ldots, d_n of the graph P'. From the definition of the cocycle b it easily follows that if $\sum_{i=1}^n b(d_i) = 1 \mod 2$ then going around the curve J reverses orientation on M. Similarly, if $\sum_{i=1}^n b(d_i) = 0 \mod 2$ then going around J does not change the orientation on M. It follows that if $\langle \beta(e(M)), \gamma \rangle = 1$ then going around J reverses the orientation in the bundle $t^{-1}(J) \rightarrow J$ (where $t: TM \rightarrow M$ is the tangent bundle). Therefore by the definition of $w_1(M)$, $\langle w_1(M), \gamma \rangle = 1$. If, however, $\langle \beta(e(M)), \gamma \rangle = 0$ then going around J does not change the orientation in the bundle $t^{-1}(J) \rightarrow J$. In this case $\langle w_1(M), \gamma \rangle = 0$. So $\langle \beta(e(M)), \gamma \rangle = \langle w_1(M), \gamma \rangle$. \Box

Lemma 2.3. For any $\varepsilon \in E(P)$, $\omega \in H^1(P)$ such that $\beta(\varepsilon) = \omega|_{P'}$ there exists a thickening $M \in \mathcal{T}^3(P)$ such that $e(M) = \varepsilon$ and $w_1(M)|_P = \omega$.

Proof. Take a triangulation *T* of *P* and a cocycle $a \in Z^1(T)$, representing ω . Let *T'* and *T''* be the 1-skeleton and 0-skeleton of *T*, respectively. Since $\omega|_{P'} = \beta(\varepsilon)$, using technique from [12] we can construct a 3-manifold *M'* such that $(M', \partial M')$ is a regular neighborhood of $(R_P(T'), R_P(T') \cap \operatorname{Cl}(P \setminus R_P(T')))$ and $e(M') = \varepsilon$, $w_1(M')|_{T'} = [a] \in H^1(T')$. Since *a* is a cocycle, $\langle a, \partial \sigma \rangle = \langle \delta a, \sigma \rangle = 0$ for any 2-simplex σ of *T*. Hence the regular neighborhood of a simple closed curve $\sigma \cap \partial M'$ is an annulus (not Möbius band). Therefore *M'* extends to a 3-thickening *M* of *P*. Clearly, $w_1(M)|_P = \omega$ and $e(M) = e(M') = \varepsilon$. \Box

Proof of Corollary 1.1. (a) Since lk *A* is 3-connected, there is at most one embedding $lk A \subset S^2$ [6, Theorem 1.6.6]. Therefore $|E(P)| \leq 1$. Thus Conjecture 1.1(a) follows from Corollary 1.2.

(b) Let $h = gf^{-1} : f(P) \to g(P)$ be homeomorphism. Since f, g are homotopic, $h^*(w_1(M)|_{g(P)}) = w_1(M)|_{f(P)}$. Therefore Conjecture 1.1(b) follows from Conjecture 1.1(a). \Box

Proof of Corollary 1.2. The "only if" part is obvious, so let us prove the "if" part. Since |k A| is planar and 3-connected for each $A \in F$, there is a unique embedding $|k A \subset S^2|_6$, Theorem 1.6.6]. Since |k d| = 3 for every edge $d \subset P'$, this collection ε of embeddings is faithful. Thus |E(P)| = 1. Below we prove that if *P* does not contain *N* then $\beta(E(P)) = 0$. Thus Corollary 1.2 follows from the above restatement of [12,19].

Let *T* be a triod. Since lk A is 3-connected for each $A \in P'$, it follows by Menger's theorem that for each two vertices *B*, *C* of lk A, whose degrees are more than 2, there are three paths, joining *B* to *C* and intersecting only at *B*, *C* [20]. Because of this, for every simple closed curve $J \subset P'$, there is a *T*-fibre bundle over *J*, embedded in *P*, where

'zero-section' is identified with *J* (cf. [24]). There are three types of such bundles. They are obtained from $T \times I$ by identifying $T \times \{0\}$ and $T \times \{1\}$ by autohomeomorphism of *T*, defined by either identity or 3-cycle or 2-cycle permutation of edges of *T*, respectively. If *P* does not contain *N* then for each *J* this bundle is of the first or the second type. It is easy to see that then $\beta(E(P)) = 0$. \Box

Note that these considerations can be applied to prove a criterion for 3-thickenability of a wider class of 2-polyhedra.

Corollary 2.4 (cf. [10, p. 293], [8, Remark 1 on p. 310]). Suppose that *P* is a 2-polyhedron such that lk *A* is 3-connected for each $A \in P''$ (in particular, if either *P* is a fake surface or $P'' = \emptyset$). Then *P* is (orientably) 3-thickenable if and only if the class $\beta(P)$ is defined (see below) and $(\beta(P) = 0) \delta\beta(P) = 0$.

We define $\beta(P)$ independently on connected components of P', containing at least one point of P'', and on those, containing no points of P''. If lk *A* is not planar for some $A \in P''$, then $\beta(P)$ is undefined. Otherwise there is a unique collection of embeddings $\{lk A \subset S^2\}_{A \in P''}$ [6, Theorem 1.6.6]. If it is faithful, then it determines the restriction of $\beta(P)$ to those connected components of P' that contain at least one point of P'' (see the introduction for definition). Otherwise $\beta(P)$ is undefined. Suppose that $J \subset P'$ is a connected component of P', containing no points of P'' (then *J* is either arc or simple closed curve). Let us define $\langle \beta(P), J \rangle$ in case *J* is simple closed curve. Clearly, $R_P(J)$ is homeomorphic to a cylinder of a map of finite number of circles onto *J*. If degrees of the maps of these circles are the same, then put $\langle \beta(P), J \rangle = 0$. If one or two circles have degree 1 and others have degree 2, then put $\langle \beta(P), J \rangle = 1$. If for some *J* none of these two cases hold, then $\beta(P)$ is undefined.

Construction of the counterexample to Conjectures 1.4(a) and 1.4(b). Let P' be a graph with three vertices V_1 , V_2 , V_3 and six edges: $e_1 = \overrightarrow{V_1V_2}$, $e_2 = \overrightarrow{V_2V_3}$, $e_3 = \overrightarrow{V_3V_1}$ and loops e_4 , e_5 , e_6 with basepoints V_1 , V_2 , V_3 , respectively. Fix orientation on the loops e_4 , e_5 and e_6 . Glue three 2-disks to P' along loops $e_1e_5^{-1}e_2e_6^{-1}e_3e_4^{-1}$, $e_1e_2e_6^2e_3e_4^2$ and $e_1e_5^2e_2e_3$. We obtain the polyhedron P. Since none of these disks is embedded in P, P does not contain polyhedra from Conjectures 1.4(a) and 1.4(b). Denote the first disk by D. We have that $\langle \delta\beta(P), D \rangle = \langle \beta(P), \partial D \rangle = 1 \mod 2$. Then nonthickenability of P follows from Corollary 2.4. \Box

Acknowledgements

The first author was supported in part by the Ministry for Science and Technology of the Republic of Slovenia research grant No. J1-7039-0101-95. The second and the third author were supported in part by the Russian Fundamental Research grant No. 96-0101166A.

We wish to acknowledge A.T. Fomenko, S.V. Matveev, V.V. Šarko and M.A. Štan'ko for discussions and the referee for comments.

References

- R.H. Bing, The Geometric Topology of 3-Manifolds, Amer. Math. Soc. Colloq. Publ. 40 (Providence, RI, 1983).
- [2] B.G. Casler, An embedding theorem for connected 3-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965) 559–556.
- [3] A. Cavicchioli, Imbeddings of polyhedra in 3-manifolds, Ann. Mat. Pura Appl. 162 (1992) 157–177.
- [4] A. Cavicchioli and F. Hegenbarth, Knot manifolds with isomorphic spines, Fund. Math. 145 (1994) 79–89.
- [5] A.T. Fomenko and H. Zieschang, A topological invariant and a criterion for equivalence of integrable Hamiltonian systems with two degrees of freedom, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990) 546–575 (in Russian); English translation: Math. USSR-Izv. 36 (1991) 567–596.
- [6] J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley-Interscience, New York, 1987).
- [7] H. Ikeda, Acyclic fake surfaces, Topology 10 (1971) 9–36.
- [8] M. Kranjc, Embedding 2-complexes in \mathbb{R}^4 , Pacific J. Math. 133 (1988) 301–313.
- [9] W.B.R. Lickorish and L.C. Siebenmann, Regular neighborhoods and the stable range, Trans. Amer. Math. Soc. 139 (1969) 207–230.
- [10] S.V. Matveev, Special skeletons of PL manifolds, Mat. Sb. 92 (1973) 282–293 (in Russian).
- [11] W.J.R. Mitchell, J.H. Przytycki and D. Repovš, On spines of knot spaces, Bull. Acad. Polon. Sci. 37 (1989) 563–565.
- [12] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Phil. Soc. 64 (1968) 603–613.
- [13] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds I, Amer. J. Math. 96 (1974) 454–471.
- [14] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds II, Amer. J. Math. 234 (1977) 213–243.
- [15] R.P. Osborne and R.S. Stevens, Group presentations corresponding to spines of 3-manifolds III, Amer. J. Math. 234 (1977) 245–251.
- [16] D. Repovš, Regular neighborhoods of homotopically PL embedded compacta in 3-manifolds, Proc. Conf. Topol. Trieste, 1986, Suppl. Rend. Circ. Mat. Palermo 18 (1988) 415–422.
- [17] C.P. Rourke and B.J. Sanderson, Block bundles I, Ann. of Math. (2) 87 (1968) 1–28.
- [18] C.P. Rourke and B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergebn. Math. 69 (Springer, Berlin, 1972).
- [19] A.B. Skopenkov, A generalization of Neuwirth's theorem on thickenings of 2-dimensional polyhedra, Mat. Zametki 56 (2) (1994) 94–98 (in Russian); English translation: Math. Notes 58 (5) (1995) 1244–1248.
- [20] W.P. Tutte, Graph Theory (Addison-Wesley, New York, 1984).
- [21] F. Waldhausen, Eine Klasse von 3-dimensional Mannigfaltigkeiten I, Invent. Math. 3 (1967) 308–333.
- [22] C.T.C. Wall, Classification problems in differential topology IV. Thickenings, Topology 5 (1966) 73–94.
- [23] H. Whitney, Planar graphs, Fund. Math. 21 (1933) 73-84.
- [24] P. Wright, Covering 2-dimensional polyhedra by 3-manifolds spines, Topology 16 (1977) 435– 439.