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Abstract

We classify 3-thickenings (i.e., 3-dimensional regular neighborhoods) of a given 2-polyhRdron
up to a homeomorphism rél. The partial case of our theorem is that for some class of 2-polyhedra,
containing fake surfaces, 3-thickenings Bfare classified by the restriction of their first Stiefel-
Whitney class toP. The corollary is that for every two homotopic embeddings of a polyhedron
P from our class into interior of a 3-manifolgif, the regular neighborhoods of their images are
homeomorphic.

We also prove that a fake surface is embeddable into some orientable 3-manifold if and only if
it does not contain a union of the Mébius band with an annulus (one of the boundary circles of the
annulus attached to the middle circle of the Mébius band with a map of degreel@p9 Elsevier
Science B.V. All rights reserved.
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1. Introduction

If an (orientable)y:-manifold M is a regular neighborhood of a polyhedrBnC Int M,
then the paifM, P) is called an (orientable)-thickeningof P. Note that a 3-thickening
of a 2-surface is ati-bundle (possibly, twisted) over this surface. Thickening®ddre
equivalent if they are PL homeomaorphic, relativelyroWhen the polyhedrof is fixed,
we shall briefly denote its thickenin@/, P) by M. The problems of existence, uniqueness,
and classification af-thickenings of polyhedra were investigated in [2—4,9-17,19,22,24],
[6, Theorems 3.2.2, 3.2.3]. The notion of a thickening is analogous and closely related
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to that of a fibre bundle [9], [17, Section 4]. The main result of the present paper is
the classification of 3-thickenings of 2-polyhedra. It generalizes [2], [10, p. 222] and the
following well-known fact:Extensions of a-bundlex over a boundarg N of a compact
surfaceN are in 1-I-correspondence with the elements H1(N), such tha(if N # )

viagny = wi(w).

Let us introduce some notations and definitions. Throughout this paper we shall work in
the PL category; by [1] the same results hold in the topological category. In our notations
we follow [18]. Denote byRy (X) the regular neighborhood of a subpolyhedionn a
polyhedrony. A link of a point of X is its link in some sufficiently small triangulation of
X. A vertex of a graph i®iangingif its degree is one. An edge of a graphhiangingif
one of its endpoints is hanging. Denoteby(P) the set of alk-thickenings ofP. We use
(co)homologies withZ,-coefficients. For a 2-polyhedrah we shall denote by’ its 1-
subpolyhedron, which is the set of points®fhaving no neighborhood homeomorphic to
the 2-disk. ByP” we shall denote the (finite) set of points Bf, having no neighborhood
homeomorphic to a book witlk sheets for some: > 1. For any component of’
containing no points of?”, take a point in it. Denote by the union of P” and these
points. ThenP’ is a graph whose vertices are either hanging or they are poini of
Let HY(P) - HY(P) LN H2(P, P') be a fragment of the exact sequence of the pair
(P, P').

Let us begin with a special case and corollaries of our main Theorem 1.3. A 2-
polyhedronP is said to be aake surfaceif each of its points has a neighborhood,
homeomorphic to one of those in Fig. 1 [7]. A graph is calledoBnectedf no two of
its points split it into two graphs with more than one edge in each [20].

Fig. 1.

Corollary 1.1. Suppose thaP is a 2-polyhedron such thdk A is 3-connected for each
A € F (in particular, if P is fake surface Then
(a) (cf. [10, p. 292]) 2hickenings ofP are classified by the restrictions of their first
Stiefel-Whitney classes f either73(P) = ¢ or 73(P) = Keri.
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(b) (cf. [2], [16, p. 419], [3, Proposition 5]for each3-manifold M and every two
homotopic embedding® — Int M, the regular neighborhoods of their images are
homeomorphic.

Corollary 1.2 (cf. [24]). A fake surface is orientabl§-thickenable if and only if it does
not contain a union of the Mébius band with an annulmse of the boundary circles of the
annulus attached to the middle circle of the M6bius band with a map of déyree

An example illustrating Corollary 1.2 is an embedding of the Klein bottle into some
orientable3-manifold. Indeed, let

St={zeC||z|=1}.

Then the 3-manifold? x [—1, 1] x [0, 1]/(z,t,0) ~ (z, —t, 1) is orientable and contains
the Klein bottle

s x {0} x [0,1]/(z,0,0) ~ (Z,0, 1).

Another example of an orientable 3-thickening of nonorientable 2-manifold is the regular
neighborhood o P2, standardly embedded infoP3.

Now we shall formulate our Main Theorem 1.3. Supposelthat - [k A is embeddable
into S2. Take a collection of embeddings4 : |k A — 52} 4. Take a nonhanging edge
d C P’ and denote its vertices by and B (possibly,A = B). The edgel meets IkA Ulk B
at two points (distinct, even wheA = B). Regular neighborhoods and V of these
points in IkA and in IkB aren-ods, which could be identified with the cone overllk
If for each suchd the mapsg4 andgp give the same or the opposite orders of rotation
of the pages of the book at then the collectior{g4} is calledfaithful. This definition
differs from that of [13]. What they call ‘faithful’ we should call ‘orientably faithful'.
Two faithful collections of embeddindg : Ik A — 52} 4cr and{ga : Ik A — $2} 4cF into
(nonoriented) spheres are said tadgmpositionedif there is a family of homeomorphisms
{ha:8% — S%}4cr such thaths o f4 = ga, for eachA € F. Evidently, isopositioned
collections are faithful or not simultaneously. DenoteRyP) the set of faithful collections
up to isoposition.

Let us definee-invariante: 73(P) — E(P). Suppose thaM is a 3-thickening ofP.
Take any pointd € F and consider its regular neighborhoBgh (A). Sinced Ry (A) is a
sphere, we have a collection of embeddings e 9 Ry (A). Since for each edgéof P/,
Rp(d) is embedded intd4, this collection of embeddings is faithful. LetM) be its class
in E(P). Equivalent thickening yield isopositioned collections of embeddings. #n43
is well-defined.

Let us construct a map: E(P) — HY(P'). For eacte € E(P) take its representative
{ga:lk A — $2}4cr. For each nonhanging edgeof P’, recall the rotations (the same or
the opposite) from the definition of faithful collection of embeddings.A@? be the class
of the cocycle

0, the rotations are the opposite,

b(d) = .
@) { 1, the rotations are the same.
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For collections of embeddings, isopositioned via a family of homeomorpHisgnss? —
52} scik F the cocycles differ by a coboundary of a cochaine C%(P’), defined by

()| L if ha reverses orientation o,
0, if h4 preserves orientation oP.

Thuspg(¢) is well-defined.

Theorem 1.3. Thickenings M1, M»> of P are homeomorphicrel P if and only if
w1(M1)|p = wi(M2)|p ande(M1) = e(M2). Moreovere x w1|p is 1-1correspondence
betweer7 3(P) and{(e, w) € E(P) x HY(P) | B(¢) = w|p'} = B~1(Imi) x Ker(i).

The “only if” part in Theorem 1.3 is obvious, the “if” part and the “moreover” part
follows from Lemmas 2.1-2.3 of Section 2. Note that p-invariant is a partial case of
invariantc, : 7"(P) — K(P) [9], whereK is areal K-functor.

The set of embeddings of a given graph into plane up to isoposition was described for
2-connected graphs [23], and there is a simple (folklore) generalization of this description
for arbitrary graphs IiF'. Notice the similarity between the classification of 3-thickenings
of 2-polyhedra and that of graph manifolds [21] and integrable Hamiltonian systems [5].

A polyhedronP is said to be (orientably)-thickenablef it is embeddable into some
(orientable):-manifold. The criteria of (orientable) 3-thickenability [12,19] can be restated
as a special case of Theorem 1.3 (cf. [13, Theorem 3A2Z)polyhedronP is (orientably)
3-thickenable if and only if there exists a faithful embeddirgE (P) such tha{(s(e) = 0)
3B(e) = 0. For partial cases there are simpler criteria of 3-thickenability [10,13-15,24].
Our proof of Corollary 1.2 is based on the above restatement of [12,19]. We also construct
a counterexample to the following conjectures, analogous to Corollary 1.2, which arose
during a discussion with S.V. Matveev:

Conjecture 1.4.

(a) A fake surface ig-thickenable if and only if it does not contain the union of the
Mobius band and &-surface with one boundary circléhe boundary circle is
attached to the middle circle of the Mdbius band with a map of detjree

(b) A speciak-polyhedronis3-thickenable if and only if it does not contain the union of
the Md6bius band with a disfthe boundary circle of the disk attached to the middle
circle of the M6bius band with a map of degiEe

A fake surfaceP is called aspecial2-polyhedronif P\ P’ and P’ \ P” are disjoint
unions of open 2- and 1-cells, respectively.

2. Proofs
Lemma 2.1. If e(M1) = e(M>2) andw1(M1)|p = wi(M>2)|p thenM1 = Morel P.

Proof. The first two steps are analogous to [2,10], but we present them for completeness.
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Construction of a homeomorphisRy, (F) = Ry, (F) rel P. Choose regular neighbor-
hoodsRy, (F) and Ry, (F) such thatP N Ry, (F) = P N Ry, (F). Take a representa-
tive {g;}AeF of e(M;) described in the construction ef Take autohomeomorphisms
{ha}acr rel Ik A from the definition of isoposition betwedgl}scr and{g3}acr. Ex-
tend’ 4 canonically to a homeomorphishff : Ry, (A) — Ra,(A). SinceP N Ry, (A) is
a cone over lkd andh, is the identity on IkA, &'} is the identity onP N Ry, (A). Let
h":P U Ry, (F) — P URp,(F) be the extension of igto P U Ry, (F) by | |4 Ay On
the setRy, (F).

Construction of a homeomorphis®y, (P’) = Ru,(P’)relP. We have thaty; =
dRuy; (F) is a disjoint union of 2-spheres. For every edge- P’ choose a regular
neighborhood)t} = Ry, (d N Nyp). This is one or two disks itVy. We can assume without
loss of generality that il andd’ are edges irP’, thenD’} N D1, = ¢. Denoteho(DJ) by
Dﬁ. Choose regular neighborhooRgy, (d) andRyy, (d) such thatRy, (d) N Ny = Dj and
Ry, N N2 = D2, andRy,(d) N P = Rp(d) = Ru,(d) N P. Denote byT, the closure of
Ry, (d) \ Ry, (F). ThenTy is homeomorphic to a cylindeb? x I with one or two of
its bases glued t® ), (F). Obviously, we may assume th#& N 7T, = ¢ for any edges
d,d' c P'.In T; we have a cylinde€; = P N T,. For any componeni of the setl; \ P
the pair(CI(V), CI(dV \ 3 Ry, (P'))) is homeomorphic to the paif? x 1, I? x {0}). Hence
we can exten@” overV independently for each compone¥it In this way, we obtain a
homeomorphism’: P U Ry, (P') — P U Ry, (P’) which is the identity onP.

Construction of a homeomorphisRy, (P) = Ry, (P) rel P. Take a triangulatior” of
P and a cocycle: € Z1(T), representingu1(M1)|p = w1(M>)|p. Let T’ andT” be the
1-skeleton and 0-skeleton @f, respectively. Extendl’ ‘alonga’ to a homeomorphism

Ry (T") = Ry, (T rel Rp(T').

Then this new homeomorphism extends to thakgf (P) = Ry, (P) rel P. Therefore our
lemma follows from the uniqueness of regular neighborhoods.

More precisely, consided!;” = Ry, (P" U T") such thatM] N P = M; N P. Clearly,
for i € {1,2} we can fix orientation in every connected componentMjf such that
(1) #’ is orientation-preserving homeomorphism and (2) for any etlgeT’ \ P’ going
alongd in M; reverses orientation ti(d) = 1 and preserves orientationdfd) = 0. Let
ho: PURy, (P'UT") — PURM,(P'UT") be an orientation-preserving extensiork6fo
the balls{Ry, (A)} acr pr- Since going along the edgereverses or preserves orientation
simultaneously inv/1 andM», we can apply the construction from the first and the second
step and extenélp to a homeomorphismy: P U Ry, (T') — P U Ra, (T’) which is the
identity onP.

Note that C{P \ Rp(T")) is a disjoint union of 2-disks. The regular neighborhood of
CI(P \ Rp(T") in CI(M; \ (Rym; (T")) is a disjoint union of 3-balls. These 2-disks and 3-
balls are in one-to-one correspondence with the 2-simplic&s bét D be one of these 2-
disks andB; the corresponding 3-ball. Th&B;; D, B; N Ry, (T")) = (D? x [—1, 1]; D? x
{0}, 3D? x [—1,1]). Since the homeomorphisiiy is already defined orD? x {0}
and dD? x [—1,1], we can extend it to a homeomorphisBs — B. By extending
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h1 independently for each diskb of CI(P \ Rp(T')), we obtain a homeomorphism
h: Ry, (P) — Ruy,(P) which is the identity onP. O

Lemma 2.2. For every3-thickeningM of P, B(e(M)) = w1(M)|p:.

Proof. It suffices to prove that for any € Z1(P’) carried by a simple closed curve
(Ble(M)), y) = (w1(M), y). Indeed, suppose thdtis formed by edgeds, ..., d, of the
graphP’. From the definition of the cocycleit easily follows thatify_"_; 5(d;) = 1 mod 2
then going around the curvé reverses orientation of/. Similarly, if Y_7_; b(d;) =

0 mod 2 then going around does not change the orientation ah. It follows that if
(B(e(M)), y) = 1 then going around reverses the orientation in the bundie'(J) —

J (wheret:TM — M is the tangent bundle). Therefore by the definitionuaf(M),
(w1(M), y) = 1. If, however,(8(e(M)), y) = 0 then going around does not change the
orientation in the bundle=1(J) — J. In this casew1(M), y) = 0. S0 (B(e(M)), y) =
(wiM),y). O

Lemma 2.3. For any ¢ € E(P), w € HY(P) such thatB(s) = w|p: there exists a
thickeningM € 73(P) such thate(M) = ¢ andwi(M)|p = w.

Proof. Take a triangulatior?’ of P and a cocycle: € Z1(T), representingy. Let T’
and T” be the 1-skeleton and 0-skeleton Bf respectively. Sincev|p = B(¢), using
technique from [12] we can construct a 3-maniféld such that(M’, 9M’) is a regular
neighborhood of Rp(T”), Rp(T') NCI(P \ Rp(T")) ande(M') = ¢, wi(M')|7' =[a] €
HY(T"). Sincea is a cocycle,(a, o) = (Sa, o) = 0 for any 2-simplexs of T. Hence
the regular neighborhood of a simple closed cusve dM’ is an annulus (not Mobius
band). Therefore’ extends to a 3-thickening/ of P. Clearly, wi(M)|p = » and
eM)=e(M')=¢. O

Proof of Corollary 1.1. (a) Since IkA is 3-connected, there is at most one embedding
Ik A c 52 [6, Theorem 1.6.6]. Therefoll& (P)| < 1. Thus Conjecture 1.1(a) follows from
Corollary 1.2.

(b) Let h = gf~1: f(P) — g(P) be homeomorphism. Sincg, g are homotopic,
h*(w1(M)|g(py) = wi(M)|spy. Therefore Conjecture 1.1(b) follows from Conjecture
1.1(a). O

Proof of Corollary 1.2. The “only if” part is obvious, so let us prove the “if” part. Since
Ik A is planar and 3-connected for eaghe F, there is a unique embedding4kc S? [6,
Theorem 1.6.6]. Sincgk d| = 3 for every edge C P’, this collections of embeddings is
faithful. Thus|E (P)| = 1. Below we prove that i does not contaiv theng(E(P)) =0.
Thus Corollary 1.2 follows from the above restatement of [12,19].

Let T be a triod. Since I is 3-connected for eachA € P/, it follows by Menger’s
theorem that for each two verticés C of |k A, whose degrees are more than 2, there
are three paths, joining to C and intersecting only aB, C [20]. Because of this, for
every simple closed curve C P’, there is & -fibre bundle over, embedded i, where
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‘zero-section’ is identified with/ (cf. [24]). There are three types of such bundles. They
are obtained fronT x I by identifying7T x {0} andT x {1} by autohomeomorphism of
T, defined by either identity or 3-cycle or 2-cycle permutation of edgés, oéspectively.

If P does not contaiv then for eachy this bundle is of the first or the second type. Itis
easy to see that thes(E(P)) =0. O

Note that these considerations can be applied to prove a criterion for 3-thickenability of
a wider class of 2-polyhedra.

Corollary 2.4 (cf. [10, p. 293], [8, Remark 1 on p. 310Jpuppose thaP is a 2-poly-
hedron such thalk A is 3-connected for eaci € P” (in particular, if either P is a fake
surface orP” = (). ThenP is (orientably) 3-thickenable if and only if the clag(P) is
defined'see beloywand(8(P) =0)58(P) =0.

We define8(P) independently on connected component®afcontaining at least one
point of P”, and on those, containing no points Bf'. If Ik A is not planar for some
A € P”, thenB(P) is undefined. Otherwise there is a unique collection of embeddings
{Ik A C $%}4cpr [6, Theorem 1.6.6]. If it is faithful, then it determines the restriction of
B(P) to those connected components Bf that contain at least one point &’ (see
the introduction for definition). Otherwisg(P) is undefined. Suppose thdtc P’ is a
connected component @¥’, containing no points o’ (then J is either arc or simple
closed curve). Let us defing(P), J) in caseJ is simple closed curve. ClearlRp(J)
is homeomorphic to a cylinder of a map of finite number of circles ohttf degrees of
the maps of these circles are the same, therpe), J) = 0. If one or two circles have
degree 1 and others have degree 2, theripir), J) = 1. If for someJ none of these two
cases hold, theA(P) is undefined.

Construction of the counterexample to Conjecturea)and1.4(b) Let P’ be a graph
with three verticed/1, Vs, V3 and six edgesz1 = ViVs, ex = VaVs, e3 = VaVi and loops
eq4, es5, eg With basepointsVy, Vo, V3, respectively. Fix orientation on the loops, es
andes. Glue three 2-disks t@’ along loopseieg tepeg teze, t, ereseZesel andereZeses.
We obtain the polyhedro®. Since none of these disks is embedded’inP does not
contain polyhedra from Conjectures 1.4(a) and 1.4(b). Denote the first digh. bye
have tha{ég(P), D) = (B(P), D) =1 mod 2. Then nonthickenability at follows from
Corollary 2.4. O
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