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Abstract

We classify 3-thickenings (i.e., 3-dimensional regular neighborhoods) of a given 2-polyhedronP

up to a homeomorphism relP . The partial case of our theorem is that for some class of 2-polyhedra,
containing fake surfaces, 3-thickenings ofP are classified by the restriction of their first Stiefel–
Whitney class toP . The corollary is that for every two homotopic embeddings of a polyhedron
P from our class into interior of a 3-manifoldM, the regular neighborhoods of their images are
homeomorphic.

We also prove that a fake surface is embeddable into some orientable 3-manifold if and only if
it does not contain a union of the Möbius band with an annulus (one of the boundary circles of the
annulus attached to the middle circle of the Möbius band with a map of degree 1). 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

If an (orientable)n-manifoldM is a regular neighborhood of a polyhedronP ⊂ IntM,
then the pair(M,P) is called an (orientable)n-thickeningof P . Note that a 3-thickening
of a 2-surface is anI -bundle (possibly, twisted) over this surface. Thickenings ofP are
equivalent if they are PL homeomorphic, relatively toP . When the polyhedronP is fixed,
we shall briefly denote its thickening(M,P) byM. The problems of existence, uniqueness,
and classification ofn-thickenings of polyhedra were investigated in [2–4,9–17,19,22,24],
[6, Theorems 3.2.2, 3.2.3]. The notion of a thickening is analogous and closely related
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Fig. 1.

to that of a fibre bundle [9], [17, Section 4]. The main result of the present paper is
the classification of 3-thickenings of 2-polyhedra. It generalizes [2], [10, p. 222] and the
following well-known fact:Extensions of anI -bundleµ over a boundary∂N of a compact
surfaceN are in1–1-correspondence with the elementsν ∈H 1(N), such that(if ∂N 6= ∅)
ν|∂N =w1(µ).

Let us introduce some notations and definitions. Throughout this paper we shall work in
the PL category; by [1] the same results hold in the topological category. In our notations
we follow [18]. Denote byRY (X) the regular neighborhood of a subpolyhedronX in a
polyhedronY . A link of a point ofX is its link in some sufficiently small triangulation of
X. A vertex of a graph ishangingif its degree is one. An edge of a graph ishangingif
one of its endpoints is hanging. Denote byT n(P ) the set of alln-thickenings ofP . We use
(co)homologies withZ2-coefficients. For a 2-polyhedronP we shall denote byP ′ its 1-
subpolyhedron, which is the set of points ofP ′ having no neighborhood homeomorphic to
the 2-disk. ByP ′′ we shall denote the (finite) set of points ofP ′, having no neighborhood
homeomorphic to a book withn sheets for somen > 1. For any component ofP ′
containing no points ofP ′′, take a point in it. Denote byF the union ofP ′′ and these
points. ThenP ′ is a graph whose vertices are either hanging or they are points ofF .

Let H 1(P )
i−→H 1(P ′) δ−→ H 2(P,P ′) be a fragment of the exact sequence of the pair

(P,P ′).
Let us begin with a special case and corollaries of our main Theorem 1.3. A 2-

polyhedronP is said to be afake surfaceif each of its points has a neighborhood,
homeomorphic to one of those in Fig. 1 [7]. A graph is called 3-connectedif no two of
its points split it into two graphs with more than one edge in each [20].

Corollary 1.1. Suppose thatP is a 2-polyhedron such thatlkA is 3-connected for each
A ∈ F (in particular, if P is fake surface). Then:

(a) (cf. [10, p. 292]) 3-thickenings ofP are classified by the restrictions of their first
Stiefel–Whitney classes toP : eitherT 3(P )∼= ∅ or T 3(P )∼= Keri.
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(b) (cf. [2], [16, p. 419], [3, Proposition 5])For each3-manifoldM and every two
homotopic embeddingsP → IntM, the regular neighborhoods of their images are
homeomorphic.

Corollary 1.2 (cf. [24]). A fake surface is orientably3-thickenable if and only if it does
not contain a union of the Möbius band with an annulus(one of the boundary circles of the
annulus attached to the middle circle of the Möbius band with a map of degree1).

An example illustrating Corollary 1.2 is an embedding of the Klein bottle into some
orientable3-manifold. Indeed, let

S1= {z ∈C | |z| = 1}.
Then the 3-manifoldS1× [−1,1] × [0,1]/(z, t,0)∼ (z,−t,1) is orientable and contains
the Klein bottle

S1× {0} × [0,1]/(z,0,0)∼ (z,0,1).
Another example of an orientable 3-thickening of nonorientable 2-manifold is the regular
neighborhood ofRP 2, standardly embedded intoRP 3.

Now we shall formulate our Main Theorem 1.3. Suppose that
⋃
A∈F lkA is embeddable

into S2. Take a collection of embeddings{gA : lkA→ S2}A∈F . Take a nonhanging edge
d ⊂ P ′ and denote its vertices byA andB (possibly,A=B). The edged meets lkA∪ lkB
at two points (distinct, even whenA = B). Regular neighborhoodsU and V of these
points in lkA and in lkB aren-ods, which could be identified with the cone over lkd .
If for each suchd the mapsgA andgB give the same or the opposite orders of rotation
of the pages of the book atd then the collection{gA} is calledfaithful. This definition
differs from that of [13]. What they call ‘faithful’ we should call ‘orientably faithful’.
Two faithful collections of embeddings{fA : lkA→ S2}A∈F and{gA : lkA→ S2}A∈F into
(nonoriented) spheres are said to beisopositioned, if there is a family of homeomorphisms
{hA :S2→ S2}A∈F such thathA ◦ fA = gA, for eachA ∈ F . Evidently, isopositioned
collections are faithful or not simultaneously. Denote byE(P) the set of faithful collections
up to isoposition.

Let us definee-invariante :T 3(P )→ E(P). Suppose thatM is a 3-thickening ofP .
Take any pointA ∈ F and consider its regular neighborhoodRM(A). Since∂RM(A) is a
sphere, we have a collection of embeddings lkA→ ∂RM(A). Since for each edged of P ′,
RP (d) is embedded intoM, this collection of embeddings is faithful. Lete(M) be its class
in E(P). Equivalent thickening yield isopositioned collections of embeddings. Thuse(M)

is well-defined.
Let us construct a mapβ :E(P)→H 1(P ′). For eachε ∈ E(P) take its representative
{gA : lkA→ S2}A∈F . For each nonhanging edged of P ′, recall the rotations (the same or
the opposite) from the definition of faithful collection of embeddings. Letβ(ε) be the class
of the cocycle

b(d)=
{

0, the rotations are the opposite,
1, the rotations are the same.
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For collections of embeddings, isopositioned via a family of homeomorphisms{hA :S2→
S2}A∈lkF the cocyclesb differ by a coboundary of a cochain~ ∈C0(P ′), defined by

~(A)=
{

1, if hA reverses orientation ofS2,
0, if hA preserves orientation ofS2.

Thusβ(ε) is well-defined.

Theorem 1.3. ThickeningsM1, M2 of P are homeomorphicrelP if and only if
w1(M1)|P = w1(M2)|P ande(M1)= e(M2). Moreover,e ×w1|P is 1–1correspondence
betweenT 3(P ) and{(ε,ω) ∈E(P)×H 1(P ) | β(ε)= ω|P ′ } = β−1(Im i)×Ker(i).

The “only if” part in Theorem 1.3 is obvious, the “if” part and the “moreover” part
follows from Lemmas 2.1–2.3 of Section 2. Note thatw1|P -invariant is a partial case of
invariantcn :T n(P )→K(P) [9], whereK is arealK-functor.

The set of embeddings of a given graph into plane up to isoposition was described for
2-connected graphs [23], and there is a simple (folklore) generalization of this description
for arbitrary graphs lkF . Notice the similarity between the classification of 3-thickenings
of 2-polyhedra and that of graph manifolds [21] and integrable Hamiltonian systems [5].

A polyhedronP is said to be (orientably)n-thickenableif it is embeddable into some
(orientable)n-manifold. The criteria of (orientable) 3-thickenability [12,19] can be restated
as a special case of Theorem 1.3 (cf. [13, Theorem 3.2]):A 2-polyhedronP is (orientably)
3-thickenable if and only if there exists a faithful embeddingε ∈E(P) such that(β(ε)= 0)
δβ(ε) = 0. For partial cases there are simpler criteria of 3-thickenability [10,13–15,24].
Our proof of Corollary 1.2 is based on the above restatement of [12,19]. We also construct
a counterexample to the following conjectures, analogous to Corollary 1.2, which arose
during a discussion with S.V. Matveev:

Conjecture 1.4.
(a) A fake surface is3-thickenable if and only if it does not contain the union of the

Möbius band and a2-surface with one boundary circle(the boundary circle is
attached to the middle circle of the Möbius band with a map of degree1).

(b) A special2-polyhedron is3-thickenable if and only if it does not contain the union of
the Möbius band with a disk(the boundary circle of the disk attached to the middle
circle of the Möbius band with a map of degree1).

A fake surfaceP is called aspecial2-polyhedronif P \ P ′ andP ′ \ P ′′ are disjoint
unions of open 2- and 1-cells, respectively.

2. Proofs

Lemma 2.1. If e(M1)= e(M2) andw1(M1)|P =w1(M2)|P thenM1∼=M2 relP .

Proof. The first two steps are analogous to [2,10], but we present them for completeness.



D. Repovš et al. / Topology and its Applications 94 (1999) 307–314 311

Construction of a homeomorphismRM1(F )
∼= RM2(F ) relP . Choose regular neighbor-

hoodsRM1(F ) andRM2(F ) such thatP ∩ RM1(F ) = P ∩ RM2(F ). Take a representa-
tive {giA}A∈F of e(Mi) described in the construction ofe. Take autohomeomorphisms
{hA}A∈F rel lkA from the definition of isoposition between{g1

A}A∈F and{g2
A}A∈F . Ex-

tendhA canonically to a homeomorphismh′′A :RM1(A)→ RM2(A). SinceP ∩RM1(A) is
a cone over lkA andhA is the identity on lkA, h′′A is the identity onP ∩ RM1(A). Let
h′′ :P ∪RM1(F )→ P ∪RM2(F ) be the extension of idP to P ∪RM1(F ) by

⊔
A∈F h′′A on

the setRM1(F ).

Construction of a homeomorphismRM1(P
′) ∼= RM2(P

′) relP . We have thatNi =
∂RMi (F ) is a disjoint union of 2-spheres. For every edged ⊂ P ′ choose a regular
neighborhoodD1

d =RN1(d ∩N1). This is one or two disks inN1. We can assume without
loss of generality that ifd andd ′ are edges inP ′, thenD1

d ∩D1
d ′ = ∅. Denoteh0(D

1
d) by

D2
d . Choose regular neighborhoodsRM1(d) andRM2(d) such thatRM1(d)∩N1=D1

d and
RM2 ∩N2 =D2

d , andRM1(d) ∩ P = RP (d)= RM2(d) ∩ P . Denote byTd the closure of
RM1(d) \ RM1(F ). ThenTd is homeomorphic to a cylinderD2 × I with one or two of
its bases glued toRM1(F ). Obviously, we may assume thatTd ∩ Td ′ = ∅ for any edges
d,d ′ ⊂ P ′. In Td we have a cylinderCd = P ∩ Td . For any componentV of the setTd \P
the pair(Cl(V ),Cl(∂V \∂RM1(P

′))) is homeomorphic to the pair(I2×I, I2×{0}). Hence
we can extendh′′ overV independently for each componentV . In this way, we obtain a
homeomorphismh′ :P ∪RM1(P

′)→ P ∪RM2(P
′) which is the identity onP .

Construction of a homeomorphismRM1(P )
∼= RM2(P ) relP . Take a triangulationT of

P and a cocyclea ∈ Z1(T ), representingw1(M1)|P = w1(M2)|P . Let T ′ andT ′′ be the
1-skeleton and 0-skeleton ofT , respectively. Extendh′ ‘alonga’ to a homeomorphism

RM1(T
′)∼=RM2(T

′) relRP (T
′).

Then this new homeomorphism extends to that ofRM1(P )
∼= RM2(P ) relP . Therefore our

lemma follows from the uniqueness of regular neighborhoods.
More precisely, considerM ′′i = RMi (P

′ ∪ T ′′) such thatM ′′1 ∩ P =M ′′2 ∩ P . Clearly,
for i ∈ {1,2} we can fix orientation in every connected component ofM ′′i such that
(1) h′ is orientation-preserving homeomorphism and (2) for any edged ⊂ T ′ \ P ′ going
alongd in Mi reverses orientation ifa(d)= 1 and preserves orientation ifa(d)= 0. Let
h0 :P ∪RM1(P

′ ∪T ′′)→ P ∪RM2(P
′ ∪T ′′) be an orientation-preservingextension ofh′ to

the balls{RM1(A)}A∈T ′′\P ′ . Since going along the edged reverses or preserves orientation
simultaneously inM1 andM2, we can apply the construction from the first and the second
step and extendh0 to a homeomorphismh1 :P ∪ RM1(T

′)→ P ∪ RM2(T
′) which is the

identity onP .
Note that Cl(P \ RP (T ′)) is a disjoint union of 2-disks. The regular neighborhood of

Cl(P \ RP (T ′)) in Cl(Mi \ (RMi (T
′)) is a disjoint union of 3-balls. These 2-disks and 3-

balls are in one-to-one correspondence with the 2-simplices ofT . LetD be one of these 2-
disks andBi the corresponding 3-ball. Then(Bi;D,Bi ∩RMi (T

′))∼= (D2×[−1,1];D2×
{0}, ∂D2 × [−1,1]). Since the homeomorphismh1 is already defined onD2 × {0}
and ∂D2 × [−1,1], we can extend it to a homeomorphismB1 → B2. By extending
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h1 independently for each diskD of Cl(P \ RP (T ′)), we obtain a homeomorphism
h :RM1(P )→RM2(P ) which is the identity onP . 2
Lemma 2.2. For every3-thickeningM of P , β(e(M))=w1(M)|P ′ .

Proof. It suffices to prove that for anyγ ∈ Z1(P
′) carried by a simple closed curveJ ,

〈β(e(M)), γ 〉 = 〈w1(M),γ 〉. Indeed, suppose thatJ is formed by edgesd1, . . . , dn of the
graphP ′. From the definition of the cocycleb it easily follows that if

∑n
i=1 b(di)= 1 mod 2

then going around the curveJ reverses orientation onM. Similarly, if
∑n
i=1b(di) =

0 mod 2 then going aroundJ does not change the orientation onM. It follows that if
〈β(e(M)), γ 〉 = 1 then going aroundJ reverses the orientation in the bundlet−1(J )→
J (where t :TM → M is the tangent bundle). Therefore by the definition ofw1(M),
〈w1(M),γ 〉 = 1. If, however,〈β(e(M)), γ 〉 = 0 then going aroundJ does not change the
orientation in the bundlet−1(J )→ J . In this case〈w1(M),γ 〉 = 0. So〈β(e(M)), γ 〉 =
〈w1(M),γ 〉. 2
Lemma 2.3. For any ε ∈ E(P), ω ∈ H 1(P ) such thatβ(ε) = ω|P ′ there exists a
thickeningM ∈ T 3(P ) such thate(M)= ε andw1(M)|P = ω.

Proof. Take a triangulationT of P and a cocyclea ∈ Z1(T ), representingω. Let T ′
and T ′′ be the 1-skeleton and 0-skeleton ofT , respectively. Sinceω|P ′ = β(ε), using
technique from [12] we can construct a 3-manifoldM ′ such that(M ′, ∂M ′) is a regular
neighborhood of(RP (T ′),RP (T ′) ∩ Cl(P \ RP (T ′)) ande(M ′) = ε, w1(M

′)|T ′ = [a] ∈
H 1(T ′). Sincea is a cocycle,〈a, ∂σ 〉 = 〈δa,σ 〉 = 0 for any 2-simplexσ of T . Hence
the regular neighborhood of a simple closed curveσ ∩ ∂M ′ is an annulus (not Möbius
band). ThereforeM ′ extends to a 3-thickeningM of P . Clearly, w1(M)|P = ω and
e(M)= e(M ′)= ε. 2
Proof of Corollary 1.1. (a) Since lkA is 3-connected, there is at most one embedding
lkA⊂ S2 [6, Theorem 1.6.6]. Therefore|E(P)|6 1. Thus Conjecture 1.1(a) follows from
Corollary 1.2.

(b) Let h = gf−1 :f (P) → g(P ) be homeomorphism. Sincef,g are homotopic,
h∗(w1(M)|g(P )) = w1(M)|f (P ). Therefore Conjecture 1.1(b) follows from Conjecture
1.1(a). 2
Proof of Corollary 1.2. The “only if” part is obvious, so let us prove the “if” part. Since
lkA is planar and 3-connected for eachA ∈ F , there is a unique embedding lkA⊂ S2 [6,
Theorem 1.6.6]. Since| lk d| = 3 for every edged ⊂ P ′, this collectionε of embeddings is
faithful. Thus|E(P)| = 1. Below we prove that ifP does not containN thenβ(E(P))= 0.
Thus Corollary 1.2 follows from the above restatement of [12,19].

Let T be a triod. Since lkA is 3-connected for eachA ∈ P ′, it follows by Menger’s
theorem that for each two verticesB, C of lkA, whose degrees are more than 2, there
are three paths, joiningB to C and intersecting only atB, C [20]. Because of this, for
every simple closed curveJ ⊂ P ′, there is aT -fibre bundle overJ , embedded inP , where
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‘zero-section’ is identified withJ (cf. [24]). There are three types of such bundles. They
are obtained fromT × I by identifyingT × {0} andT × {1} by autohomeomorphism of
T , defined by either identity or 3-cycle or 2-cycle permutation of edges ofT , respectively.
If P does not containN then for eachJ this bundle is of the first or the second type. It is
easy to see that thenβ(E(P))= 0. 2

Note that these considerations can be applied to prove a criterion for 3-thickenability of
a wider class of 2-polyhedra.

Corollary 2.4 (cf. [10, p. 293], [8, Remark 1 on p. 310]).Suppose thatP is a 2-poly-
hedron such thatlkA is 3-connected for eachA ∈ P ′′ (in particular, if eitherP is a fake
surface orP ′′ = ∅). ThenP is (orientably) 3-thickenable if and only if the classβ(P) is
defined(see below) and(β(P)= 0) δβ(P )= 0.

We defineβ(P) independently on connected components ofP ′, containing at least one
point of P ′′, and on those, containing no points ofP ′′. If lk A is not planar for some
A ∈ P ′′, thenβ(P) is undefined. Otherwise there is a unique collection of embeddings
{lkA ⊂ S2}A∈P ′′ [6, Theorem 1.6.6]. If it is faithful, then it determines the restriction of
β(P) to those connected components ofP ′ that contain at least one point ofP ′′ (see
the introduction for definition). Otherwiseβ(P) is undefined. Suppose thatJ ⊂ P ′ is a
connected component ofP ′, containing no points ofP ′′ (thenJ is either arc or simple
closed curve). Let us define〈β(P),J 〉 in caseJ is simple closed curve. Clearly,RP (J )
is homeomorphic to a cylinder of a map of finite number of circles ontoJ . If degrees of
the maps of these circles are the same, then put〈β(P),J 〉 = 0. If one or two circles have
degree 1 and others have degree 2, then put〈β(P),J 〉 = 1. If for someJ none of these two
cases hold, thenβ(P) is undefined.

Construction of the counterexample to Conjectures1.4(a)and1.4(b). Let P ′ be a graph
with three verticesV1, V2, V3 and six edges:e1=−−→V1V2, e2=−−→V2V3, e3=−−→V3V1 and loops
e4, e5, e6 with basepointsV1, V2, V3, respectively. Fix orientation on the loopse4, e5

ande6. Glue three 2-disks toP ′ along loopse1e
−1
5 e2e

−1
6 e3e

−1
4 , e1e2e

2
6e3e

2
4 ande1e

2
5e2e3.

We obtain the polyhedronP . Since none of these disks is embedded inP , P does not
contain polyhedra from Conjectures 1.4(a) and 1.4(b). Denote the first disk byD. We
have that〈δβ(P ),D〉 = 〈β(P), ∂D〉 = 1 mod 2. Then nonthickenability ofP follows from
Corollary 2.4. 2
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