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THE RECOGNITION PROBLEM FOR TOPOLOGICAL
MANIFOLDS: A SURVEY

BY DUSAN REPOVS

Abstract

This is a survey of recent work on the problem of recognizing topological manifolds

among topological spaces, including the results of J.L. Bryant, S.C. Ferry, W. Mio and S.

Weinberger in higher dimensions, and M.V. Brahm, R.J. Daverman and D. Repovs in dimen-

sion three.

1. Introduction

The definition of a topologicaln-manifold M (n £ N) is quite simple to state - besides
the separability and metrizability we require (and this is the key geometric property of
manifolds) that every point x £ M should possess a neighbourhood U C M which is
homeomorphic to Rn. (We shall only consider closed topological manifolds M, i.e. M is
connected, compact and dM — 0.) However, in practice, it is precisely the verification
of the existence (or nonexistence) of such homeomorphism h : U -+ Rn, which is the
biggest problem. So a natural question arises: Is it possible to find a characterization
of topological manifolds which does not mention homeomorphιsms} which is reasonably
simple to state but which is also not too difficult to verify?

This is the so-called Recognition problem for topological manifolds, one of the most
important problems of geometric topology, i.e. of its branch called Bing (or Texas) topol-
ogy. In the present paper we plan to survey the most recent work on this problem,
including the results due to J.L. Bryant, S.C. Ferry, W. Mio and S. Weinberger [10]
in higher dimensions and M.V. Brahm [7], R.J. Daverman and D. Repovs [18] [19] in
dimension three. For an account of the work done earlier see the surveys of J.W. Cannon
[13] and D. Repovs [34] [35] (the survey [35] also contains an extensive bibliography on
this subject). For the closely related topics — the topology of cell-like maps — the reader
may wish to consult the latest survey by W.J.R. Mitchell and D. Repovs [26].
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2. Generalized manifolds

Topological manifolds of dimensions 1 and 2 have very simple characterizations. For
example, S1 is the only compact, connected metric space containing at least 2 points,
which is separated by every pair of its points [28], and 52 is the only nondegenerate
locally connected, connected, compact metric space which is separated by no pair of its
points but is separated by each of its simple closed curves [3]. Nothing so simple is known
to characterize higher dimensional manifolds.

The first question that arises in dealing with higher dimensions (^ 3) is the following
one: In which class of topological spaces do we want to detect topological manifolds? The
most appropriate seems to be the class of so-called generalized manifolds. For these are
the spaces which possess all the basic algebraic topology properties of manifolds, i.e.
from the point of view of homology and homotopy theory they behave much like genuine
manifolds (e.g. they satisfy the Poincare duality and they are locally contractible). Also,
they have all the required general topology properties - separability and metrizability.
The main difference between topological n-manifolds and generalized n-manifolds is that
the latter may fail to possesses sufficient general position properties (although they do
possess some - cf. the work of J.J. Walsh [39] and W.J.R. Mitchell, D. Repovs and E.V.
Scepin [27]). In fact, there are examples due to R.J. Daverman and J.J. Walsh [20] of
ghastly generalized manifolds, for all dimension ^ 3, illustrating just how wild this class
of spaces can be.

Generalized manifolds were first introduced into topology in the 1930 ?s - one of
the major motivations was the discovery by R.L. Wilder [40] that they were the proper
framework to generalize classical theorems of the Jordan-Schoenflies type from dimension
2 to higher dimensions (since the examples like the Alexander horned sphere [I] makes
a direct generalization impossible). Since then they have played an important role in
various parts of topology, e.g. theory of transformation groups [4], theory of cell-like
decompositions of manifolds [17], taming theory [12], suspensions of homology spheres
[14], compactifications of open topological manifolds [8], manifold factors [15], etc.

Through the decades the definitions of a generalized manifold were changing, depend-
ing upon the particular interests of the people involved. The following is the geometric
topologist's version:

DEFINITION 2.1.. A locally compact Hausdorff space X is said to be a generalized
n-manifold (n £ N) if X satisfies the following properties:

(i) X is an Euclidean neighbourhood retract (ENR), i.e. for some integer m, X em-
beds in Rm as a retract of an open subset of Rm (equivalently, X is a locally
compact, finite-dimensional separable, metrizable ANR); and

(ii) X is a Z-homology n-manifold, i.e. for every point x £ X,

H*(X,X\ {x}; Z) 2 ff,(R",R" \ {0};Z).

Let X be a generalized n-manifold. If n ^ 2 then it follows by classical results that
X is a topological n-manifold. On the other hand, if n ^ 3 then X need not be a genuine
n-manifold anymore, in fact, it may fail to possess Euclidean n-dimensional neighbour-
hoods at all points x G X Such points are called singularities of X and they form the
singular set S(X) of X, i.e. S(X) = {x £ X \ x does not have any neighbourhood in
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X homeomorphic to Rn}. Its complement, M(X) = X \S(X)> is called the manifold
set of X and, if S(X)^X, it is clearly an open n-manifold. (It is interesting to observe
that for many totally singular generalized manifolds X, i.e. S(X) = X, the singularities
completely vanish upon multiplication of X by the real line, i.e. X x R is a genuine
manifold - see [15].)

3. Resolutions of generalized manifolds

A resolution of an n-dimensional ANR X is a proper, cell-like map / : M —> X from
a topological n-manifold M onto X. It follows by classical results that if X admits a
resolution, X must be a generalized n-manifold [24]. A resolution / : M —•> X is said to
be conservative if it is one-to-one over the manifold set M(X) of X, i.e. for every point
x £ M(X), f~l(x) = point. It is not too difficult to show that if a generalized manifold
has a resolution then it also has a conservative one.

Cell-like maps f : M —+ X are those whose point-preimages f~l(x) are cell-like sets,
i.e. conti-nua with the (Borsuk) shape of a point [5]: Sh(/~1(a?)) = Sh(pt). Equivalently
(for finite-dimensional sets), f~l(x) is cell-like if it embeds into some Euclidean space
Rm as a cellular set in Rm, i.e. the embedding /-1(x) c-> Rm can be represented as the
intersection of a properly nested decreasing sequence of closed m-cells [9]

00

Rm D Bm D int Bm D β? D mt B? D - D /^(z) = f ] B? .
«=1

Roughly speaking, the concept of a cell-like map is a generalization of the idea of a
homeomorphism since point-preimages of homeomorphism are points whereas point-
preimages of a cell-like map only have homotopical and geometrical properties very much
like a point.

Cell-like maps play an important role in topology and they have been significantly
applied in solutions of several very difficult problems, e.g. the 4-dimensional Poincare
Conjecture [22]. It thus comes as no surprise that they also play a key role in the
Recognition problem. (For more on topology of cell-like maps see the survey [26].)

β The strategy for attacking the Recognition problem which J.W. Cannon [13] had
in mind when he proposed the problem at the 1977 AMS Summer Meeting in Seattle,
consisted of two key steps: resolution and shrinking. More precisely, given a generalized
n-manifold X, one first seeks to build a resolution of X, f : M -^ X, by blowing up the
singularities of X into cell-like sets. We thus at once have the following problem:

RESOLUTION PROBLEM. Does every generalized manifold have a resolution?

Second, given the resolution / : M —> X, one considers the associated cell-like, upper
semicontinuous decomposition Gf = { f ~ 1 ( x ) \ x £ X} of M, consisting of the preimages
of the map /, and tries to establish some general position properties of X which would
allow the controlled, simultaneous shrinking of the elements of the decomposition Gf
to arbitrary small sizes. If such a manipulation can be carried out then the classical
Shrinking theorem of R.H. Bing [25] tells us that / is a near-homeomorphism, i.e. / can
be approximated arbitrarily closely by homeornorphisms h : M —> X. In particular, X
must be homeomorphic to M, hence itself a topological n-manifold. So the other key
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question we must address is the following one:

GENERAL POSITION PROBLEM. Which general position property for a finite-dimen-
sional ANR X} where X is the image of a cell-like map f : M —» X on an n-manifold
M, implies that f is a near-homeomorphism?

In this paragraph we address the first problem. The best result so far in dimensions
^ 5 is the following Resolution theorem (for a complete history of previous the work on
this topics see the survey [35]):

THEOREM 3.1 (F.S. Quinn [33]-[31]). LetX be a connected generalized n-manifold,
n ̂  5. Then there is an integral invariant I(X) € Ho(X]Z) of X such that:

(i) I ( X ) = 1 (mod 8);
(ii) For every open subset U CX, I ( X ) = I(U);

(iii) For every generalized m-manifold Y, m ̂  5, I(X x Y) = I(X) x /(Y); and
(iv) I(X) = 1 if and only if X admits a resolution.

Moreover, if ft : M% —»• X, i £ {1>2}; are any two conservative resolutions of
X, n ^ 4, and U C X is a neighbourhood of S(X), then there is a homeomorphism
h : MI —> M2 such that f ι ( x ) = fzh(x), for every point x € X \ U.

For several years it was unknown whether Quinn's local surgery obstruction I ( X ) can
ever be nontnvial, i.e. whether there perhaps exist nonresolvable generalized manifolds.
Finally, last year the following surprising results were announced:

THEOREM 3.2 (J.L. Bryant, S.C. Ferry, W. Mio and S. Weinberger [10]). For eve-
ry integers n ̂  6 and m ^ 1, and for every simply connected, closed n-manifold M, there
exists a generalized n-manifold X such that:

(i) I ( X ) = m (hence X does not admit a resolution and is totally singular); and
(ii) X is homotopy equivalent to M.

THEOREM 3.3 (J.L. Bryant, S.C. Ferry, W. Mio and S. Weinberger [10]). For eve-
ry integer n ^ 6, there exists a generalized n-manifold X such that

(i) X does not admit a resolution; and
(ii) X is not homotopy equivalent to any topological manifold.

Essentially nothing is known in dimension 4, except for the fact that a generalized 4-
manifold X has a resolution if and only if X x R has one. This follows from the following
result:

THEOREM 3.4 (F.S. Quinn [30]). Let X be a generalized n-manifold (n ^ 4). Then
the following statements are equivalent:

(i) X has a resolution;
(ii) For some k £ N, X x Rfc has a resolution; and

(iii) X x R2 is a topological (n -f- ΐ)-manifold.

In dimension 3, the Resolution problem is entangled with the Poincare conjecture,
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e.g. if there exist fake 3-cells it's easy to construct a nonresolvable generalized 3-manifold
X, homotopy equivalent to S3, with just one singularity [34]. The following is the best
result so far (for earlier work see the survey [34]):

THEOREM 3.5 (T.L. Thickstun [38] ). If the Poίncare conjecture is true then every
generalized 3-manιfold X with ά\mS(X) = 0 admits a (conservative) resolution.

Finally, in the lowest dimension ^ 2, there is no problem since we've already observed
that the algebraic properties of generalized (^ 2)- manifolds are strong enough to imply
also the geometric properties and hence there can be no singularities at all.

4. General Position Properties

Higher dimensional (^ 5) topological manifolds possess the following simple general
position property:

DEFINITION 4.1. A metric space X is said to have the disjoint disks property
(DDP) if for every pair of maps /, g : B2 -*• X of the closed 2-cell B2 into X and
every ε > 0 there exist maps /',</' : B2 — » X such that </(/,/') < £, d(g,g') < ε and

It turns out that this property is also, to a large extent, characteristic for mani-
folds in this dimension range. This follows from the beautiful R.D. Edwards Cell-like
approximation theorem:

THEOREM 4.2 (R.D. Edwards [21] ). Let M be a topologicaln-manifold, n > 5, and
let f : M —* X be a surjective cell-like map of M onto an ANR X. Then X is a topological
n-mamfold if and only if X has the DDP.

As a corollary we immediately get the solution of the Recognition problem for di-
mensions ^ 5:

COROLLARY 4.3. For every n ^ 5, the class of topological n-manifolds Mn «s equal
to the class of generalized n-manifolds Qn with the DDP and vanishing Quinn's local
surgery obstruction I(X).

Let X be any generalized n- manifold, n ̂  6, which doesn't admit a resolution. Then
by Theorem (3.1), the product X x T2 is also a generalized (n + 2)-manifold without
a resolution. However, by a theorem of R.J. Daverman [16], X x T2 has the DDP, so
Theorem (3.2) implies that there exist generalized m-manifolds, m ^ 8, which are not
topological m-manifolds although they do possess the DDP.

In dimension 3 the solution is unfortunately not so elegant. This is hardly surprising
since there is less room for moving objects apart in this dimension. Here are the appro-
priate versions of DDP for 3-manifolds introduced by R.J. Daverman and D. Repovs in
[18] [19] (for other properties which were used earlier to solve special cases of the General
position problem see the survey [34]):
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DEFINITION 4.4. A metric space X is said to have the Weak simplicial approxi-
mation property (WSAP) if for every map / : B2 —» X of the closed 2-disk B2 into
X, and for every ε > 0, there exists a map /' : B2 —» X such that for every t G B2,

<W)>/'(*)) < ε and /'(£2) C U A , for some family {A}ί=ι of 1-LCC embedded

2-cells DiCX.

Recall that a subset Z C X of space X is locally simply coconected (1- LCC) if every
x G X and every neighbourhood C/ C AT of z, there is a neighbourhood V C f7 of x such
that the inclusion-induced homomorphism Πι(V \Z) —+Tίι(U\ Z) is trivial.

DEFINITION 4.5. A metric space X is said to have the Simplicial approximation
property (SAP) if for every map / : B2 —» X and every ε > 0, there exist a map
f':B2-+X and a finite topological 2-complex Kf> C X such that

(i) For every t G B2, d ( f ( t ) , f ' ( t ) ) < ε;
(ϋ) /'(£2)C#/<;and

(iii) X \ ίfy/ is 1-FLG (free local fundamental group) in X.
^ is said to have the Spherical simplicial approximation property (SSAP) if the

above holds when B2 is replaced by 52 throughout.

We define that X\Kf is 1-FLG in X if for every y G Kf and for every sufficiently
small neighbourhood U C X of y, there exists another neighbourhood V C U of y,
such that for every connected open neighbourhood W C V of y, for each nonempty
component W C VF of W \ K f , the inclusion-induced image of Πι(W') —> Πι({7') is a
free group on m — 1 generators, where {/' C U is the component of U \ Kf containing
W and m is the number of components of st(y) \ y that meet Cl(W) [29].

The definition of the 1-FLG property is admittedly a bit technical. However, note
that for any finite, connected 2-complex K, having no local separating points and lying
in a generalized 3-manifold X, the following are equivalent:

(i) X\K is 1-FLG in X
(ϋ) K is 1-LCC in X] and

(iii) Each 2-simplex of K is 1-LCC in X (cf. [19]).
It is easy to see that every topological (^ 3)-manifold has WSAP, SAP and SSAP.

We shall need another one (its verification for 3-manifolds is less trivial [18]):

DEFINITION 4.6. A metric space X is said to have the Light map separation prop-
erty (LMSP) if for every ε > 0, every k G N, and every map / : B —» X of a collection
of k standard 2-cells B = \]*=l B

2 into X such that:
(i) Nf C int B, where Nf - {y G B\fl(f(y)) φ y};

(ii) dim Nf < 0; and
(iii) dimZf < 0, where Zf = {x G X\x G /(J3?) Π /(£;

2) for some i / j};
there exists a map F : B -+ X such that

(1) <W)<ε;
(2) F\dB = f\dB; and
(3) For every i £ j, F(Bf) D
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We can now state the two main results from [19] which solve the General position
problem for 3-manifods:

THEOREM 4.7 (R.J. Daverman and D. Repovs [19]). A resolvable generalized 3-
manifold is a topological 3-manιfold if and only if it possesses the SSAP.

THEOREM 4.8 (R.J. Daverman and D. Repovs [19]). A resolvable generalized 3-
manifold X is a topological %-manιf old if and only if X possesses the WSAP and LMSP.

One defines the property LMSP* to be LMSP without the condition (iii). A conjec-
ture from [18] that all 3-manifolds possess this (stronger) property was recently verified
(using very technical argument) by M.V. Brahm:

THEOREM 4.9 (M.V. Brahm [7]). Every topological 3-manifold has the LMSP*.

5. Epilogue

Let's make a review of the major questions concerning the Recognition problem. In
dimension three the Resolution problem remains open (modulo the Poincare conjecture)
for generalized 3-manifolds X with dim S(X) ^ 1 :

QUESTION 5.1. Suppose that there exist no fake cubes. Does there exist a nonre-
solvable generalized 3-manifold X? (Note that for such an example X, dimS(X) ^ 1 is
necessary.)

In attemping to find a resolution, one may well wish to try the simplest unknown
case (note that if S(X) lies in a set Z C X which is 1-LCC embedded in X and dim Z = 0

= 0 [11]):

QUESTION 5.2. Suppose that there exist no fake cubes. Let X be a generalized 3-
manifold and suppose that S(X) C Z, where Z is an arc which is 1-LCC embedded in
X. Does X admit a resolution?

Note that in order to resolve a generalized 3-manifold X it suffices to find an almost
Z2 -acyclic resolution of X:

THEOREM 5.3 (D.Repovs and R.C, Lacher [37]). Let f : M -> X be a closed,
monotone map from a 3-manιfold M onto a locally simply connected ΊΛ^homology 3-
manifold X . Suppose that there is a 0- dimensional (possibly dense) set Z C X such that
for every point x eX\Z, Hl(f~l(x}\ Z2) = 0. Then the set C = {x 6 X\fl(x) is not
cell-like } is locally finite in X. Moreover, X is a resolvable generalized 3-manιfold.

Before we proceed to dimensions ^ 4, we wish to ask few more questions about
generalized 3-manifolds. First, consider the following result (the Dehn's lemma property
and the Map separation property are another kind of general position properties of 3-
manifolds which were used earlier to shrink certain cell-like decompositions of 3-manifolds
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— see [36] ):

THEOREM 5.4 (W. Jakobsche and D. Repovs [23]). Suppose that there exist fake
cubes. Then there exists a compact homogeneous ANR X with the following properties:

(1) X is a generalized 3-manifold and S(X) = X;
(2) X does not admit a resolution;
(3) X has the Dehn's lemma property;
(4) X has the Map separation property;
(5) X x 51 is homeomorphic to S3 x S1.

QUESTION 5.5. Does the example of W. Jakobsche and D. Repovs [23] also possess
any of the following position properties:

(1) LMSP(*) or
(2) (W)SAP or
(3) SSAP?

The natural converse of Theorem (4.9) is still a conjecture:

CONJECTURE 5.6 (R.J. Daverman and D. Repovs [18]). A resolvable generalized
3-manifold X is a topological 3-manifold if X possesses the LMSP*.

Related to this is the following conjecture which would significantly strengthen The-
orem (4.9) (for more on this conjecture and its equivalents see [6] and [7]):

CONJECTURE 5.7. Let f : N —>• M be a continuous map of a 2-manifold N into
a 3-manιfold M such that dimNf = 0 and Nf C int N. Then for every continuous
function ε : int N —*• (0,1] going to zero near dN there exists an embedding g : N —»• M
such that for every x £ int N, d ( f ( x ) , g ( x ) ) < ε(x).

In dimension 4 very little is known (see [2] and [19] for partial results) both Resolu-
tion problem as well as General position problem are still open, while in dimensions ̂  5
there also remain some questions, e.g.

QUESTION 5.8. Does there exist a nonresolvable generalized 5-manίfold9

Also, there is still no written details available of the R.D. Edwards proof of the
5-dimensional case of Theorem (4.2) - the manuscript [21] deals only with the higher
dimensions (̂  6). It would be a worthwhile project to carefully rethink Edwards' argu-
ment for dimension 5 again and write it down, since there are some nontrivial engulfing
problems one must know how to get around in this case.

Finally, the following is a related, very difficult problem from cohomological dimen-
sion theory, equivalent to the celebrated Cell-like mapping problem in dimension 4 (for
more see the survey [26]):

QUESTION 5.9. Suppose that f : M —»• X is a cell-like map of a topological 4-
manifold M onto a space X. Is dίmX < oo (equivalenily, dimX=4)?
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Note that by theorem of W.J.R. Mitchell, D. Repovs and E.V. Scepin [27], dimX <
oo if and only if X has a certain kind of general position property, called the disjoint
Pontryagin triples property.
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