C-HOMOGENEOUS CURVES ON ORIENTABLE CLOSED SURFACES

Dončo DIMOVSKI
University of Skopje,Skopje,Yugoslavia

Dušan REPOVŠ
University of Luubluana,Ljubluana,Yugoslavia

EvgeniJ V.š̌EPIN

Steklov Mathematical Institute,Moscow,USSR

Abstract

Let M^{2} be an oriented smooth closed surface. A Jordan curve on M^{2} is a continuous map $K:[0,1] \longrightarrow M^{2}$ (or $K: R \longrightarrow M^{2}$) such that for each $t \in(0,1)$ (or $t \in R$) there is an $\varepsilon>0$ such that K is one-to-one on the open ε-neighborhood of t. The orientation on a Jordan curve K on M^{2} will always be the induced orientation by the chosen one on the surface M^{2}.

A Jordan curve K on M^{2} is said to be C^{∞}-homogeneous in M^{2} if for every two points $x, y \in K$ there exists a diffeomorphism $h_{x, y}$: $M^{2} \longrightarrow M^{2}$ such that (i) $h_{x, y}(x)=y ;(i i) h_{x, y}(K) \subset K$; (iii) $h_{x, y}$ is orientation preserving for all x and y (or it is orientation reversing for all x and y); and (iv) $h_{x, y}$ preserves the orientation of K for all x and y (or it reverses the orientation of K for all x and y).

PROPOSITION 1. Let K be a C^{∞}-homogeneous Jordan curve in the plane R^{2}. Then for every point $x \in K$ there exist a closed neighborhood $U \subset R^{2}$ of \times and smooth curves $C_{1}, C_{2} \subset U$ such that (i) $K \cap U$ separates U; ($i i$) C_{1} and C_{2} lie on the opposite sides of $K \cap U$; and ($\mathrm{i} i \mathrm{i}$) $C_{1} \cap K=\{x\}=C_{2} \cap K$ (i.e. x is wedged between C_{1} and C_{2}).

Proof. Let $x \in K$. Since K is C^{∞}-homogeneous Jordan curve in R^{2} the Jordan Curve Theorem implies that there is a closed neighborhood $U \subset R^{2}$ of x in R^{2} such that $K \cap U$ separates U. Let
$p_{i} \in U-K, i=1,2$, be any two points on the opposite sides of $K \cap U$. Let $p_{i}^{*} \in K$ be a point on K nearest to $p_{i}, i=1,2$ (there can be more than one, in general). Let C_{i}^{*} be a circle in R^{2} centered at p_{i}^{*} with radius $d\left(p_{i}, p_{\hat{i}}^{*}\right), i=1,2$. Modify the circles $C_{\dot{i}}^{*}$ so that eventually $C_{i}^{*} \cap K=\left\{p_{i}^{*}\right\}, i=1,2$, while keeping them smooth at all points. Use the C^{∞}-homogeneity of the curve K to produce two diffeomorphisms $h_{i}: R^{2} \longrightarrow R^{2}$ such that $h_{i}\left(p_{i}^{*}\right)=x$. Define c_{i} to be the component of $h_{i}\left(C_{i}^{*}\right)$ which contains the point $x, i=1,2$. It's is now easy to verify that the curves C_{1} and C_{2} satisfy the required properties.

A 1-parameter group of diffeomorphisms of an oriented closed smooth surface M^{2} is a continuous map $G: R \times M^{2} \longrightarrow M^{2}$ such that (i) $G(t, x)=g^{t}(x)$ where g^{t} is a diffeomorphism of M^{2}; (ii) $g^{t+s}=g^{t} g^{s}$; and ($\mathrm{i} i \mathrm{i}$) $\mathrm{g}^{0}=\mathrm{id}_{\mathrm{M}} 2$. In other words, a 1 -parameter group of diffeomorphisms is a homomorphism $G:(R,+) \longrightarrow\left(\operatorname{Diff}\left(M^{2}\right), o\right)$ such that $G:$ $R \times M^{2} \longrightarrow M^{2}$ is continuous.

PROPOSITION 2. Let $G: R X M^{2} \longrightarrow M^{2}$ be a 1 -parameter group of diffeomorphisms of M^{2} and let $x \in M^{2}$ be an arbitrary point of M^{2}. Then the orbit $0_{x}=\left\{g^{t}(x) \mid t \in R\right\} \quad$ is a c^{∞}-homogeneous curve in M^{2} unless x is a fixed point.

Proof. Any two diffeomorphisms g^{t} and g^{s} are homotopic via the $\operatorname{map} G:[t, s] \times M^{2} \longrightarrow M^{2}, t<s$, which implies that either both of them preserve the orientation of M^{2} or they both reverse $i t$. The same holds for the orientation of the orbits. Pick $x \in M^{2}$ and let $y \in O_{x}$. Then $H_{y}=\left\{t \mid g^{t}(y)=y\right\}$ is a subgroup of ($R,+$) so there are 3 possibilities: H_{y} is either discrete or dense in R or trivial (i.e. 0). If H_{y} is dense in R it follows that $H_{y}=R$ hence $0_{x}=0_{y}=\{x\}=\{y\}$. If $0_{x} \neq\{x\}$ and $H_{x}=\{0\}$ then 0_{x} is the image of an embedding of R in M^{2}. If H_{x} is a discrete group, i.e. $H_{x}=r Z$ for some $r>0$, then 0_{x} is the image of an embedding of $[0, r)$ in M^{2}, i.e. of a map $f:[0, r] \longrightarrow R, f(0)=f(r)$, and f one-to-one on the interval $[0, r)$.

For every two points $y, z \in O_{x}$ there exist $t, s \in R$ such that $y=$ $g^{t}(x)$ and $z=g^{s}(x)$. Consequently, $g^{s-t}(y)=g^{s-t}\left(g^{t}(x)\right)=g^{s}(x)=z$ hence g^{s-t} is a required diffeomorphism of M^{2} since we also have that
$g^{s-t}\left(O_{x}\right)=0_{x}$. This proves that the orbit 0_{x} is indeed c^{∞}-homogeneous in M^{2} as asserted.

PROPOSITION 3. Let K be a Jordan curve in the plane R^{2} and suppose that at a point $x \in K, K$ is wedged between two smooth curves, i.e. that there are two smooth curves $C_{1}, C_{2} \subset R^{2}$ such that $C_{1} \cap K=$ $C_{2} \cap K=\{x\}$. Then K has a tangent at x.

Proof. Consider the secants $L_{n} \subset R^{2}$ of K based at x. For every $n \in N$, pick $q_{n} \in L_{n} \cap K$. We may choose the sequence $\left(q_{n}\right)$ so that it converges to x. There are two possible cases to consider.

Case 1. For all but finitely many $n, q_{n} \notin C_{1} \cup C_{2}$. Then for some subsequence $\left(q_{s(n)}\right), L_{s(n)}$ have the same slope as the tangent to C_{1} (and hence to C_{2}) at x and therefore so does the limit.

Case 2. For some subsequence $\left(q_{s(n)}\right), q_{s(n)} \in C_{1}$ (resp. C_{2}). Then $L_{s(n)}$ is also a secant for $C_{1}\left(\right.$ resp. $\left.C_{2}\right)$ at \times hence the slopes of $L_{s}(n)$ must converge - to the derivative of C_{1} (resp. C_{2}) at x. This implies that K is differentiable at x.

EXAMPLE. The following example shows that in Proposition 3 one cannot, in general, also prove that the curve K has a continuous derivative at x (hence much less that K is smooth at x). Let $P_{1}=$ $\left\{\left(x, x^{2}\right) \mid x \in R\right\} \subset R^{2}$ and $P_{2}=\left\{\left(x,-x^{2}\right) \mid x \in R\right\} \subset R^{2}$. For every $n \in N$, let $A_{n}, A_{n}^{*} \in P_{1}$ and $B_{n}, B_{n}^{*} \in P_{2}$ be given by:

$$
\begin{aligned}
& A_{n}=\left\{\left((2 n)^{-1},\left(4 n^{2}\right)^{-1}\right)\right\}, \quad A_{n}^{*}=\left\{\left(-(2 n)^{-1},\left(4 n^{2}\right)^{-1}\right)\right\}, \\
& B_{n}=\left\{\left((2 n-1)^{-1},-(2 n-1)^{-2}\right)\right\}, B_{n}^{*}=\left\{\left(-(2 n-1)^{-1},-(2 n-1)^{-2}\right)\right\},
\end{aligned}
$$

and let $K *=U_{n \in N}\left(\overline{A_{n} B_{n}} \cup \overline{A_{n}^{B}}{ }_{n+1} \cup \overline{A_{n}^{*} B_{n}^{*}} \cup \overline{A_{n}^{* B_{n}^{*}}}\right) \cup\{(0,0)\}$. Let K be the curve in the plane, obtained from $K *$ by smoothing its corners $A_{n}, A_{n}^{*}, B_{n}, B_{n}^{*}$ (without changing $K *$ near the x-axis). Then the point $T=(0,0) \in K$ is wedged between the smooth curves P_{1} and P_{2} but the first derivative of K at T isn ${ }^{-t}$ continuous (hence, in particular, K isn ${ }^{-t}$ smooth at T. To see this, let $f:[-1,1] \longrightarrow R$ be the map whose graph is K and define the map $F=\left(f_{1}, f_{2}\right):[-1,1] \rightarrow R^{2}$ by $f_{1}(t)=t$ and $f_{2}(t)=f(t)$. Then $d f_{1} / d t \mid(0)=1$ and $d f_{2} / d t \mid(0)=0$. Let $\left(t_{n}\right) \subset R$ be the sequence of points on the x-axis, defined by $F\left(t_{n}\right)=$ $\frac{A_{n}}{B_{n}} \cap\left(x\right.$-axis). Then $\lim t_{n}=0$ whereas $\operatorname{lim~df}{ }_{2} / d t\left|\left(t_{n}\right)=-2 \neq 0=d f_{2} / d t\right|(0)$.

REMARK. The curve K constructed above isn't C^{∞}-homogeneous in R^{2}. For suppose this were the case and pick any point $T * \neq T$ on K. We would then have a diffeomorphism $h: R^{2} \longrightarrow R^{2}$ such that $h(T)=T \%$. Now, K is clearly smooth at T^{*} hence it should also be smooth at the image of $T^{*}, h^{-1}\left(T^{*}\right)=T$. Contradiction.

QUESTION. Under the additional assumption in Proposition 3, that the curve K is C^{∞}-homogeneous in R^{2}, can one prove that K is then necessarily smooth at x, i.e. does " C - -homogeneous" imply "smooth"? (Note that the converse is true, i.e. every smooth curve in R^{2} is locally flat at every point hence one can build diffeomorphisms of \mathbf{R}^{2} which interchange arbitrary pairs of points on K.)

After this paper was written, W.J.R.Mitchell brought to our attention the work of L.D.Loveland ${ }^{2)}$ where he used a similar idea of wedging the curve or a sphere between balls: using entirely different methods from ours he proved e.g. that a curve $K \subset S^{3}$ is tame in S^{3} (i.e. there is an ambient homeomorphism of S^{3} which takes K onto a polygonal arc) if for some $t>0$ at each $x \in K$ there are 3-dimensional balls $B_{1}, B_{2} C S^{3}$, each with radius t, such that $B_{1} \cap B_{2}=$ $\left(B_{1} \cup B_{2}\right) \cap K=\{x\}$.

Our work, on the other hand, was inspired by a remark in V.I. Arnol-d's textbook ${ }^{1)}$ (cf.Problem 1 on p.24). Note that our argument yields a very simple geometric proof of a special case of Theorem (5.2.3) in D.Montgomery-L.Zippin`s monograph ${ }^{3)}$.

ACKNOWLEDGEMENTS. The authors wish to acknowledge comments from A.Gray. The second author wants to thank the Soviet Academy of Sciences for its support during his visit at the Steklov Mathematical Institute in Spring 1988 when this research was started. This project is supported in part by a grant from the Research Council of Slovenia.

REFERENCES

(1) Arnold, V.I., "Ordinary Differential Equations"(Russian), Nauka, Moscow 1971.
(2) Loveland, L.D., "Double tangent ball embeddings of curves in $E^{3 / 1}$, Pacif. J. Math. 104 (1983), 391-399.
(3) Montgomery, D. and Zippin, L., "Topological Transformation Groups", Interscience Publ. Inc., New York 1955, Interscience Tracts in Pure and Appl. Math. No.1.

