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1. Introduction

The topic of function spaces with variable exponents has undergone an impressive
development over the last decades. It seems that the oldest references in this field
are the works by Orlicz [20] and Nakano [19]. This impressive revival is essentially
connected with relevant applications to nonlinear partial differential equations and
fluid dynamics.

The field we are concerned with in this work is of central interest, since the
Schrödinger equation plays in quantum mechanics the same role as the Newton laws
of conservation of energy play in classical mechanics. Schrödinger gave the classical
derivation of this basic equation, based upon the analogy between mechanics and
optics, and using the developments due to Louis de Broglie. The linear Schrödinger
equation provides a thorough description of a particle in a non-relativistic setting.
The structure of the nonlinear Schrödinger equation is much more complicated. The
nonlinear Schrödinger equation describes central phenomena arising in nonlinear
optics, Bose–Einstein condensates, Heisenberg ferromagnets and magnons, plasma
physics (the Kurihara superfluid film equation or Langmuir waves), condensed
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matter theory, etc. We refer to [1, 25] for a modern overview, including relevant
applications.

In this paper, we study a Schrödinger-type equation in the framework of func-
tion spaces with variable exponent. Problems of this type have been intensively
studied in the last few years due to major applications to non-Newtonian elec-
trorheological fluids ([13, 22]) or image restoration (Chen, Levine and Rao [5]).
Our main purpose is to extend the study of Laplace-type operators to more general
classes of equations with variable exponent and nonhomogeneous differential opera-
tor. We are concerned with Schrödinger-type equations that involve the differential
operator div (A(x, |∇u|)∇u) and power-type nonlinearities with exponent variable.
The abstract setting in the present paper corresponds to very general differential
operators that include the usual p(x)-Laplace or p(x)-mean curvature operators,
respectively,

div (|∇u|p(x)−2∇u),

div (p(x)|∇u|p(x)−2∇u) and div ((1 + |∇u|2)(p(x)−2)/2∇u).

An excellent reference for the most significant mathematical methods employed in
this paper is the book by Ciarlet [6].

2. A Brief Review on Variable Exponent Lebesgue–Sobolev Spaces

Throughout this paper we assume that Ω is a bounded open set in R
N with smooth

boundary.
In this section, we recall some definitions and basic properties of the variable

exponent Lebesgue space Lp(x)(Ω) and W
1,p(x)
0 (Ω). Roughly speaking, Lebesgue

and Sobolev spaces with variable exponent are functional spaces of Lebesgue’s and
Sobolev’s type in which different space directions have different roles. The vari-
able exponent Lebesgue space Lp(x)(Ω) is a special case of Orlicz–Musielak spaces
treated by Musielak [18].

Denote

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1, for all x ∈ Ω}.
For any h ∈ C+(Ω), we define

h+ = max{h(x); x ∈ Ω}, h− = min{h(x); x ∈ Ω}.
For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =
{

u : Ω → R; u is measurable and
∫

Ω

|u(x)|p(x)dx < ∞
}

,

endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Then (Lp(x)(Ω), | · |p(x)) is a Banach space, cf. [14].
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As established in [9], (Lp(x)(Ω), | · |p(x)) is a separable, uniformly convex Banach
space and its dual space is Lq(x)(Ω), where 1

p(x) + 1
q(x) = 1. Moreover, for all

u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have the Hölder inequality∣∣∣∣
∫

Ω

uvdx

∣∣∣∣ ≤
(

1
p−

+
1

q−

)
|u|p(x)|v|q(x).

If p1(x), p2(x) ∈ C+(Ω) and p1(x) ≤ p2(x) for all x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω) and the embedding is continuous.

An important role in manipulating the generalized Lebesgue space is played by
the p(x)-modular of the Lp(x)(Ω) space, which is the mapping ρp(x) : Lp(x)(Ω) → R

defined by

ρp(x)(u) =
∫

Ω

|u|p(x)dx.

Proposition 2.1 (see [11]). For u ∈ Lp(x)(Ω) and un ⊂ Lp(x)(Ω), we have

(1) |u|p(x) < 1 (respectively = 1; > 1) ⇔ ρp(x)(u) < 1 (respectively = 1; >1);
(2) for u �= 0, |u|p(x) = λ ⇔ ρp(x)

(
u
λ

)
= 1;

(3) if |u|p(x) > 1, then |u|p−

p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x);

(4) if |u|p(x) < 1, then |u|p+

p(x) ≤ ρp(x)(u) ≤ |u|p−

p(x);
(5) |un − u|p(x) → 0 (respectively → ∞) ⇔ ρp(x)(un − u) → 0 (respectively → ∞),

since p+ < ∞.

The Sobolev space with variable exponent W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω); ∂xiu ∈ Lp(x)(Ω), i ∈ {1, . . . , N}}.
If equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) +
N∑

i=1

|∂xiu|Lp(x)(Ω),

then (W 1,p(x)(Ω), ‖ · ‖W 1,p(x)(Ω)) is a separable and reflexive Banach space (see [14,
Theorem 1.3]).

As observed by Zhikov [28] in relationship with the Lavrentiev phenomenon, it is
possible that minimizers of certain variational integrals are not smooth. The follow-
ing log-Hölder condition was first used in the variable exponent context by Zhikov
[27]. More precisely, we say that a function h : Ω → R is log-Hölder continuous on
Ω if there exists C > 0 such that

|h(x) − h(y)| ≤ − C

log |x − y| for all x, y ∈ Ω, |x − y| ≤ 1
2
. (2.1)

As established in [9] (see also [7, Theorem 9.1.8]), if Ω is bounded with Lipschitz
boundary and p is log-Hölder continuous, then C∞(Ω) is dense in W 1,p(x)(Ω). We
point out that though log-Hölder continuity of p(x) is sufficient to imply the density
of test functions in W 1,p(x), this condition is far from being necessary. For instance,
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Edmunds and Rákosńık [8] derived the same conclusion under a local monotony
condition on p.

Let p be log-Hölder continuous. The Sobolev space W
1,p(x)
0 (Ω) with zero bound-

ary values is the closure of the set of W 1,p(x)(Ω)-functions with compact support.
Furthermore, if p is bounded then W

1,p(x)
0 (Ω) is the closure of C∞

0 (Ω) in the space
W 1,p(x)(Ω), see [7, Proposition 11.2.3]. The norm ‖u‖ =

∑N
i=1 |∂xiu|p(x) is an equiv-

alent norm in W
1,p(x)
0 (Ω) (see [16]). Hence W

1,p(x)
0 (Ω) is a separable and reflexive

Banach space. Note that when s ∈ C+(Ω) and s(x) < p∗(x) for all x ∈ Ω, where
p∗(x) = Np(x)

N−p(x) if p(x) < N and p∗(x) = ∞ if p(x) ≥ N , then the embedding

W
1,p(x)
0 (Ω) ↪→ Ls(x)(Ω) is compact.

3. Main Results

In this paper we study the following nonlinear problem{
−div(A(x, |∇u|)∇u) = f(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω.
(3.1)

Problems of this type are motivated by models in mathematical physics (see
[21, 24]), where certain stationary waves in nonlinear Schrödinger or Klein–Gordon
equations can be reduced to this form. Equation (3.1) arises in the study of the
Schrödinger-type equation

ivt − div(A(x, |∇v|)∇v) = f(x, v)

when looking for standing waves, that is, solutions of the type v(x, t) = e−ictu(x),
where c is a real constant. This problem has a central role in quantum mechanics for
the study of particles of stochastic fields modeled by Lévy processes. A path integral
over the Lévy flights paths and a nonlinear Schrödinger equation is formulated by
Laskin [15] from the idea of Feynman and Hibbs’s paths integrals.

Fix p ∈ C+(Ω) and suppose that p is log-Hölder continuous.
We assume that A : Ω × [0,∞) → [0,∞) satisfies the following hypotheses:

(A1) the mapping Ω � x �→ A(x, s) is measurable for all s ≥ 0 and the mapping
(0,∞) � s �→ A(x, s) is absolutely continuous for a.a. x ∈ Ω;

(A2) there exist a1 ∈ Lp′(x)(Ω) and a2 > 0 such that

|A(x, |z|)z| ≤ a1(x) + a2|z|p(x)−1 a.e. x ∈ Ω, all z ∈ R
N ;

(A3) there exists a3 > 0 such that for a.a. x ∈ Ω and for all s > 0

min{A(x, s), A(x, s) + s∂sA(x, s)} ≥ a3 min{1, sp(x)−2};

(A4) we have t2A(x, t) ≤ p+

∫ t

0 sA(x, s)ds for a.a. x ∈ Ω and for all t ∈ (0,∞).
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We assume that the nonlinear term f : Ω × R → R is a Carathéodory function
satisfying the following conditions:

(f1) there exists C > 0 such that |f(x, t)| ≤ C|t|q(x)−1 for a.a. x ∈ Ω and for all
t ∈ R, where q ∈ C+(Ω) and maxx∈Ω p(x) < minx∈Ω q(x), q(x) < p∗(x) for all
x ∈ Ω;

(f2) there exist µ > p+ and R > 0 such that

0 < µF (x, t) ≤ tf(x, t) for all x ∈ Ω and for all t ≥ R,

where F (x, t) :=
∫ t

0 f(x, s)ds;
(f3) limt→0 f(x, t)/|t|p+−1 = 0 uniformly for x ∈ Ω.

We say that u is a solution of problem (3.1) if u ∈ W
1,p(x)
0 (Ω)\{0} and∫

Ω

A(x, |∇u|)∇u · ∇vdx = λ

∫
Ω

f(x, u)vdx for all v ∈ W
1,p(x)
0 (Ω).

The first result in this paper establishes the existence of solutions to problem
(3.1) under the above hypotheses. This result extends previous existence proper-
ties to a very large class of nonlinear differential operators. The proof combines
variational arguments and related energy estimates. A key role is played by the
mountain-pass theorem, see [3].

Theorem 3.1. Assume that A and f satisfy conditions (A1)–(A4) and (f1)–(f3).
Then problem (3.1) has at least one solution.

Next, we are concerned with the existence of multiple high-energy solutions
of problem (3.1). For this purpose, we consider the associated energy functional
E : W

1,p(x)
0 (Ω) → R defined by

E(u) =
∫

Ω

(∫ |∇u(x)|

0

sA(x, s)ds

)
dx −

∫
Ω

F (x, u)dx.

Assuming that f(x, ·) is odd, we prove that problem (3.1) has a sequence
of solutions with higher and higher energies. The statement of this result is the
following.

Theorem 3.2. Suppose that hypotheses (A1)–(A4) and (f1)–(f 2) are fulfilled and
f(x,−t) = −f(x, t) for a.a. x ∈ Ω and all t ∈ R. Then problem (3.1) admits a
sequence of solutions (un) such that E(un) → +∞ as n → ∞.

A central role in the proof of Theorem 3.2 is played by the fountain theorem,
which is due to Bartsch [4]. This result is nicely presented in [26] by using the
quantitative deformation lemma. We also point out that the dual version of the
fountain theorem is due to Bartsch and Willem, see [26]. It should be noted that
the Palais–Smale condition plays an important role for these theorems and their
applications.
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A related question concerns the minimization problem corresponding to the
associated Rayleigh quotient, namely

λ1 := inf
u∈W

1,p(x)
0 (Ω)\{0}

∫
Ω

(∫ |∇u(x)

0

sA(x, s)ds

)
dx

∫
Ω

F (x, u)dx

.

A natural assumption, in order to avoid degeneracies, is the following:

(f4) for all (x, u) ∈ Ω × R we have uf(x, u) ≥ 0 and f �≡ 0.

In the case corresponding to the Laplace or p-Laplace operators we have λ1 > 0.
However, it may happen that λ1 = 0, see [17]. The next result establishes a sufficient
condition such that λ1 is positive. This condition takes into account the growth of
the variable potentials p(·) and q(·) and is the following.

(A5) we have 2(q+ − q−) < p−.

Theorem 3.3. Assume that hypotheses (A1)–(A5), (f1) and (f4) are fulfilled. Then

λ1 := inf
u∈W

1,p(x)
0 (Ω)\{0}

∫
Ω

(∫ |∇u(x)

0

sA(x, s)ds

)
dx

∫
Ω

F (x, u)dx

> 0. (3.2)

Moreover, for all λ ≥ λ1 the nonlinear problem{
−div(A(x, |∇u|)∇u) = λf(x, u) if x ∈ Ω,

u = 0 if x ∈ ∂Ω
(3.3)

has a nontrivial solution.

In particular, Theorem 3.3 establishes a concentration property at infinity for the
spectrum problem Su = λTu, where Su := −div (A(x, |∇u|)∇u) and Tu := f(x, u).

4. Auxiliary Properties

From now on we assume that A and f satisfy the hypotheses in the previous section.
We first establish that the energy E is of class C1 on W

1,p(x)
0 (Ω) and for all

u, v ∈ W
1,p(x)
0 (Ω)

E ′(u)(v) =
∫

Ω

A(x, |∇u|)∇u∇vdx −
∫

Ω

f(x, u)vdx. (4.1)

Relation (4.1) follows if we prove that

E ′
0(u)(v) =

∫
Ω

A(x, |∇u|)∇u · ∇vdx, (4.2)
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where

E0(u) =
∫

Ω

(∫ |∇u(x)|

0

sA(x, s)ds

)
dx.

Fix u, v ∈ W
1,p(x)
0 (Ω) and λ ∈ R close to zero, say 0 < |λ| < 1. Thus, by

hypothesis (A2) combined with the mean value theorem, there exists θ between 0
and λ such that∫ |∇u(x)+λ∇v(x)|

0

A(x, s)sds −
∫ |∇u(x)|

0

A(x, s)sds

λ

= A(x, |∇u(x) + θ∇v(x)|)|∇u(x) + θ∇v(x)| |∇v(x)|
≤ (a1(x) + a2|∇u(x) + θ∇v(x)|p(x)−1)|∇v(x)|
≤ (a1(x) + a2(|∇u(x)| + |∇v(x)|)p(x)−1|)|∇v(x)|. (4.3)

Next, we show that the right-hand side of relation (4.3) is in L1(Ω). Indeed, by
Hölder’s inequality, we have∫

Ω

(a1(x) + a2(|∇u(x)| + |∇v(x)|)p(x)−1)|∇v(x)|dx

≤ 2|a1|p′(·)|∇v|p(·) + 2a2|(|∇u| + |∇v|)p(x)−1|p′(·)|∇v|p(·)

≤ 2|a1|p′(·)|∇v|p(·) + C

(∫
Ω

(|∇u(x)|p(x) + |∇v(x)|p(x))dx

)1/p′
−
|∇v|p(·).

Taking λ → 0, we also have θ → 0. Thus, by the Lebesgue dominated conver-
gence theorem,

lim
λ→0

E0(u + λv) − E0(u)
λ

=
∫

Ω

lim
θ→0

A(x, |∇u + θ∇v|)(∇u + θ∇v) · ∇vdx

=
∫

Ω

A(x, |∇u|)∇u · ∇vdx,

which proves our claim (4.2).
Next, we consider the following operators:

(i) the gradient operator ∇ : W
1,p(x)
0 (Ω) → Lp(x)(Ω, RN );

(ii) the Nemytskii operator T : Lp(x)(Ω, RN ) → Lp′(x)(Ω, RN ) defined by Tu(x) =
A(x, |u(x)|)u(x) for all u ∈ Lp(x)(Ω, RN );

(iii) the linear operator L : Lp′(x)(Ω, RN ) → W−1,p′(x)(Ω) defined by

Lu(v) =
∫

Ω

u(x) · ∇v(x)dx for all u ∈ Lp′(x)(Ω, RN ) and v ∈ W
1,p(x)
0 (Ω).

These operators are continuous and E ′
0 = L ◦ T ◦ ∇, hence E0 is of class C1.
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The next result is a counter-part of formula (2.2) in [23]. More precisely, in [23]
it is established that for all ξ, ζ ∈ R

N

|ξ − ζ|p ≤
{

c(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ) for p ≥ 2,

c〈|ξ|p−2ξ − |η|p−2η, ξ − η〉p/2(|ξ|p + |η|p)(2−p)/2 for 1 < p < 2,

where c is a positive constant.
As above, we distinguish between the singular case corresponding to 1 <p(x)< 2

and the degenerate case, which corresponds to p(x) > 2. The version of the above
inequalities for variable exponents is the following.

Lemma 4.1. Assume that hypotheses (A1) and (A3) are fulfilled. Then there exists
a positive constant C such that for all ξ, ζ ∈ R

N with (ξ, ζ) �= (0, 0), we have:

(i) (A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) ≥ C1|ξ − ζ|p(x) for all x ∈ Ω with p(x) ≥ 2;
(ii) (A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) ≥ C2|ξ − ζ|2 min{1, (|ξ| + |ζ|)p(x)−2} for all

x ∈ Ω with 1 < p(x) < 2.

Proof. We have

(A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) =
N∑

i=1

(A(x, |ξ|)ξi − A(x, |ζ|)ζi)(ξi − ζi)

=
N∑

i=1

(ϕi(x, ξ) − ϕ(x, ζ))(ξi − ζi),

where ϕi(x, w) := A(x, |w|)wi for all w ∈ R
N . But

ϕi(x, ξ) − ϕ(x, ζ) =
N∑

j=1

∫ 1

0

∂ϕi(x, z)
∂zj

(ξj − ζj)dt,

where z = ζ + t(ξ − ζ). Therefore

(A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) =
N∑

i,j=1

∫ 1

0

∂ϕi(x, z)
∂zj

(ξi − ζi)(ξj − ζj)dt. (4.4)

Fix z, w ∈ R
N\{0}. We observe that

N∑
i,j=1

∂ϕi(x, z)
∂zj

wiwj = A(x, |z|)|w|2 +
1
|z| As(x, |z|)(z · w)2

= |w|2
(

A(x, |z|) + |z|As(x, |z|)
(

z

|z| ·
w

|w|
)2
)

. (4.5)

(i) Assuming that p(x) ≥ 2, hypothesis (A3) and relation (4.5) yield
N∑

i,j=1

∂ϕi(x, ξ)
∂ξj

ζiζj ≥ a3|ξ|p(x)−2|ζ|2.
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Returning to relation (4.4) we deduce that for all t > 0

(A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) ≥ a3

∫ 1

0

|ζ + t(ξ − ζ)|p(x)−2|ξ − ζ|2dt. (4.6)

Choosing t = 1/3 we deduce that

|ζ + t(ξ − ζ)| ≥ max{|ξ|, |ζ|} − |ξ − ζ|
3

≥ |ξ − ζ|
3

.

Thus, by (4.6), we conclude that there exists C1 > 0 such that

(A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ) ≥ C1|ξ − ζ|p(x).

(ii) Assume that 1 < p(x) < 2. Using assumption (A3) we have
N∑

i,j=1

∂ϕi(x, ξ)
∂ξj

ζiζj ≥ a3 min{1, |ξ|p(x)−2}|ζ|2.

It follows that

(A(x, |ξ|)ξ − A(x, |ζ|)ζ) · (ξ − ζ)

=
N∑

i,j=1

∫ 1

0

∂ϕi

∂zj
(x, ζ + t(ξ − ζ))(ξi − ζi)(ξj − ζj)dt

≥ a3

∫ 1

0

min{1, |ζ + t(ξ − ζ)|p(x)−2}|ξ − ζ|2dt

≥ C|ξ − ζ|2 min{1, (|ξ| + |ζ|)p(x)−2}.
This completes the proof.

Remark 4.2. Taking into account the expression of E ′
0 in (4.2), Lemma 4.1 implies

that the operator E ′
0 : W

1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is strictly monotone. This fact is

in accordance with the hypotheses imposed in [7, Sec. 13.4].

5. Proof of Theorem 3.1

By the results in the previous section, in order to find a solution of problem (3.1),
it is enough to show that the energy functional E has a nontrivial critical point.
For this purpose we first check that E has a mountain pass geometry and then we
show that E satisfies the Palais–Smale condition.

By hypotheses (f1) and (f3), for all ε > 0 there exists Cε > 0 such that for all
(x, u) ∈ Ω × R

|F (x, u)| ≤ ε|u|p+ + Cε|u|q(x).

Thus, by (A3) and (A4)

E(u) ≥ C|∇u|p+

p(·) −
∫

Ω

(ε|u|p+ + Cε|u|q(x))dx

≥ C1‖u|p+

W
1,p(x)
0 (Ω)

− ε‖u|p+

W
1,p(x)
0 (Ω)

− C2(ε)|u|q−q(·).
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By (f1) we know that p+ < q−. This implies that there exists ε > 0 small enough
and there are positive numbers r and ρ such that E(u) ≥ ρ for all u ∈ W

1,p(x)
0 (Ω)

with ‖u|
W

1,p(x)
0 (Ω)

= r.
We now check the second geometric assumption in the mountain pass theorem,

namely the existence of a “valley”. Fix ϕ ∈ W
1,p(x)
0 (Ω)\{0} and t > 0. We have

E(tϕ) =
∫

Ω

(∫ t|∇ϕ(x)|

0

sA(x, s)ds

)
dx −

∫
Ω

F (x, tϕ)dx. (5.1)

Hypothesis (f3) implies that there are α > p+ and positive constants A, B such
that for all (x, u) ∈ Ω × R

F (x, u) ≥ A|u|α − B. (5.2)

For fixed x ∈ Ω and z ∈ R
N , consider the differentiable function

h(t) :=
∫ t|z|

0

sA(x, s)ds, t > 0.

It follows that h′(t) = t |z|2A(x, t|z|). Thus, by (A4),

h′(t) =
1
t
(t|z|)2A(x, t|z|) ≤ p+

t

∫ t|z|

0

sA(x, s)ds =
p+

t
h(t).

By integration we deduce that for all t > 0

h(t) =
∫ t|z|

0

sA(x, s)ds ≤ Ctp+ , (5.3)

where

C = C(x, z) =
∫ |z|

0

sA(x, s)ds.

Using estimates (5.2) and (5.3), relation (5.1) yields

E(tϕ) ≤ C(ϕ)tp+ − C1t
α + C2, (5.4)

where C(ϕ), C1, C2 are positive constants. Since α > p+, relation (5.4) shows that
E(tϕ) < 0 for t large enough.

Next, we show that E satisfies the Palais–Smale condition. For this purpose we
need the following auxiliary result, which extends a classical property in functional
analysis.

Lemma 5.1. Let (un) be a sequence in W
1,p(x)
0 (Ω) that converges weakly to u and

such that

lim sup
n→∞

(E ′
0(un) − E ′

0(u))(un − u) ≤ 0.

Then (un) converges strongly in W
1,p(x)
0 (Ω).

Proof. We already know (see Remark 4.2) that E ′
0 is a monotone operator, hence

(E ′
0(un) − E ′

0(u))(un − u) ≥ 0.
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Therefore

lim
n→∞(E ′

0(un) − E ′
0(u))(un − u) = 0. (5.5)

But

(E ′
0(un) − E ′

0(u))(un − u)

=
∫

Ω

(A(x, |∇un|)∇un − A(x, |∇u|)∇u) · (∇un −∇u)dx.

We claim that ∫
Ω

|∇un −∇u|p(x)dx → 0 as n → ∞, (5.6)

which implies that (un) converges strongly to u in W
1,p(x)
0 (Ω).

We have∫
Ω

|∇un −∇u|p(x)dx =
∫

Ω+

|∇un −∇u|p(x)dx +
∫

Ω−
|∇un −∇u|p(x)dx,

where

Ω+ := {x ∈ Ω; p(x) ≥ 2}, Ω− := {x ∈ Ω; 1 < p(x) < 2}.
Using Lemma 4.1 we obtain∫

Ω+

(A(x, |∇un|)∇un − A(x, |∇u|)∇u) · (∇un −∇u)dx

≥ C1

∫
Ω+

|∇un −∇u|p(x)dx (5.7)

and ∫
Ω−

(A(x, |∇un|)∇un − A(x, |∇u|)∇u) · (∇un −∇u)dx

≥ C2

∫
Ω−

min{1, (|∇un| + |∇u|)p(x)−2}|∇un −∇u|2dx. (5.8)

Applying Hölder’s inequality we obtain∫
Ω−

|∇un −∇u|p(x)dx

≤ C

(∫
Ω−

min{1, (|∇un| + |∇u|)p(x)−2}|∇un −∇u|2dx

)γ

, (5.9)

where γ is a positive constant.
Relations (5.7), (5.8) and (5.9) imply our claim (5.6). This concludes the proof

of lemma.

Returning to the proof of Theorem 3.1, it remains to show that E satisfies the
Palais–Smale condition. For this purpose, let (un) be a sequence in W

1,p(x)
0 (Ω) such



July 29, 2015 9:23 WSPC/S0219-5305 176-AA 1450042

656 D. Repovš

that E(un) → c ∈ R and E ′(un) → 0 in W−1,p′(x)(Ω). We first prove that

(un) is bounded in W
1,p(x)
0 (Ω). (5.10)

Using hypotheses (A4) and (f2) we have as n → ∞
O(1) + o(‖un‖) = E(un) − 1

µ
E ′(un)(un)

=
∫

Ω

(∫ |∇un|

0

sA(x, s)ds − 1
µ

A(x, |∇un|)|∇un|2
)

dx

+
∫

Ω

(f(x, un)un − F (x, un))dx

≥
(

1 − p+

µ

)∫
Ω

(∫ |∇un|

0

sA(x, s)ds

)
dx

+
∫

Ω

(f(x, un)un − F (x, un))dx

≥
(

1 − p+

µ

)∫
Ω

(∫ |∇un|

0

sA(x, s)ds

)
dx + O(1).

Since µ > p+, we obtain∫
Ω

(∫ |∇un|

0

sA(x, s)ds

)
dx = O(1) as n → ∞.

Using now (A2) we deduce that∫
Ω

|∇un|p(x) = O(1) as n → ∞,

which proves our claim (5.10).
Next, we show that if (un) is bounded in W

1,p(x)
0 (Ω) and satisfies for all v ∈

W
1,p(x)
0 (Ω)

E ′(un)(v) =
∫

Ω

A(x, |∇un|)∇un · ∇vdx −
∫

Ω

f(un)vdx = o(1) as n → ∞

then (un) is relatively compact. Using (f1), it is enough to show that a subsequence
of (|un|q(x)−1) is convergent in W−1,p′(x)(Ω). By Sobolev embeddings for variable
exponents, this property follows if we show that (|un|q(x)−1) is relatively compact
in the variable exponent Lebesgue space LNp(x)/[(N+1)p(x)−N ](Ω), which is the dual
space of Lp∗(x)(Ω).

We first observe that, up to a subsequence,

un → u ∈ Lp∗(x)(Ω) a.e. as n → ∞.

Fix δ > 0. Applying the Egorov theorem, there exists an open set ω ⊂ Ω with
|ω| < δ such that

un → u uniformly in Ω\ω.
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This shows that it is enough to prove that∫
ω

||un|q(x)−1 − |u|q(x)−1|Np(x)/[(N+1)p(x)−N ]dx

can be made arbitrarily small.
Applying the Young inequality we find that there exists C > 0 such that∫

ω

(|u|q(x)−1)Np(x)/[(N+1)p(x)−N ]dx ≤ C

∫
ω

(|u|p∗(x) + 1)dx,

which can be made as small as we wish, by choosing δ > 0 small enough.
Fix ε > 0. Since q(x) < p∗(x), there exists Cep > 0 such that for all n∫

ω

(|un|q(x)−1)Np(x)/[(N+1)p(x)−N ]dx ≤ ε

∫
ω

|un|p∗(x)dx + Cε|ω|.

Using now (5.10) in combination with Sobolev embeddings for variable exponents
we obtain ∫

ω

(|un|q(x)−1)Np(x)/[(N+1)p(x)−N ]dx ≤ Cε + Cε|ω|,
which can be made small enough by choosing δ > 0 sufficiently small.

This concludes the proof of the Palais–Smale property and of Theorem 3.1. �

6. Proof of Theorem 3.2

The spaces W
1,p(x)
0 (Ω) and W−1,p′(x)(Ω) are reflexive and separable Banach spaces.

Thus, by [12], there exist {ej} ⊂ X and {e∗j} ⊂ X∗ such that

W
1,p(x)
0 (Ω) = span{ej : j = 1, 2, . . .},

W−1,p′(x)(Ω) = span{e∗j : j = 1, 2, . . .}
and

〈ei, e
∗
j 〉 =

{
1 if i = j,

0 if i �= j,

where 〈· , ·〉 denotes the duality product between X and X∗. We define

Xj = span{ej}, Yk =
k⊕

j=1

Xj , Zk =
∞⊕

j=k

Xj.

The proof of Theorem 3.2 is based on the following basic critical point theorem.

Theorem 6.1 (Fountain theorem, see [26]). Let E ∈ C1(X) be an even
functional, where (X, ‖ · ‖) is a separable and reflexive Banach space. Suppose that
for every k ∈ N large enough, there exist ρk > rk > 0 such that

(i) inf{E(u) : u ∈ Zk, ‖u‖ = rk} → +∞ as k → +∞;
(ii) max{E(u) : u ∈ Yk, ‖u‖ = ρk} ≤ 0;
(iii) E satisfies the Palais–Smale condition for every c > 0.

Then E has a sequence of critical values tending to +∞.
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The energy functional E is even and satisfies the Palais–Smale condition. We
show that hypotheses (i) and (ii) in the statement of Theorem 6.1 are fulfilled.

Verification of (i). Fix u ∈ Zk with ‖u‖ = rk, where rk > 0 will be specified
later. Using hypotheses (A3), (A4) and (f1) we obtain

E(u) =
∫

Ω

(∫ |∇u(x)|

0

sA(x, s)ds − F (x, u)

)
dx

≥ c1 |∇u|p−
p(·) − c2

∫
Ω

(1 + |u|q(x))dx

≥ C1‖u‖p− − C2 max{|u|q+

q(·), |u|q−q(·)} − C3.

Assuming that max{|u|q+

q(·), |u|q−q(·)} = |u|q+

q(·), we obtain the estimate

E(u) ≥ C1 ‖u‖p− − C2 |u|q+

q(·) − C3.

Denote

αk = sup{|u|Lq(x)(Ω); ‖u‖ = 1, u ∈ Zk}.
Then limk→∞ αk = 0, see [10].

Since u ∈ Zk, we deduce that

E(u) ≥ C1 ‖u‖p− − C2 α
q+
k ‖u‖q+ − C3.

Since p− < q+ and αk → 0, it follows that

rk :=
(

C2

C1
α

p+
k

)1/(p−−q+)

→ +∞ as k → ∞.

Taking ‖u‖ = rk we conclude that E(u) → +∞, hence (i) is fulfilled.

Verification of (ii). Fix u ∈ Yk with ‖u‖ = 1 and let ρk be a positive number,
which will be defined later. We have seen in relation (5.4) that there exists α > p+

such that

E(ρku) ≤ C1(u)ρp+
k − C2ρ

α
k + C3,

where C1, C2, C3 are positive constants. Taking ρk > rk and using the fact that
α > p+, we deduce that E(ρku) → −∞ as k → ∞. This implies that

max{E(u); u ∈ Yk, ‖u‖ = ρk} ≤ 0,

for every ρk large enough. Applying the fountain theorem, we complete the proof
of Theorem 3.2. �

7. Proof of Theorem 3.3

For all u ∈ W
1,p(x)
0 (Ω) we define

I(u) :=
∫

Ω

(∫ |∇u(x)

0

sA(x, s)ds

)
dx and J(u) :=

∫
Ω

F (x, u)dx.
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It follows that

λ1 = inf
u∈W

1,p(x)
0 (Ω)\{0}

I(u)
J(u)

.

Let (un) ⊂ W
1,p(x)
0 (Ω) such that un ⇀ u. We prove that

I(u) ≤ lim inf
n→∞ I(un) and J(u) = lim

n→∞ J(un). (7.1)

Since E ′
0 is monotone, it follows that I is convex. Therefore

I(un) ≥ I(u) + I ′(u)(un − u),

hence lim infn→∞ I(un) ≥ I(u).
Next, using assumptions (f1) and (f3) we deduce that there is a positive constant

C such that for all (x, u) ∈ Ω × R

|F (x, u)| ≤ |u|p+ + C|u|q(x). (7.2)

Since p(x), q(x) < p∗(x) and (un) is bounded in W
1,p(x)
0 (Ω) we can assume that,

up to a subsequence, un → u both in Lp+(Ω) and in Lq(x)(Ω). Using relation (7.2)
we deduce that J(un) → J(u) as n → ∞.

Our hypotheses imply that for all u ∈ W
1,p(x)
0 (Ω) with ‖u‖ small enough we

have

I(u) ≥ C1‖u‖p+

and

0 ≤ J(u) =
∫

Ω

F (x, u)dx ≤ C

∫
Ω

|u|q(x)

q(x)
dx

≤ C2|u|q+

q(·) + C3|u|q−q(·) ≤ C2‖u‖q+ + C3‖u‖q− .

Since p+ < q− we deduce that

lim
‖u‖→0

I(u)
J(u)

= +∞. (7.3)

Using hypothesis (A5) and similar energy estimates as above we deduce that

lim
‖u‖→∞

I(u)
J(u)

= +∞. (7.4)

Step 1. We prove that λ1 > 0.
Our assumptions imply that λ1 ≥ 0. Arguing by contradiction and supposing

that λ1 = 0, we find a sequence (un) ⊂ W
1,p(x)
0 (Ω)\{0} such that

lim
n→∞

I(un)
J(un)

= 0. (7.5)

We have already remarked that
I(u)
J(u)

≥ C1 min{‖u‖p+ , ‖u‖p−}
C2‖u‖q+ + C3‖u‖q−

. (7.6)

Since p+ < q−, relations (7.5) and (7.6) imply that (un) is unbounded. Using now
(7.4) we contradict our assumption (7.5).
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Step 2. We show that problem (3.3) has a solution for λ = λ1.
Let (un) ⊂ W

1,p(x)
0 (Ω)\{0} be such that

lim
n→∞

I(un)
J(un)

= λ1. (7.7)

Using (7.1) we deduce that (un) is bounded. Thus, up to a subsequence,

un ⇀ u in W
1,p(x)
0 (Ω).

Assuming now that u = 0, relation (7.1) shows that J(un) → 0. Thus, by (7.7), we
also have I(un) → 0. But for all u ∈ W

1,p(x)
0 (Ω)

I(u) ≥ C1 min{‖u‖p+, ‖u‖p−}.
We deduce that ‖un‖ → 0. Using now relation (7.4) we obtain a contradiction. This
proves that u �= 0. Using now (7.1) we conclude that I(u) = λ1J(u), hence λ1 is an
eigenvalue of problem (3.3).

Step 3. Every λ > λ1 is an eigenvalue of problem (3.3).
Fix λ > λ1. The energy functional associated to problem (3.3) is

Eλ(u) := I(u) − λJ(u).

Relation (7.4) shows that Eλ is coercive, that is, Eλ(u) → +∞ as ‖u‖ → ∞. But, by
(7.1), Eλ is lower semi-continuous, hence it has a global minimizer w ∈ W

1,p(x)
0 (Ω).

On the other hand, since λ > λ1, there exists v ∈ W
1,p(x)
0 (Ω) such that

λ1 <
I(v)
J(v)

< λ.

This shows that Eλ(v) < 0, so Eλ(w) < 0. We conclude that w �= 0 and w is a
critical point of Eλ, hence a nontrivial solution of problem (3.3). �

Acknowledgments

The author acknowledges the support by the Slovenian Research Agency grants
P1-0292-0101, J1-4144-0101 and J1-5435-0101.

References

[1] M. J. Ablowitz, B. Prinari and A. D. Trubatch, Discrete and Continuous Nonlinear
Schrödinger Systems (Cambridge University Press, Cambridge, 2004).
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