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We are concerned with the qualitative analysis of positive singular solutions with blow-up
boundary for a class of logistic-type equations with slow diffusion and variable potential.
We establish the exact blow-up rate of solutions near the boundary in terms of Karamata
regular variation theory. This enables us to deduce the uniqueness of the singular solution.
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1. Introduction

Let X be a bounded domain with smooth boundary in RN ; N P 1. Assume f : [0,1) ? [0,1) is a locally Lipschitz contin-
uous function such that
f ð0Þ ¼ 0 and f ðtÞ > 0 for t > 0 ð1Þ
and
f is nondecreasing: ð2Þ
Consider the basic population model described by the logistic problem
Du ¼ f ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X:

8><
>: ð3Þ
All smooth functions satisfying problem (3) are called large (or blow-up boundary) solutions.
Under assumptions (1) and (2), Keller [13] and Osserman [17] proved that problem (3) has a solution if and only if
Z þ1 1ffiffiffiffiffiffiffiffiffiffi

FðuÞ
p du < þ1; ð4Þ
where FðuÞ :¼
R u

0 f ðsÞds.
We refer to Ghergu and Rădulescu [10, Theorem 1.1] for an elementary argument that problem (3) cannot have any solu-

tion if f has a sublinear or a linear growth, hence it does not satisfy condition (4). We point out that the original approach is
due to Dumont et al. [8], who removed the monotonicity assumption (2) and showed that the key role in the existence of
solutions of problem (3) is played only by the Keller–Osserman condition (4).

Functions satisfying the Keller–Osserman condition have a super-linear growth, such as: (i) f(u) = up (p > 1); (ii) f(u) = eu;
(iii) f(u) = up ln(1 + u) (p > 1); (iv) f(u) = u lnp(1 + u) (p > 2).
. All rights reserved.
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We point out that the study of large solutions was initiated by Bieberbach [2] in 1916 and Rademacher [19] in 1943
for the special case f(u) = eu if N = 2 or N = 3. An important contribution to the study of singular solutions with boundary
blow-up is due to Loewner and Nirenberg [15], who linked the uniqueness of the large solution to the growth rate at the
boundary. Motivated by certain geometric problems, they established the uniqueness of the solution in the case
f(u) = u(N+2)/(N � 2), N P 3.

Cîrstea and Rădulescu studied in [5] (see Du and Guo [7] for the quasilinear case) the perturbed logistic problem
Duþ au ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>: ð5Þ
where a is a real number and b 2 C0;aðXÞ; 0 < a < 1, such that b P 0 and b X 0 in X. Cîrstea and Rădulescu found the whole
range of values of the parameter a such that problem (5) admits a solution and this responds to a question raised by Brezis.
Their analysis includes the case where the potential b(x) vanishes on @X. Due to the fact that u has a singular behavior on the
boundary, this setting corresponds to the ‘‘competition’’ 0 � 1 on @X. The study carried out in [5] strongly relies on the struc-
ture of the subset of X where the potential b vanishes. In particular, it is argued in [5] that problem (5) has a solution for all
values of a 2 R provided that
intfx 2 X; bðxÞ ¼ 0g ¼ ;:
We also refer to Ghergu and Rădulescu [11] for related results.
Our main purpose in this paper is to study the effect of a sublinear perturbation aup (0 < p < 1) in problem (3). This frame-

work corresponds to a slow diffusion in the population model. According to Delgado and Suárez, the assumption 0 < p < 1
means that the diffusion, namely the rate of movement of the species from high density regions to low density ones, is
slower than in the linear case corresponding to p = 1, which is described by problem (5).

2. Statement of the problem and main results

We start with the following example of singular logistic indefinite superlinear model. Fix m > 1 and consider the nonlin-
ear problem
Dwm þ aw ¼ bðxÞw2 in X;

lim
x!@X

wðxÞ ¼ þ1;

w > 0 in X:

8><
>: ð6Þ
This problem can be regarded as a model of a steady-state single species inhabiting in X, so w(x) stands for the population
density. The parameter a represents the growth rate of the species while the term m > 1 was introduced by Gurtin and MacC-
amy [12] to describe the dynamics of biological population whose mobility depends upon their density. We refer to Li et al.
[14] for a study of problem (6) in the case of multiply connected domains and subject to mixed boundary conditions.

The change of variable u = wm transforms problem (6) into
Duþ aup ¼ bðxÞuq in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>: ð7Þ
where p = 1/m 2 (0,1) and q = 2/m. As stated in the previous section, it is expected that this problem has a solution in the
super-linear setting, that is, provided that m < 2.

In this paper we study the more general problem
Duþ agðuÞ ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>:
where g has a sublinear growth and f is a function satisfying the Keller–Osserman condition such that the mapping f/g is
increasing in (0,1). To fix the ideas, we consider the model problem
Duþ aup ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X:

8><
>: ð8Þ
In order to describe our main result we recall some basic notions and properties from the Karamata theory of functions
with regular variation at infinity. We refer to Bingham et al. [3] and Seneta [20] for more details.
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A positive measurable function R defined on [A,1), for some A > 0, is called regularly varying (at infinity) with index q 2 R,
written R 2 Rq, if for all n > 0
lim
u!1

RðnuÞ=RðuÞ ¼ nq:
If R : [A,1) ? (0,1) is measurable and Lebesgue integrable on each finite subinterval of [D,1), then R varies regularly if and
only if there exists j 2 R such that
lim
u!1

ujþ1RðuÞR u
D xjRðxÞdx

ð9Þ
exists and is a positive number, say aj + 1. In this case, R 2 Rq with q = aj � j. Moreover, by a theorem established in 1933 by
Karamata, if R 2 Rq is Lebesgue integrable on each finite subinterval of [D,1), then the limit defined by (9) is q + j + 1, for
every j > �q � 1. We also point out that if S 2 C1[A,1), then S0 2 Rq with q > �1 if and only if, for some m > 0, C > 0 and
B > A, we have
SðuÞ ¼ Cum exp
Z u

B

yðtÞ
t

dt
� �

for all u P B;
where y 2 C[B,1) satisfies limu?1y(u) = 0. In this case, S0 2 Rq with q = m � 1.
As was established in Cîrstea and Rădulescu [4], if f 0 2 Rq then q P 0 and, furthermore, if q > 0 then f satisfies the Keller–

Osserman condition, provided that f is increasing.
Next, we denote by K the Karamata class containing all positive, increasing C1-functions k defined on (0,m), for some m > 0,

which satisfy limt!0þ

R t

0
kðsÞds

kðtÞ

� �ðiÞ
:¼ ‘i; i ¼ 0;1. A straightforward computation shows that ‘0 = 0 and ‘1 2 [0,1], for every

k 2 K. We refer to Lemma 2 in [4], where it is argued that ‘1 can actually assume any value in [0,1].
Throughout this work we assume that a is a real parameter and b 2 C0;aðXÞ; 0 < a < 1, such that b P 0 and b X 0 in X.

We also assume that f : [0,1) ? [0,1) is a locally Lipschitz continuous function that satisfies hypotheses (1), (4) and
the mapping ð0;1Þ 3 u #
f ðuÞ
up

is increasing: ð10Þ
Our first result establishes the existence of a unique positive singular solution of problem (8). The existence is deduced by
means of a suitable comparison principle in the case of semilinear elliptic equations without boundary condition. Next, we
use this existence result to study the same nonlinear elliptic equation with sublinear perturbation in the framework of non
simply connected domains and subject to mixed boundary condition. In both cases, the uniqueness of the solution follows
after establishing the blow-up rate of an arbitrary solution near the boundary. Throughout this paper we denote
d(x) :¼ dist(x,@X), for all x 2X.

Theorem 1. Assume conditions (1), (4) and (10) are fulfilled. Then problem (8) has at least one solution.

Assume hypotheses (1), (10) and f 2 Rqþ1 with q > 0. Assume the potential b(x) satisfies
bðxÞ ¼ ck2ðdðxÞÞ þ oðk2ðdðxÞÞ as dðxÞ ! 0;
where c is a positive number and k 2 K. Then, for all real number a, problem (8) has a unique solution ua and
uaðxÞ ¼ n0hðdðxÞÞ þ oðhðdðxÞÞ as dðxÞ ! 0; ð11Þ
where h is uniquely defined by
Z 1

hðtÞ

dsffiffiffiffiffiffiffiffiffi
FðsÞ

p ¼
ffiffiffi
2
p Z t

0
kðsÞds ð12Þ
and
n0 ¼
2þ q‘1

ð2þ qÞc

� �1=q

:

The existence result described in the first part of Theorem 1 is in contrast with the corresponding one for the linear per-
turbed case studied in Cîrstea and Rădulescu [5]. In their analysis a key role is played by the set X0 :¼ int{x 2X; b(x) = 0}. Let
H1 define the Dirichlet Laplacian on the set X0 ��X as the unique self-adjoint operator associated to the quadratic form
wðuÞ ¼

R
X jruj2dx with form domain
H1
DðX0Þ ¼ u 2 H1

0ðXÞ; uðxÞ ¼ 0 for a:e: x 2 X nX0

n o
:

If @X0 satisfies an exterior cone condition, then H1
DðX0Þ coincides with H1

0ðX0Þ and H1 is the classical Laplace operator with
Dirichlet condition on @X0. Let k1,1 be the first Dirichlet eigenvalue of H1 in X0. If X0 = ; then k1,1 = +1.
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The main result in [5] asserts that problem (8) (for p = 1) has a solution if and only if a 2 (�1,k1,1). By contrast, our result
established in Theorem 1 shows that the perturbation aup is small enough provided that 0 < p < 1 and this does not affect the
existence of blow-up boundary solutions in the sublinear setting we have described above. The basic assumption 0 < p < 1
allows us to construct an appropriate super-solution for problem (8) for all a 2 R. Similar argument is no more possible pro-
vided that p = 1.

We can also see problem (8) as a perturbation of the blow-up boundary logistic equation
Du ¼ bðxÞf ðuÞ in X;

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X;

8><
>:
where f is a positive increasing function satisfying the Keller–Osserman condition. Combining our result with those obtained
in Cîrstea and Rădulescu [4,5] we may assert the following: (i) in the sublinear case 0 < p < 1, the perturbed Eq. (8) has a un-
ique solution for all a 2 R; (ii) in the linear perturbed case p = 1, the problem (8) has a (unique) solution if and only if
a < k1,1 6 +1.

Next, we assume that ;– X0 � X. We denote D :¼ X nX0 and we assume that b > 0 in D. We are now concerned with the
nonlinear problem
Duþ aup ¼ bðxÞf ðuÞ in D;

u ¼ 0 on @X;

lim
x!@X0

uðxÞ ¼ þ1;

u > 0 in D:

8>>>><
>>>>:

ð13Þ
It is striking to observe that solutions of problem (13) fulfill similar properties as those established in Theorem 1. A related
result can be found in Cîrstea and Rădulescu [6].

Theorem 2. Assume conditions (1), (4) and (10) are fulfilled. Then problem (13) has a minimal and a maximal solution.
Assume hypotheses (1), (10) and f 2 Rqþ1 with q > 0. Assume the potential b(x) satisfies
bðxÞ ¼ c k2ðdðxÞÞ þ oðk2ðdðxÞÞ as dðxÞ ! 0;
where c is a positive number and k 2 K. Then, for all real number a, problem (13) has a unique solution ua and
uaðxÞ ¼ n0 hðdðxÞÞ þ oðhðdðxÞÞ as dðxÞ ! 0;
where h is uniquely defined by
Z 1

hðtÞ

dsffiffiffiffiffiffiffiffiffi
FðsÞ

p ¼
ffiffiffi
2
p Z t

0
kðsÞds
and
n0 ¼
2þ q‘1

ð2þ qÞc

� �1=q

:

Theorems 1 and 2 can be extended to a Riemannian manifold setting if the Laplace operator is replaced by the Laplace–
Beltrami differential operator
DB :¼ 1ffiffiffi
d
p @

@xi

ffiffiffi
d
p

aijðxÞ
@

@xi

� �
; d :¼ detðaijÞ
with respect to the metric ds2 = bijdxidxj, where (bij) denotes the inverse of (aij). We refer, e.g., to Loewner and Nirenberg [15],
where X is replaced by the sphere (SN,g0) and D is the Laplace–Beltrami operator Dg0

.

3. Proofs of the main results

A central role is played by the following comparison principle for logistic-type equations with sublinear perturbation. The
proof relies on some ideas introduced by Benguria et al. [1] (see also Marcus and Véron [16, Lemma 1.1], Cîrstea and Rădule-
scu [5, Lemma 1], Du and Guo [7]).

Lemma 3. Let D be a bounded domain in RN with smooth boundary. Assume a is a real number and let h, r be C0,a-functions in D
such that h P 0 and r P 0 in D. Let u1,u2 2 H1(D) be positive continuous functions such that
Du1 þ aup
1 � hðxÞf ðu1Þ þ rðxÞ 6 0 6 Du2 þ aup

2 � hðxÞf ðu2Þ þ rðxÞ in D0ðDÞ ð14Þ
and
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lim sup
x!@D

ðu2ðxÞ � u1ðxÞÞ 6 0; ð15Þ
where f is continuous on [0,1) such that the mapping f(t)/tp is increasing for infD(u1,u2) < t < supD(u1,u2).
Then u1 P u2 in D.
Proof. Relation (14) implies that for all w 2 C2
c ðDÞ with w P 0 we have
Z

D
ru1rw� aup

1wþ hf ðu1Þw� rw
� �

dx P 0 P
Z

D
ru2rw� aup

2wþ hf ðu2Þw� rw
� �

dx: ð16Þ
Relation u1 P u2 in D is equivalent to G:¼{x 2 D; u1(x) < u2(x)} = ;. Fix e > 0 small enough and denote
DðeÞ :¼ fx 2 D; u2ðxÞ > u1ðxÞ þ eg:
For i = 1, 2 we set
v i ¼ ðui þ eiÞ�pððu2 þ e2Þ1þp � ðu1 þ e1Þ1þpÞþ;
where e1 = 2e, e2 = e. Thus, vi 2 H1(D) and it vanishes outside the set D. Using ow assumption (15), we have D(e) �� D. Hence,
vi can be approximately in the H1 \ L1 topology on D by nonnegative C2 functions vanishing near @D. It follows that relation
(16) holds with vi instead of w. We deduce that
Z

DðeÞ
ðru2rv2 �ru1rv1Þdxþ

Z
DðeÞ

hðxÞðf ðu2Þv2 � f ðu1Þv1Þdx 6
Z

DðeÞ
a up

2v2 � up
1v1

� �
dxþ

Z
DðeÞ

rðxÞðv2 � v1Þdx: ð17Þ
With a straightforward computation, as in the proof of Lemma 1 in [5], we deduce that
ru2rv2 �ru1rv1 ¼ 1þ p
u2 þ e

u1 þ 2e

� �1þp
" #

jru1j2 þ 1þ p
u1 þ 2e
u2 þ e

� �1þp
" #

jru2j2

� ð1þ pÞ u2 þ e
u1 þ 2e

� �p

þ u1 þ 2e
u2 þ e

� �p	 

ru1 � ru2 P 0: ð18Þ
Since f(t)/(t + e)p is increasing on (0,1), we find
f ðu1Þ
ðu1 þ 2eÞp

<
f ðu1 þ eÞ
ðu1 þ 2eÞp

<
f ðu2Þ
ðu2 þ eÞp

in DðeÞ:
Thus, all the integrands on the left-hand side of (17) are nonnegative, while the second term on the right-hand side of (17)
equals to
�
Z

DðepÞ
rðxÞ ½ðu2 þ eÞ1þp � ðu1 þ 2eÞ1þp�½ðu2 þ eÞp � ðu1 þ 2eÞp�

ðu1 þ 2eÞpðu2 þ eÞp
dx 6 0: ð19Þ
Relations (17)–(19) show that limsupe?0Ae P 0, where
Ae :¼
Z

DðeÞ
up

2v2 � up
1v1

� �
dx:
A precise answer is given in what follows. We point out that the result stated below is obvious in the linear case that cor-
responds to p = 1, see Cîrstea and Rădulescu [5]. h
Claim. We have lime?0Ae = 0.
Proof of Claim. Fix g > 0 and q > 0 such that qp(1 + q) < g. Set
D1ðe;qÞ :¼ fx 2 DðeÞ; u2ðxÞ < qg and D2ðe;qÞ :¼ DðeÞ n D1ðe;qÞ:
We first observe that for all e 2 (0,1),
Z
D1ðe;qÞ

up
2v2 � up

1v1
� �

dx ¼
Z

D1ðe;qÞ

up
2

ðu2 þ eÞp
� up

1

ðu1 þ 2eÞp
� �

½ðu2 þ eÞ1þp � ðu1 þ 2eÞ1þpÞ�dx

6

Z
D1ðe;qÞ

up
2ðu2 þ eÞ þ up

1ðu1 þ 2eÞ
� �

dx 6 CðX; kÞg:
In order to estimate the integral of the same quantity over D2(e,q) we first observe that there is some C1 > 0 such that for
all e 2 (0,1) and for any x 2 D2(e,q), we have up

1ðxÞ=ðu1ðxÞ þ 2eÞ 6 C1. This follows by a contradiction argument combined
with the assumptions 0 < p < 1 and u2 P q on D2(e,q). On the other hand, by the same argument as in Du and Guo [7, p.
283], there exists C2 > 0 such that for all e 2 (0,1) and for any x 2 D2(e,q),
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ðu2 þ eÞ1þp � ðu1 þ 2eÞ1þp
6 C2:
This enables us to conclude that
lim sup
e!0

Z
D2ðe;qÞ

up
2

ðu2 þ eÞp
� up

1

ðu1 þ 2eÞp
� �

½ðu2 þ eÞ1þp � ðu1 þ 2eÞ1þpÞ�dx 6 0:
Therefore
0 6 lim inf
e!0

Ae 6 lim sup
e!0

Z
D1ðe;qÞ

up
2v2 � up

1v1
� �

dx 6 CðX; kÞg;
for all g > 0. Since limsupe?0Ae P 0, our claim follows.
It now remains to observe that the set G is empty. We argue by contradiction and assume that G – ;. Fix arbitrarily x0 2 G

and take a small closed ball B centered at x0 such that B � G. Since minB(u2 � u1) ¼: m > 0, we deduce that B � D(e) for all
e 2 (0,m). But
0 6
Z

B
ðru2rv2 �ru1rv1Þdxþ

Z
B

hðxÞðf ðu2Þv2 � f ðu1Þv1Þdx�
Z

B
rðxÞðv2 � v1Þdx 6 a

Z
DðeÞ

up
2v2 � up

1v1
� �

dx:
Letting e ? 0+ we deduce that for all x 2 B,
ru1ðxÞ
u1ðxÞ

¼ ru2ðxÞ
u2ðxÞ

and hðxÞ ¼ 0:
Since x0 2 G is arbitrary, we obtainr(lnu2 � lnu1) = 0 and h � 0 in G. But h X 0 in D, hence G – D. Thus, @G \ D – ;. We take
x0 2 @G \ D and x � G such that x0 2 @x. Hence u1(x0) = u2(x0) and r(lnu2 � lnu1) � 0 in x, hence u2/u1 � C > 0 in x. By con-
tinuity we deduce that C = 1, which shows that u1 = u2 in x. This contradicts x � G. Thus, u1 P u2 in D and this concludes the
proof of our lemma. h
Lemma 4. Let D be a bounded domain in RN with smooth boundary. Assume h, k and r are C0,a-functions in D such that h > 0,
k P 0 and r P 0 in D. Then for any non-negative function 0 X U 2 C0,a(@D), the nonlinear problem
Duþ kðxÞup ¼ hðxÞf ðuÞ � rðxÞ in D;

u > 0 in D;

u ¼ U on @D

8><
>: ð20Þ
has a unique solution.
Proof. We first observe that, by Lemma 3, problem (20) has at most one solution. To prove the existence of a solution we use
the method of lower and upper solutions. Due to the sublinear perturbation k(x)up, the construction provided in the proof of
Lemma 2 in [5] does not apply to our framework. However, we observe that U(x) = 0 is a sub-solution of (20). Next, we con-
struct a positive super-solution of (20) and, by the maximum principle, we argue that this solution is positive in D.

Consider UðxÞ ¼ Mu1ðxÞ, where M > 0 is big enough and u1 > 0 is an eigenfunction of the Laplace operator in H1
0ðXÞ, where

X � RN is a smooth bounded domain such that D � �X. Since 0 < p < 1 and M > 0 is large, we deduce that U is a super-
solution of problem (20). Thus, problem (20) has a solution u0 such that 0 6 u0 6Mu1 in D. By standard Schauder and Hölder
bootstrap arguments, u0 is a classical solution of problem (20).

It remains to argue that u0 > 0 in D. Indeed, since u0 6Mu1 and the mapping f(u)/up is increasing on (0,1), there is some
C0 > 0 such that h(x)f(u0) 6 C0 for all x 2X. Therefore
�Du0 þ C0 P �Du0 þ hðxÞf ðu0Þ ¼ hðxÞup
0 þ rðxÞP 0 in D:
Since u0 P 0 on @D, the maximum principle (see Pucci and Serrin [18]) implies that u0 > 0 in D. This completes the proof of
Lemma 4. h

By taking U(x) = n in (20) we obtain a sequence of corresponding solutions (un) such that un 6 un+1 in D. We now argue
that (un) is locally bounded in D provided that f satisfies hypotheses (1), (4) and (10). Indeed, let u be a solution of the sin-
gular problem
Du ¼ hf ðuÞ � �k� �r � 1 in D;

lim
x!@D

uðxÞ ¼ þ1

u > 0 in D;

8>><
>>: ð21Þ
where h ¼minDhðxÞ; �k ¼maxDkðxÞ, and �r ¼maxDrðxÞ. Such a solution exists according to the general results established in
Dumont et al. [8]. By the maximum principle, un 6 unþ1 6 u in D. Thus, under the assumptions of Lemma 4 and if satisfies
hypotheses (1), (4) and (10), we deduce that (un) converges to a solution of the singular problem
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Duþ kðxÞup ¼ hðxÞf ðuÞ � rðxÞ in D;
lim
x!@D

uðxÞ ¼ þ1;

u > 0 in D:

8><
>:
Lemma 5. Let X be a bounded domain in RN with smooth boundary. Assume conditions (1), (4) and (10) are fulfilled. Let
0 X U 2 C0,a(@X) be a non-negative function and b 2 C0,a(X) be such that b P 0 in X and b > 0 on @X. Then the nonlinear problem
Duþ aup ¼ bðxÞf ðuÞ in X;
u > 0 in X;
u ¼ U on @X;

8<
: ð22Þ
has a unique solution for all a 2 R and 0 < p < 1.
Proof. We follow an idea developed in the proof of Lemma 3 in Cîrstea and Rădulescu [5].
We first observe that, by Lemma 3, problem (22) has at most one solution.

CASE 1: a P 0.
We first observe that the function U = 0 is a lower solution of problem (22).
Let Xi (i = 0,1,2) be sub-domains of X with smooth boundaries such that X0 � �X1 � �X2 � �X. The above
remark shows that the nonlinear singular problem
Duþ aup ¼ bðxÞf ðuÞ in X nX1;

u > 0 in X nX1;

u ¼ þ1 on @X [ @X1

8<
:

has a solution u1. Next, we construct a function u+ 2 C2(X) such that u+ = u1 in XnX2 and u+ = u1 in X1, where u1 > 0 denotes
an eigenvalue of the Laplace operator in H1

0ðX2Þ. Choosing C > 0 big enough, a straightforward argument based on the fact
that 0 < p < 1 shows that the function U ¼ Cuþ is a super-solution of problem (22). Thus, problem (22) has a nonnegative
solution u. With the same arguments as in the proof of Lemma 20 we deduce that u > 0 in X.

CASE 2: a < 0.
This case reduces to the previous one. Indeed, by Case 1, let U be the unique solution of the Dirichlet problem
Du� aup ¼ bðxÞf ðuÞ in X;
u > 0 in X;
u ¼ U on @X:

8<
:

Then U is a sub-solution of problem (22). To construct a super-solution of (22), let G � RN be an open set with smooth
boundary such that X � G. Let u1 > 0 be an eigenfunction of the Laplace operator in H1

0ðGÞ. Then U ¼ Mu1 is a super-solution
of (22) and U P U in X, provided that M > 0 is large enough. The proof of Lemma 5 is now concluded. h
Proof of Theorem 1. We first prove the existence of a solution for the nonlinear logistic equation (8) with lower term per-
turbation. We distinguish two cases, according to the values of the potential function b(x) on @X. First, if b > 0 on @X, then we
apply Lemma 5 for U � n. In such a way we obtain an increasing locally bounded sequence of functions that converges to a
solution of problem (8). Next, if b P 0 on @X, we apply Lemma 4 for U � n, h = b + n�1,k � a P 0, and r � 0. Now, by Lemma 4,
we obtain an increasing sequence which is uniformly bounded on every compact subset of X. Finally, this sequence con-
verges to a solution of problem (8). We refer to Cîrstea and Rădulescu [5, pp. 827–828] for technical details. We also point
out that the case a < 0 can be treated as in the proof of Lemma 5 by means of a comparison argument. An alternative argu-
ment to establish the existence of a solution of problem (8) if a < 0 is based on Theorem 1.3 in Dumont et al. [8] based on the
fact that the mapping g(x,u) :¼ b(x)f(u) � au is a nonnegative smooth function that satisfies the sharpened Keller–Osserman
condition. This concludes the proof of the first part of Theorem 1.

Next, we are concerned with the boundary blow-up rate of ua near @X. We first observe that relation (12) implies that h is
of class C2 in some interval (0,d) and limt!0þhðtÞ ¼ þ1. We also point out that h is strictly convex near the origin; this
follows from
lim
t!0þ

h00ðtÞ
k2ðtÞ

f ðhðtÞnÞ ¼ 2þ q‘1

ð2þ qÞn1þq for all n > 0:
Another direct consequence of this relation is that
lim
t!0þ

hðtÞ
h00ðtÞ

¼ lim
t!0þ

h0ðtÞ
h00ðtÞ

¼ 0:
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Fix 0 < e < c. Our hypotheses imply that there is some d0 > 0 such that h is strictly convex in (0,d0). By continuity, there exists
d1 6 d0 such that for all x 2X with d(x) < d1,
c � eð Þk2ðdðxÞÞ 6 bðxÞ 6 ðc þ eÞk2ðdðxÞÞ:
Set
n�ðxÞ :¼ 2þ q‘1

ðc � 2eÞð2þ qÞ

� �1=q

:

With the same computations as in Cîrstea and Rădulescu [4, pp. 451–452] we deduce that
n� 6 lim inf
x!x0

uaðxÞ
hðdðxÞÞ 6 lim sup

x!x0

uaðxÞ
hðdðxÞÞ 6 nþ:
This implies relation (11).
At this stage, as soon as we know the blow-up rate of any solution ua near @X, it is easy to deduce the uniqueness of the

solution. Indeed, let u and v be solutions of problem (8). Since limd(x)?0u(x)/v(x) = 1, it suffices to apply Lemma 3 to conclude
that u = v. Our proof is now complete. h

We point out that a stronger existence result than Theorem 1 holds. More precisely, with the same assumptions as in The-
orem 1, the nonlinear elliptic problem
Duþ aup þ qðxÞjrujb ¼ bðxÞf ðuÞ in X

lim
x!@X

uðxÞ ¼ þ1;

u > 0 in X

8>><
>>:
has at least one solution, provided that b 2 (0,2] and q 2 C0;aðXÞ is a non-negative function. The proof combines the argu-
ments from the present paper with those developed by Ghergu and Rădulescu [9].

Proof of Theorem 2. We first observe that for any non-negative function 0 X U 2 C0,a(@X0), the problem
Duþ aup ¼ bðxÞf ðuÞ in D;
u ¼ 0 on @X;

u ¼ U on @X0

u > 0 in D

8>>><
>>>:

ð23Þ
has a unique solution. Indeed, let U be the solution of problem (8) if X is replaced by D. Then U is a super-solution of problem
(23) and U = 0 is a sub-solution, hence (23) has at least one solution. Next, the uniqueness follows by Lemma 3.

We now prove that problem (13) has both a minimal and a maximal solution. Let un be the unique solution of problem
(23) for U = n. Thus, by Lemma 3, un 6 un+1 in D. By Theorem 1, problem (8) has a solution u1 if X is replaced with D.
Applying again Lemma 3, we have un 6 u1 in D. This shows that the sequence (un) converges to a solution u of (13), which is
minimal with respect to other possible solutions.

For all n P 1 big enough, let
Dn :¼ x 2 D; distðx; @X0Þ >
1
n

� �
:

Let wn be the minimal solution of problem (13) if D is replaced with Dn. Thus, by Lemma 5, wn P wn+1 in Dn, which shows that
(wn) converges to u, which is a maximal solution of problem (13). A standard regularity argument that combines Schauder
and Hölder estimates ensures that u and u are classical solutions of problem (13).

Hereafter, the proof of Theorem 2 follows along the same lines as the proof of Theorem 1. h
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[6] F. Cîrstea, V. Rădulescu, Extremal singular solutions for degenerate logistic-type equations in anisotropic media, C.R. Acad. Sci. Paris, Ser. I 339 (2004)
119–124.

[7] Y. Du, Z. Guo, Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math. 89 (2003) 277–302.
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[9] M. Ghergu, C. Niculescu, V. Rădulescu, Explosive solutions of elliptic equations with absorption and nonlinear gradient term, Proc. Indian Acad. (Math.

Sci.) 112 (2002) 1–11.
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