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CONTINUOUS SELECTIONS OF NON-LOWER
SEMICONTINUOUS NONCONVEX-VALUED MAPPINGS

Du3aN REPOVS*® AND PAVEL V. SEMENOV**

1. Introduction

While lower semicontinuity of mappings with closed convex values is suffi-
cient for the existence of continuous singlevalued selections, it is of course, not
necessary. For example, one can start by an arbitrary continuous singleval-
ued mapping f : X = Y and then define F(x) to be a subset of Y such that
f(z) € F(z). Then F admits the selection f, but there are no continuity type
restrictions for F. A very natural problem immediately arises. Namely, to find
a weaker version of lower semicontinuity which preserves the existence of singl-
evalued selections. If we can find a lower semicontinuous selection G of a given
convex-valued mapping F, then Michael’s techniques can be used to find a con-
tinuous selection f of a lower semicontinuous mapping Cl(conv(G)) (see {7] or
[14]). Moreover, any selection of Cl(conv(G)) will automatically be a selection of
F. The situation is more complicated for the case of nonconvex-valued mappings
F.

The notion of the function of nonconvexity of a closed subset of a Banach
space was first introduced in [11]. In this paper we consider mappings F' whose
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values F(z) have some common non-decreasing majorant a : (0,00) — [0,1)
for their functions of nonconvexity. In this situation, we have in general, no
information about "nonconvexity” of the values G(z) for a lower semicontinuous
selection G of F. So we replace the property ” F' admits a lower semicontinuous
selection” by the property ” F admits a sufficiently large family of lower semicon-
tinuous selections”. The formalisation of the last property leads us to introduce
some new classes of non-lower semicontinuous mappings.

We denote by D(y, r) the open ball of radius r, centered at an arbitrary point
y of a metric space Y. For any subset A C Y, we put D(A,r) = J{D(y,r) |y €
A} and D(A,00) =Y. For two multivalued mappings F; and F; from X into Y
we denote by F1 NF; the mapping z — F;(z)NF3(z). For a multivalued mapping
F: X Y into a metric space Y and for a real-valued mapping d : X — (0, 00)
we denote by D(F,d) the multivalued mapping z — D(F(z), d{(z)). For a closed-
valued mapping F : X = Y into a metric space Y and for a real-valued mapping
€ : X = (0,00) we say that a continuous singlevalued mapping f : X =+ Y
is an e-selection of F, whenever €(-) is a strong majorant of dist(f(-), F(-)),
ie. g(z) > dist(f(z), F(z)), for every z € X. We use the term function for
singlevalued mappings with values from R.

Definition 1.1. Let A : (0,00) — [1,00) be any function. Then a closed-
valued mapping F : X = Y to a metric space Y is said to be an LSy -mapping if
for every continuous function £ : X — (0, 00) and every continuous e-selection f
of F, the multivalued mapping clos(F N D(f, A(€) - €)) admits a lower semicon-
tinuous selection.

Fach lower semicontinuous mapping F is an LS;-mapping because the in-
tersection F'N D(f, ) is lower semicontinuous. Clearly, each LSy-mapping is an
LS,-mapping, whenever A < u. Next, LS-mappings are exactly those which
admit lower semicontinuous selections. We chose the notation LSj-mapping
as an abbreviation for mappings, having lower semicontinuous selections with
respect to the A-enlargement of open balls”.

Theorem 1.2. Let a : (0,00) = [0,1) and X : (0,00) — [1,00) be any
functions such that \ is locally bounded at the origin and t — a{A(t) - t) - A(t)
has a nondecreasing strong majorant M : (0,00) = [0,1). Then every LSx-
mapping from a paracompact space X into a Banach space Y admits a single-
valued continuous selection, whenever af - ) is a maejorant of the set of functions
of nonconvezity of values F(x), for every x € X.

For constants o and A, the hypotheses of Theorem 1.2 are guaranteed by the
inequality o - A < 1. For the constant A it suffices to assume that the set of all
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functions of nonconvexity of values F(z), z € X, has a nondecreasing majorant
o : (0,00) - [0,1). Various weakenings of lower semicontinuity of convex-valued
mappings for which a continuous singlevalued selections exist (as in the classical
situation) have been intensively studied in the series of papers [1], (2], [5], [6],
[9] (see also [10] and [14], § II.3). Most of them are related to the behaviour
of a different kind of derived mappings (F', Fy, F) of a given mapping. For
the class of so-called quasi-lower semicontinuous mappings (see Definition 2.2
below), the derived mapping F' in the sense of Brown {3] is the largest possible
lower semicontionuous selection of F. For convez-valued quasi l.s.c. mappings
and for a constant A, a property somewhat similar to our Definition 1.1 was
obtained in [9]. We state the following fact related to Definition 1.1:

Theorem 1.3. Every quasi-lower semicontinuous mapping of a paracompact
space into a complete metric space is an LSx-mapping, for each continuous real-
valued function A : (0,00) — (1, 00).

We derive the following theorem from Theorems 1.2 and 1.3.

Theorem 1.4. Let a : (0,00) — [0,1) be a nondecrasing function. Then
every quasi-lower semicontinuous mapping F from a paracompact space X into
a Banach space admits a singlevalued continuous selection, whenever a(-) is a
magjorant of the set of functions of nonconvezity of values F(x), for everyz € X.

We list some special cases of Theorem 1.4. For a(-) = 0 and any l.s.c. map-
ping F it yields the Michael convex-valued selection theorem [7}. Fora(-) =¢ <
1 and any lL.s.c. mapping F we get the Michael paraconvex-valued selection theo-
rem (8]. For a(-) = 0 and weakly Hausdorff 1.s.c. F' (respectively, weakly l.s.c. or
quasi l.s.c. F) it gives the DeBlasi-Myjak’s (respectively, Przeslawski-Rybinski’s
or Gutev’s) selection theorem [2], [5], [6], [9]). For any nondecreasing function o
and for any l.s.c. F it yields a theorem proved earlier by these authors [11], [17].
As an application to the theory of fixed-points of multivalued contractions we
can also obtain the following generalization of Ricceri’s result [15], in the spirit
of the Rybinski paper [16].

Theorem 1.5. Let X be a paracompact space, Y a Banach space and X xY
a paracompact space. Suppose that for a multivalued mapping F : X xY = Y
and some constants « and vy from [0,1) the following properties hold:
(a) Functions of nonconvezity of all values F(z,y) are less than or equal
to a,
(b) Each mapping F(z, -) is a y-contraction,
{c) Each mapping F(-,y) is quasi-lower semicontinuous, and
d) a+y<1.
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Then there ezists a singlevalued continuous mapping f : X xY = Y such that
for every x € X, the restriction f(z, -) is a retraction onto the fized-point set of
the contraction F(z, -).

2. Preliminaries

We begin by a construction of a function of nonconvexity. For any nonempty
closed subset P C Y of a Banach space Y and for any open r-ball D, C Y, we
define the relative precision of an approximation of P by elements of D, as
follows:
dist(q,

T

§(P,D,) = sup { P) | ¢ € conv(P N D,.)}.

Clearly, for a convex set P with nonempty intersection P {1 D,, the equality
8§(P, D;) = 0 means that this intersection is a convex subset of P.

Definition 2.1. For a nonempty closed subset P C Y of a Banach space Y,
the function ap(-) of nonconverity of P associates to each positive number r
the following nonnegative number:

ap(r) = sup{é(P, D) | D, runs over all open r-balis}.

Clearly, the identical equality ap(-) = 0 is equivalent to converity of the
closed set P. Following Michael [8], the set P is said to be g-paraconvez, whenever
the number ¢ is a majorant of the function ap(-). A selection theorem for ¢-
paraconvex valued l.s.c. maps, g < 1, was proved in [8]. For a possible substitute
of a suitable function g(-) instead of the constant see [11]. For examples of
classes of closed sets with nice functions of nonconvexity see {12}, [13], [19].

The notion of quasi lower semicontinuity (respectively, weak lower semicon-
tinuity) of a multivalued mapping was introduced in [5], [6] (respectively, in [9]).
Recall, that for a multivalued mapping F : X — Y, the preimage F~!(A),
A CY,is defined as {z € X | F(z) N A # 0} and for topological spaces X and
Y, a mapping F is said to be lower semicontinuous if preimages of open sets are
open sets.

Definition 2.2. A multivalued mapping F : X = Y of a topological space
X into a metric space (Y p) is said to be quasi lower semicontinuous if for every
triple (z,U(xz),€), where z € X, U(z) is a neighborhood of z and € > 0, there
exists a point g(z) € U(z) such that for every y € F(g(z)), the point = belongs
to the interior of the set F~1(D(y,¢)).

Clearly, each L.s.c. map is quasi l.s.c.: it suffices to put g(z) = z. For examples
of quasi l.s.c., non l.s.c. mappings see [6], [10]. Possibly, one of the simplest
examples is given by the mapping F : X — [0,00), F(z) = [0,l(z)], where
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l: X — [0,00) is an arbitrary singlevalued locally positive function. We need
two Gutev’s theorems [6]. Recall that for a multivalued mapping F' : X = Y
between topological spaces its derived mapping F' : X — Y is defined by setting
F'(z) to be equal to the set of all y € F(z), for which z belongs to the interior
of the preimage (with respect to F') of every neighborhood of y (see [3]).

Theorem 2.3. Let F: X =Y be a closed valued quast lower semicontinu-
ous mapping of a topological space X into a complete metric space (Y, p). Then
the derived mapping F' : X = Y is a lower semicontinuous selection of F with
nonempty closed values. Moreover, if G : X — Y is a lower semicontinuous
selection of F, then G is also a selection of F'.

Theorem 2.4. A mapping F : X - Y of a topological space X into a
complete metric space (Y,p) is quasi lower semicontinuous if and only if for
every triple (z,U(z),e), where z € X, U(z) is a neighborhood of z and € > 0,
there exists a point g(z) € U(z) such that F(q(z)) C D(F'(z),€).

Finally, for each function M : (0, 00) — [0, 1) we define the following sequence
of functions:

Mo(t) =1, My(t) = M(t), ..., Mapr(t) = M(Ma(t) - t) - Ma(2), ...

Lemma 2.5. Let M : (0,00) — [0,1) be a nondecreasing function. Then
for every positive T, the series Z:°=o M, (t) uniformly converges on the inter-
val (0, 7).

3. Proof of Theorem 1.2

Under assumptions of the theorem, let F': X — Y be a given LS)-mapping.
Then F is an LS. -mapping and, hence, has a lower semicontinuous closed-
valued selection, say G. Let fo : X — Y be an arbitrary singlevalued continuous
mapping. Then the distance d(z) = dist(fo(z), G(z)) is an upper semicontinuous
real-valued function on the paracompact space X. By the Dowker theorem, the
function d( - ) has a strong continuous singlevalued majorant, say € : X —+ (0, 00).
Clearly, fo is an e-selection of F. Now, for every natural number n we put:

Ro(z) = Ma(e(z)) -6(z),  rn(2) = MRn(z)) - Rn(2),
where M : (0,00) — [0,1) is a fixed nondecreasing majorant of the function
= a(A(t)-t)-AL)
and functions M, ( -) are defined above, before Lemma 2.5. Due to the continuity

of the mapping € : X — (0,0) and due to Lemma 2.5, for every z € X, there

33 — Differeatial...
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exists its neighborhood U(z) such that the series Y . o Rn(-) uniformly con-
verges on U(z). Similarly, the series Y n. ,7n(-) uniformly converges on U(z),
because of local boundedness of the function A(-).

Let us construct a sequence of singlevalued continuous mappings f, : X =+ Y
with the properties that for each natural n and for each z € X:

(an) dn(z) = dist(fa(z), F(z)) < Rp(z); and

(bn) diSt(.fn+l($)» fn(x)) < ral2).

We then see from (b,) that there exists a pointwise limit f = lim,, o fn and
that f is a locally (and, hence globally) continuous mapping, due to the local
uniform convergence of the series 3 o o Ra(-) and Y o2 ra(-). The closedness
of F(z) and inequalities (a,) imply that f is a selection of F.

So, the mapping fo was constructed so that the inequality (ap) holds. Sup-
pose that for some n > 0, we have mappings fo, fi,.- - , fn for which the inequal-
ities (ao), (a1), ... , (an) and (b), (b1), - .. , (bn-1) hold. By (ay), the mapping fa
is an R, -selection of F. Moreover, each nondecreasing mapping M : (0,00) —
[0, 1) has a continuous majorant M; : (0,00) — [0, 1), i.e. without loss of general-
ity one can assume that M ( -} from the hypotheses of the theorem is a continuous
function. Hence, the functions R, (z) = M,(e(z)) - e(z) are also continuous and
it is possible to use Definition 1.1 of LS)-mappings, which directly shows that
the mapping

z = Cl(F(z) N D(fn(z), A(Rn(2)) - Rn(z))) = CUF(z) N D(fa(z),7a(2)))

admits a lower semicontinuous selection, say G,,. By the classical Michael selec-
tion theorem (7], the mapping Cl(conv(G,)) admits a singlevalued continuous
selection, say fn+1. Then

far1(z) € Clconv(Ga(2))) C CUD(fa(2),7n(2))),

i.e. the inequality (b,) holds. Now, using Definition 2.1 of the function of non-
convexity for open balls D(f,(x),rs(z)) and remembering that a(A(t)-t)-A(2) <
M (t) for all positive ¢, we see that:

dist(fn+1(2), F(z)) < ap(z)(ra(z)) - rn(z)
< a(A(Rn(z)) - Rn(2)) - M(Ra(z)) - Ralz)
< M(Rq(z)) - Rn(z)
= M(Mn(e(z)) - €(z)) - Mn(e(z)) - ()
= Mn11(e(2)) - €(z) = Rot1(z),

i.e. the inequality (an+1) holds. Theorem 1.2 is thus proved.
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Remark. Clearly,

dist(fo(®), f(2)) € 3 ra(@)-

n=0
4. Proofs of Theorems 1.3-1.5

The initial step of the proofs represents the following lemma, which resulted
from our discussions with Gutev.

Lemma 4.1. Let F : X - Y be a quast lower semicontinuous mapping of
a topological space X into a complete metric space (Y,p), f: X = Y a singl-
evalued continuous mapping and c¢(-) e strong majorant for the distance func-
tion d = dist(f, F'). Suppose that the interval-valued mapping z — (d(z), c(z)),
z € X, admils a singlevalued continuous selection. Then for every x € X, the
intersection F'(z) N D(f(x),c(z)) is nonempty.

Proof. Let s : X - (0, 00) be a continuous mapping such that d(z) < s(z) <
¢(z), for every z € X. Pick a point z € X and put € = (c(z) — s(z))/2. Let
V = V(z) be a neighborhood of = such that the restriction of s(-) onto V' is less
than (c(z) + s(z))/2. Due to the continuity of f, find a neighborhood U = U(z)
such that f(z) € D(f(2),¢), for every z € U. We can apply Theorem 2.4 to the
triple (z,V NU,¢€) , i.e. we can find a point ¢(z) € V NU such that

F(q(=)) C D(F'(z),€).
By invoking the inequality d < s, we see that

f(a(z)) € D(F(q(z)), s(q(2))) C D(F'(),s(a(z)) +¢)-
Hence the inequality s(g(z)) < (c(z) + s(z))/2, implies that
f(z) € D(f(q(z)),e) C D(F'(z), s(q(z)) + 2¢) C D(F'(z),c(z)),
i.e. the distance between f(z) and F'(z) is less than ¢(z).

Proof of Theorem 1.3. Let F : X — Y be a quasi lower semicontinuous
mapping of a topological space X into a complete metric space (Y,p), f: X =
Y a singlevalued continuous e-selection of F, for some continuous function ¢ :
X — (0,00), and A : (0,00) — (1,00) a singlevalued continuous function. Then
for the (continuous!) strong majorant c(z) = A(e(z)) - e(z) of the distance
function d(z) = dist(f(z), F(z)), there exists an obvious continuous function
s(-) which separates d(-) and ¢(-). Namely, s(z) = &(z). Lemma 4.1 shows
that the mapping G = F' N D(f,c) has nonempty values. But the derived
mapping F' is a selection of F. Hence, G is a selection of the mapping F N
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D(f,c). Lower semicontinuity of G follows from the lower semicontinuity of F'
(see Theorem 2.3), from continuity of f, and from continuity of ¢(-). Thus we
conclude that the mapping z — F(z) N D(f(z), AMe(x)) - e(z)) admits a lower
semicontinuous selection. Theorem 1.3 is thus proved.

Proof of Theorem 1.4. Because of Theorems 1.2 and 1.3 it suffices to check
the following simple fact:

Lemma 4.2. For every nondecreasing function a : (0,00) — [0,1), there
ezists a continuous function A : (0,00) — (1,00) such that the function a(A(t) -
t) - A(t) has a nondecreasing strong majorant M : (0,00) — [0,1).

Proof. 1t is easy to find a continuous nondecreasing majorant 8 : (0,00) —
[0,1) of the function a(-) such that limy, 8(t) = 1. Let B(-) < v(:) <
M(-) < 1 and the functions (-) and M(-) be both continuous and nonde-
creasing. We claim that A(-) can then be defined as follows:

Alt) = —;— (1+min{%-(it)—),ﬂ—_—i-(g@}).

Clearly, A(-) is continuous and greater than 1. Moreover,

A() -t < (v (1)),
a(A(t) - t) < B(AR) -t) < (t)

and
a(A(t) - 2) - A(t) < () - M(E) < M(¢)
due to the choice of A\(t). Lemma 4.2 (and hence Theorem 1.4) are thus proved.

Sketch of the proof of Theorem 1.5. First, we refer to [16] for the proof that
the hypotheses (b) and (c) together imply the quasi lower semicontinuity of the
mapping F in two variables and, moreover, of the composition F(z, h(z,y)), for
each continuous h : X x Y — Y. Second, (d) implies that 7/(1 — a) < 1 and
hence for some numbers M € (¢, 1) and A > 1, we have that v/(1 — M) <1 and
v-A/(1-M) <1

Now the special case of the selection Theorem 1.2, when o, A and M are
constants, works for the a-paraconvex valued mapping Fp = F' and we can find
a selection of Fy, say fi. Moreover, starting by fo{(z,y) = y, we have (see Remark
after proof of Theorem 1.2),

A

dist(fo(z,0), fu(2,1)) < D _ral(zy) =AY M™e(z,9) = 737

n=0 n=0

- E(.’E, y)1

for some continuous singlevalued € : X x Y — (0, 00).
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Put Fy(z,y) = Fo(z, fi(z,y)) and let us estimate the distance between f;
and Fi:

diSt’(fl (ZE, y), Fl (x7 y)) S Hdist(FO(z’ y)7 FO(zv fl (.’L‘, y)))
< T diSt(fO(xs y)) fl(xv y))
<7- e(z,y); A<

I
1-M
Hence f, is an €;-selection of F} with

ei(ey) =7~ Togp €@Y)-

Reapplying Theorem 1.2, we find a selection of Fy, say fa, with
2

; A 2 [
dist(f1(2,9), falz,9) <7 757 ar(®y) <7 =y e(z,y).
Continuation of this procedure yields the estimate
dist(fa(z,), fara (@ 9)) <@ e(@y), 9= Tohp

Having v- A/(1 — M) < 1, it is clear that we can assume that 4 > XA and ¢ < 1.

Remark. For the functions o and 7 of nonconvexity and contractivity one
can replace the hypotheses (d), i.e. the numerical inequality a + v < 1 by some
functional expression.
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