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ABSTRACT. We prove that the classical Urysohn-Menger sum formula,
dim(4 U B) < dim4 + dim B + 1, which is also kaown to be true for co-
homological dimension over the integers (and some other abelian groups), does
not hold for cohomological dimension over an arbitrary abelian group of coef-
ficients. In particular, we prove that there exist subsets 4, B C R* such that
4= dlmQ/Z(A @] B) > dlmQ/ZA + dlmQ/ZB +1=3.

1. INTRODUCTION

One of the key properties of covering dimension is that the Urysohn-Menger
sum formula holds: Let 4, B C X be arbitrary subsets of a separable metric
space X . Then

(1) dim(4U B) < dim4 +dimB + 1.

It was shown by Rubin [13] that this is also true for cohomological dimension
with integer coefficients, G = Z

(2) dimg(AUB) <dimg A4 +dimgB + 1.

Recently, Dydak and Walsh [9] have proved the formula (2) for the case
when G is either the integers modulo a prime p, Z,, or the integers localized
at a subset / of primes, Z;, provided that dimgz 4 > 2 and dimgB > 2.

The purpose of the present paper is to exhibit an example which shows
that formula (2) does not generalize to cohomological dimension over arbi-
trary abelian groups G. Theorem 1.1 also solves a long-standing problem in
cohomological dimension theory (cf. [11, Problem 10]).

Theorem 1.1. There exist subsets A, B C R* such that:
(i) dimgz4=1;
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(ii) dimgz B =1; and

(iii) R*=AUB.
Remark 1.1. Theorem 1.1 remains valid if one replaces the group Q/Z with
the group Z,~, p any prime, where Z,~ is the p-adic circle, v = Q/Zpy,
and Z, is the p-localization of the integers, Z) = {Z|n is not divisible by

p} (cf. [6]).

Our example from Theorem 1.1 shows that the equation
3) dimg(XUY)—-dimg X —dimg Y =k

has a solution for G = Q/Z and k = 2. On the other hand, note that Dydak
[8] has shown that k < 3, provided that dimg X > 2 and dimgY > 2.

2. PRELIMINARIES

A subset Y of a space S is said to be negligible with respect to some com-
pactum X (X-negligible) (cf. [6]), if mappings of X into .S are approximable
by mappings whose images miss Y. Compacta X and Y are said to be of
the same dimension type, DIMX = dimY, if dimgX = dimgY, for ev-
ery abelian group G. Note that this is equivalent to the requirement that
dim(X x Z) =dim(Y x Z), for every compactum Z (cf. [6]).

Proposition 2.1. Let X c R" be any compactum. Then there exists a subset
X? C R” such that :
(i) X7 is g-compact,
(ii) DIM X? = DIM X ; and
(iii) for every compactum Y CR"\X?, dim(X xY) < n.

Proof. Consider a sequence {7;}ieny Of trlangulatlons of R” such that
limy_,,,mesht, = 0, and let L = {/ : R* — R"|/ is simplicial with respect
to some subdivision of 7, and has compact support}. Set X? = L(X), where
(X) = U{I(X )l € L}. Clearly, X° is o-compact, so assertion (i) is verified.

Next since / is a PL mabp, it follows by [6] that, for every compactum C C R”,
DIM/(C) = DIMC. Therefore, DIM X° = DIM X, by the Countable Sum
Theorem, so (ii) also holds.

It remains to verify (iii). Let ¥ € R”"\X? be any compactum. Then Y is
X-negligible in R”, so by [4], dim(X x Y)<n. O

We conjecture that the inequality DIM(Y) < DIM(R"\X?) holds for every
compactum Y such that dim(X x Y) < n (cf. [6, Theorem 1.14]).

Proposition 2.2. Let X° C R" be a o-compact subset of R" such that, for
every prime p, dimg, X = 1. Then there exists a Gs-set X 9 c R" such that

X° C X° and dimgz X? = dimg, X° = 1, for all primes p.
For the proof of Proposition 2.2 we shall require two lemmas.

Lemma 2.1. Suppose that X is a o-compact metric space such that, for every
prime p, dimg, X = 1. Then there exists a metrizable compactification cX of
X such that dimg, cX =1, for all primes p.

Proof. This is a result of Svedov (cf. [11, Chapter VII]). O

Lemma 2.2. Let S and T be complete metric spaces and h: A — B any home-
omorphism between subsets A C S and B C T . Then there exist Gs-sets AC S
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and _ B C T such that A C A, BC B, and h extends to a homeomorphism
h:AcB.
Proof. This is a classical result of Lavrent’ev [12] (cf. [10, p. 335]). O

Proof of Proposition 2.2. By Lemma 2.1, there is a metrizable compactification
cX? of X? such that dimz, cX? =1, for all primes p. Hence, by the Bock-
stein inequalities [1] (cf. [11, 6]), dimg/zcX? = 1. Consider the canonical
inclusion i: X% — cX°.

Apply Lemma 2.2 to get Gs-sets ACR" and B C cX°, such that X7 C A

and i(X7) C B, and an extension of i to a homeomorphism i: 4 — B. Then
X% = A is the required Gs-set from the assertion. Indeed, since dimg,zcX? =
1, we have that dimg,z B =1, so dimgz X°=1. O

3. PROOF OF THEOREM 1.1

By [2], there exists a compactum X such that dimZ(p) X =dimX =2 and
dimz, X = dimg X = 1, for all primes p . Therefore, by [11], dim(X x X) = 3,
so it follows by [5] (cf. also [14]) that X embeds in R*. Also, by the Bockstein
inequalities [1] (cf. [11, 6]), dimz ., X = 1, for all primes p, so dimg/;z X =1,
by the Bockstein theorem [11].

Let X° be as in Proposition 2.1. Let 4 = X9, where X? is the completion
of X7, guaranteed by Proposition 2.2, with dimgz, X 9 =1, for all primes p,
and dimgz X° = 1. Define B = R*\X°. Thus B is of F,-type. In order to
complete the proof it suffices, by the Countable Sum Theorem [11], to venfy
the following.

Assertion. For every compactum C C B, dimg. C <1, for all primes p.

Proof. Suppose that dimgz ., C > 2 were true for some prime p. Since dimC
<2 (if dim C > 3, then dim(C x D) > dim C for every non-zero-dimensional
compactum D), it follows that

dimz(p) C= dimzm C= dimzpoo C;
that is, C is p-regular (cf. [6]), and hence
dimg, (C x X) = dimg,, C + dimz, X =2 +2.

By assertion (iii) of Proposition 2.1 it follows that dim(C x X) < 4, which
yields a contradiction. This proves dimgz,. C <1, for all primes p. O

Thus, by Bockstein’s theorem [11], dimg/z C < 1, and by the Countable
Sum Theorem, dimgzB < 1. O
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