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Abstract. We study gradings by non-commutative groups on finite dimensional Lie alge-
bras over an algebraically closed field of characteristic zero. It is shown that if L is graded
by a non-abelian finite group G, then the solvable radical R of L is G-graded and there
exists a Levi subalgebra B = H1⊕· · ·⊕Hm homogeneous in G-grading with graded simple
summands H1, . . . , Hm. All Supp Hi (i = 1 . . . , m) are commutative subsets of G.
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1 Introduction

Graded rings and graded algebras have been extensively studied during the last
decades (cf. e.g. [2–11]). Group gradings were investigated both in the associative
case ([5–8, 16]) and in the Lie case ([3, 11, 12, 15, 17]), or in other non-associative
cases ([2, 3, 9]).

One of the important tasks is the description of all possible gradings on different
algebras. For example, one of the well-known and actively used results in Lie theory
is the description of Z-gradings on finite dimensional complex Lie algebras (cf. [12]).
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The description of all Z2-gradings on matrix algebras plays an exceptional role in
the theory of algebras with polynomial identities (cf. [10]).

All abelian gradings on matrix algebras were described in [6]. It was found that
the so-called fine gradings on full matrix algebras play an exceptional role in the
theory of orthogonal Cartan decompositions of simple complex Lie algebras (cf.
[14]). For the non-commutative case, all group gradings on matrices were described
in [5]. In particular, in the general case, fine gradings are closely connected with
some problems of the theory of projective representations of finite groups.

All finite dimenional graded simple associative algebras were described in [7].
This description is very intensively applied in the PI-theory (cf. e.g. [1], [13]). All
finite dimensional Z2×Z2-graded simple Lie algebras were described in [2] and this
result was applied for the classification of simple color Lie superalgebras. So the
description of all possible gradings on algebras plays an important role both in the
structure theory of finite dimensional and infinite dimensional graded algebras and
in its applications.

In this paper we study general properties of commutative and non-commutative
gradings on finite dimensional Lie algebras over an algebraically closed field of
characteristic zero. First, we show that the description of non-commutative gradings
on semisimple algebras can be reduced to abelian gradings and to the classification
of graded simple algebras (cf. Propositions 2.3 and 3.1). Then we characterize finite
dimensional graded simple algebras and show that all of them can split into four
classical series A,B, C, D and five exceptional series, according to the classification
of simple Lie algebras (cf. Proposition 3.1 and Remark 3.2). Finally, we show
that in the case of finite groups, any graded Lie algebra is a split extension of a
homogeneous Levi subalgebra and a solvable radical (cf. Theorem 3.4).

2 General Properties of Non-commutative Gradings

Let G be a group. Given a Lie algebra L over a field F , we say that L is G-
graded if it can be decomposed into a direct sum of subspaces L =

⊕
g∈G Lg such

that [Lg, Lh] ⊆ Lgh for any g, h ∈ G. The subspaces Lg are called homogeneous
components, and an element x ∈ L is called homogeneous if x ∈ Lg for some g ∈ G.
In this case, we write deg x = g. A subspace (resp., subalgebra, ideal) V is said
to be a graded subspace (resp., subalgebra, ideal) if V =

⊕
g∈G(V ∩ Lg). In other

words, if x = xg1 + · · · + xgn
, where deg xgi

= gi and g1, . . . , gn ∈ G are pairwise
distinct, then x ∈ V if and only if all xg1 , . . . , xgn belong to V .

The support of the grading is defined as SuppL = {g ∈ G |Lg 6= 0}. Actually,
we can suppose that SuppL generates G. An algebra L is called graded simple if
[L,L] 6= 0 and L does not contain any non-trivial graded ideals.

We usually use the notation [x1, . . . , xn] for the left-normed product in a Lie
algebra. That is, [x1, . . . , xn] = [[x1, . . . , xn−1], xn] for all n ≥ 3. Similarly, we write
[W1, . . . , Wn] = [[W1, . . . , Wn−1],Wn] for any subspaces W1, . . . , Wn ⊆ L.

It is well-known that in the case of a simple Lie algebra L =
⊕

g∈G Lg, the group
G must be commutative (cf. e.g. [15]). First, we generalize this property to the case
of graded simple Lie algebras. In the following two lemmas and Proposition 2.3,
G is an arbitrary group and L is a (not necessarily finite dimensional) Lie algebra
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over an arbitrary field F .

Lemma 2.1. Let L =
⊕

g∈G Lg be a G-graded Lie algebra and let [Lg1 , . . . , Lgm ]
6= 0 for some g1, . . . , gm ∈ G. Then g1, . . . , gm commute in G.

Proof. First, note that an inequality [Lg, Lh] 6= 0 implies gh = hg since [Lg, Lh] =
[Lh, Lg] ⊆ Lgh ∩ Lhg. Hence, our statement is obvious for m = 2. Apply induction
on m. Suppose [x1, . . . , xm] 6= 0 for some x1 ∈ Lg1 , . . . , xm ∈ Lgm

and m ≥ 3. Since
[x1, . . . , xm] = [u, xm−1] + [v, [xm−1, xm]], where u = [x1, . . . , xm−2, xm] and v =
[x1, . . . , xm−2] (or v = x1 in case m = 3), either [u, xm−1] 6= 0 or [v, [xm−1, xm]] 6= 0.

In the first case, g1, . . . , gm−2, gm commute by the inductive hypothesis and gm−1

commutes with the product g1 · · · gm−2gm. Since g1, . . . , gm−1 also commute, by
induction we have gmgm−1 = gm−1gm, that is, gm commutes with all g1, . . . , gm−1.

In the second case, g1, . . . , gm−1 commute and the product gm−1gm commutes
with all gi (1 ≤ i ≤ m − 2). Since gigm−1 = gm−1gi for 1 ≤ i ≤ m − 2, we obtain
gigm = gmgi for all i = 1, . . . , m− 2. Clearly, gmgm−1 = gm−1gm and we have thus
completed the proof. ¤
Lemma 2.2. Let L =

⊕
g∈G Lg be a G-graded Lie algebra and let gh 6= hg for

some g, h ∈ SuppL. Then I =[ Id(Lg), Id(Lh)] = 0, where Id(Lg) is the ideal of L
generated by Lg.

Proof. Any element of I is a linear combination of some [x, y1, . . . , yk, [z, t1, . . . , tm]],
where x ∈ Lg, z ∈ Lh and y1, . . . , yk, t1, . . . , tm are homogeneous elements from L.
Now the statement easily follows by Lemma 2.1. ¤

As an immediate consequence, we get the following:

Proposition 2.3. Let L =
⊕

g∈G Lg be a G-graded simple Lie algebra. Then
SuppL generates an abelian subgroup of G.

In particular, if L is simple in the non-graded sense, then SuppL is a commuta-
tive subset of G. Note that in general, this property does not hold for semisimple
algebras. For example, let L = B1 ⊕ B2 be the direct sum of two simple algebras
isomorphic to sl2(F ). Given a group G of order 2, G = {e, g}, we can define a
G-grading on H = sl2(F ) by setting

Le = Span
{(

1 0
0 −1

)}
, Lg = Span

{(
0 1
0 0

)
,

(
0 0
1 0

)}
.

It is now sufficient to take any group G with gh 6= hg (g, h ∈ G), g2 = h2 = e,
and define a G-grading on Bi using Hi for i = 1, 2. Later we shall show that all
non-commutative gradings on semisimple Lie algebras are of similar type.

3 Structure of Finite Dimensional Graded Algebras

Let G be a finite abelian group and F an algebraically closed field of characteristic
zero. Recall a well-known duality between gradings and automorphism actions on
L (cf. e.g. [6]). Let Ĝ be the dual group for G, that is the group of all irreducible
characters on G. Since G is finite abelian, the group Ĝ is isomorphic to G. If
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L =
⊕

g∈G Lg is a G-graded algebra, then any χ ∈ Ĝ acts on L by the automorphism
χ ∗ xg = χ(g)xg, where xg ∈ Lg is a homogeneous element of degree g.

Clearly, all subspaces Lg are stable under the Ĝ-action. Moreover, a subspace
V ⊆ L is graded if and only if V is Ĝ-stable. Conversely, if one defines the Ĝ-action
on L by automorphisms, then L can be decomposed into a direct sum L =

⊕
g∈G Lg,

where Lg = {v ∈ L |χ ∗ v = χ(g)v for all χ ∈ Ĝ }, and this is a G-grading on L.
If G is an infinite cyclic group generated by t, then we can also define an action

of the infinite cyclic group generated by χ on L =
⊕

g∈G Lg by setting χn∗v = λnkv
as soon as v ∈ Ltk , where λ ∈ F ∗ is a fixed element of infinite order. As before, a
subspace V of L is graded if and only if χ ∗ V = V . If L is finite dimensional and
SuppL generates G, then G is a finitely generated abelian group and we can again
identify the G-grading of L with the G-action on L.

Using this duality, we get the following result:

Proposition 3.1. Let L =
⊕

g∈G be a finite dimensional G-graded Lie algebra
over an algebraically closed field of characteristic zero.

(i) If L is graded simple, then G is abelian and L = B1 ⊕ · · · ⊕Bn is semisimple
with isomorphic simple components B1, . . . , Bn.

(ii) If L is semisimple, then L = A1 ⊕ · · · ⊕ Am is a direct sum of graded simple
components and SuppAi is a commutative subset of G for any 1 ≤ i ≤ m.

Proof. First let L be graded simple. Then G is abelian by Proposition 2.3. Suppose
that L is not semisimple. Due to the duality between G-gradings and G-actions,
its solvable radical R is a graded ideal since R is stable under the action of any
automorphism of L. Hence, R = L and L2 = [R, R] 6= L is also a graded ideal,
and L2 6= 0 by the definition of graded simplicity, a contradiction. Hence, L is
semisimple. Consider the decomposition L = B1 ⊕ · · · ⊕ Bn into a direct sum of
simple ideals.

Let f : L → L be an automorphism of L. Clearly, f(B1) = Bj for some
1 ≤ j ≤ n. Due to the duality between G-gradings and G-actions, the orbit of B1

under the G-action contains all summands B1, . . . , Bn since L is graded simple. In
particular, all B1, . . . , Bn are isomorphic, and we have proved assertion (i) of the
proposition.

Now let L be a semisimple G-graded algebra. As before, L = B1 ⊕ · · · ⊕ Bn

is a direct sum of minimal ideals. Consider a minimal graded ideal A1 of L. If
A1 = L, then there is nothing to prove. If A1 6= L, then A1 is a sum of some Bi,
say A1 = B1 ⊕ · · · ⊕Bt. We shall prove that Bt+1 ⊕ · · · ⊕Bn is also a graded ideal
of L.

First note that the centralizer of any homogeneous element in L is a graded
subalgebra of L. Indeed, let [ah, bg1 +· · ·+bgm ] = 0 for some ah ∈ Lh, bg1 ∈ Lg1 , . . . ,
bgm ∈ Lgm with pairwise distinct g1, . . . , gm ∈ G. If [ah, bgi ] = 0 for all i = 1, . . . , m,
then we are done. Otherwise, fix all gi1 , . . . , gik

such that c1 = [ah, bgi1
] 6= 0, . . . ,

ck = [ah, bgik
] 6= 0. Then h commutes with gi1 , . . . , gik

by Lemma 2.1, c1 ∈ Lhgi1
,

. . . , ck ∈ Lhgik
and all hgi1 , . . . , hgik

are distinct. On the other hand, c1 + · · ·+ ck

= 0, a contradiction. Hence, the equality [ah, bg1 + · · · + bgm ] = 0 implies that all
bg1 , . . . , bgm commute with ah.
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Now we observe that the intersection of two graded subalgebras is also a graded
subalgebra. In particular, the centralizer of A1 is a graded subspace in L. However,
the centralizer of A1 is Bt+1⊕· · ·⊕Bn and we complete the proof of the proposition
by induction on the dimension of L. ¤

Remark 3.2. It follows by the previous proposition that any finite dimensional
graded simple algebra is associated with one of the finite dimensional simple Lie
algebras. In particular, we can say that the graded simple algebra is an algebra of
the type Al (l ≥ 1), Bl (l ≥ 2), Cl (l ≥ 3), Dl (l ≥ 4), G2, F4, E6, E7, or E8.

Now we clarify the structure of a finite dimensional Lie algebra graded by a
finite group.

Proposition 3.3. Let G be a finite group and let L =
⊕

g∈G Lg be a finite dimen-
sional G-graded Lie algebra over an algebraically closed field of characteristic zero.
Then the radical R = Rad L of L is a graded ideal and there exists a split extension
L = B + R, where B is a maximal semisimple subalgebra of L homogeneous in
G-grading.

Proof. If G is an abelian group, as mentioned in the proof of Proposition 3.1, the
solvable radical of L is graded.

Now let G be a non-commutative group. Consider a decomposition L = B + R,
where B is a maximal semisimple subalgebra of L, B = B1⊕· · ·⊕Bn and B1, . . . , Bn

are minimal ideals of B. By Proposition 2.3, the algebra L cannot be graded simple.
Consider a maximal proper graded ideal P of L.

First suppose B ⊆ P . Then dimL/P = 1. Denote R0 = Rad P . Then R0 ⊂ R
and dimR/R0 = 1. Moreover, R2 ⊆ R0 and [B,R0] ⊆ R0. In particular, R0 is an
ideal of L. Since dimP < dimL, we may suppose by induction that R0 is a graded
ideal of P and L. If R0 6= 0, then also by induction, R/R0 is a graded ideal of
L/R0, hence R is a graded ideal of L.

In case R0 = 0, we have dimR = 1 and hence it is a trivial B-module. Since
[R, R] = 0, we conclude that R is the center of L. By Lemma 2.1, the center of a
graded algebra is homogeneous and so R is a graded ideal in this case.

Let B 6⊆ P . Then L/P is graded simple and by Proposition 3.1, it is semisimple,
i.e., R ⊆ P . Applying induction on the dimension, we again conclude that R is a
homogeneous subspace of P and hence of L.

Now we prove the existence of a Levi subalgebra homogeneous in G-grading.
In case G is abelian, we apply the duality between G-gradings and G-actions by
automorphisms on L. By [18] there exists a maximal semisimple subalgebra B

stable under the Ĝ-action. So B is a graded Levi subalgebra of L.
In the general case, we consider the graded factor-algebra L/R. By Propo-

sition 3.1, we have L/R = Ā1 ⊕ · · · ⊕ Ām, where each Āi is graded simple and
Si = Supp Āi is a commutative subset of G. Denote by Ai the full preimage of Āi

over R. Then Ai is graded and SuppAi ⊃ Si. Take a subalgebra Ci of Ai gener-
ated by all homogeneous x ∈ Ai with deg x ∈ Si. Since Si is commutative, by the
previous remark, Ci contains a homogeneous semisimple subalgebra Bi isomorphic
to Āi. Note that dim(B1 + · · · + Bm) = dim L/R, hence B = B1 ⊕ · · · ⊕ Bm is a
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homogeneous Levi subalgebra and we have completed the proof. ¤
Combining Propositions 2.3, 3.1 and 3.3, we immediately obtain the following:

Theorem 3.4. Let L =
⊕

g∈G Lg be a finite dimensional Lie algebra over an
algebraically closed field of characteristic zero graded by a finite group G. Then its
solvable radical is homogeneous in G-grading and there exists a Levi subalgebra B
homogeneous in G-grading. Moreover, B is a direct sum B = H1⊕· · ·⊕Hm, where
each Hi is a graded simple subalgebra with commutative support SuppHi, and in
the non-graded sense, Hi is a direct sum of isomorphic simple components.
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