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We study the existence of positive solutions for a class of double phase Dirichlet 
equations which have the combined effects of a singular term and of a parametric 
superlinear term. The differential operator of the equation is the sum of a p-
Laplacian and of a weighted q-Laplacian (q < p) with discontinuous weight. Using 
the Nehari method, we show that for all small values of the parameter λ > 0, the 
equation has at least two positive solutions.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with Lipschitz boundary ∂Ω. In this paper we study the following 
singular double phase problem

⎧⎨
⎩
−Δpu− div

(
ξ(z)|∇u|q−2∇u

)
= a(z)u−γ + λur−1 in Ω,

u
∣∣
∂Ω = 0, 1 < q < p < r < p∗, 0 < γ < 1, u ≥ 0, λ > 0.

(Pλ)

Here, Δp denotes the p-Laplace differential operator defined by

Δp = div
(
|∇u|p−2∇u

)
for all u ∈ W 1,p

0 (Ω).
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The weight ξ : Ω → R+ is essentially bounded. Thus the differential operator in (Pλ) is the sum of a 
p-Laplacian and of a weighted q-Laplacian (q < p). The integrand in the energy functional of this operator is

k(z, t) = 1
p
tp + 1

q
ξ(z)tq for all t > 0.

This is a Carathéodory function (that is, for all t > 0, z → k(z, t) is measurable, and for a.a. z ∈ Ω, 
t → k(z, t) is continuous) which exhibits balanced growth in the t > 0 variable, that is,

1
p
tp ≤ k(z, t) ≤ c0[1 + tp] for a.a. z ∈ Ω, all t > 0.

However, the presence of the weight ξ(·), which is discontinuous and not bounded away from zero, does 
not permit the use of the global regularity theory of Lieberman [9] and of the nonlinear strong maximum 
principle of Pucci-Serrin [15] (p. 111, 120). The absence of these basic tools leads to a different approach 
based on the Nehari method. In the reaction (the right hand side), we have the combined effects of a singular 
term and of a parametric (p − 1)-superlinear perturbation. We are looking for positive solutions and we 
show that for all small values λ > 0 of the parameter, problem (Pλ) has at least two positive solutions.

Double phase equations have been studied by Cencelj-Rǎdulescu-Repovš [3] (problems with variable 
growth), Colasuonno-Squassina [4], Colombo-Mingione [5,6], Baroni-Colombo-Mingione [1], and Liu-Dai 
[10] (problems with a differential operator which exhibits unbalanced growth). A nice survey of the recent 
works on such equations can be found in Rǎdulescu [16]. We also mention the recent works on (p, q)-equations 
(equations driven by the sum of a p-Laplacian and of a q-Laplacian) with singular terms of Papageorgiou-
Rǎdulescu-Repovš [12] and Papageorgiou-Vetro-Vetro [13]. For such differential operators, the integrand of 
the energy functional is k(t) = 1

p t
p + 1

q t
q for all t > 0 (that is, ξ(z) = 1) and so the use of the global 

regularity theory of Lieberman [9] and the nonlinear maximum principle of Pucci-Serrin [15] is possible. 
This fact in turn, permits the use of truncation and comparison techniques, which make it possible to bypass 
the singularity in the reaction.

The main result of our paper is the following multiplicity theorem for problem (Pλ).

Theorem 1.1. If hypotheses H(ξ), H(a) hold, then there exists λ̂∗
0 > 0 such that for all λ ∈ (0, ̂λ∗

0] problem 
(Pλ) has at least two positive solutions u∗, v∗ ∈ W 1,p

0 (Ω) such that ϕλ(u∗) < 0 ≤ ϕλ(v∗).

2. Preliminaries

By W 1,p
0 (Ω) we denote the usual “Dirichlet” Sobolev space and by ‖ · ‖ we denote the norm of W 1,p

0 (Ω). 
The Poincaré inequality (see Papageorgiou-Rǎdulescu-Repovš [11], p. 43) implies that we can have

‖u‖ = ‖∇u‖p for all W 1,p
0 (Ω).

Here, by ‖ · ‖s (1 ≤ s ≤ +∞) we denote the norm of Ls(Ω, Rm), m ∈ N. Also, by | · | we denote the norm 
of RN and by p∗ the critical Sobolev exponent corresponding to p, that is

p∗ =

⎧⎨
⎩

Np

N − p
if p < N,

+∞ if N ≤ p.

The hypotheses on the data of (Pλ) are the following:

H(ξ): ξ ∈ L∞(Ω) and ξ(z) > 0 for a.a. z ∈ Ω.
H(a): a ∈ L∞(Ω) and a(z) ≥ 0 for a.a. z ∈ Ω, a 
≡ 0.
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The energy (Euler) functional for this problem ϕλ : W 1,p
0 (Ω) → R is given by

ϕλ(u) = 1
p
‖∇u‖pp + 1

q

∫
Ω

ξ(z)|∇u|qdz − 1
1 − γ

∫
Ω

a(z)|u|1−γdz − λ

r
‖u‖rr

for all u ∈ W 1,p
0 (Ω).

On account of the singular term a(z)u−γ , this functional is not C1. So, the use of variational methods 
based on the critical point theory presents difficulties which are compounded by the fact that the weight 
ξ(·) is discontinuous and not bounded away from zero. For this reason our approach is based on the Nehari 
method.

Recall that u ∈ W 1,p
0 (Ω) is a weak solution of (Pλ), if u(z) ≥ 0 for a.a. z ∈ Ω, u 
≡ 0 and

∫
Ω

|∇u|p−2(∇u,∇h)RNdz +
∫
Ω

ξ(z)|∇u|q−2(∇u,∇h)RNdz

=
∫
Ω

a(z)u−γhdz + λ

∫
Ω

ur−1hdz for all h ∈ W 1,p
0 (Ω).

For every λ > 0, we introduce the Nehari manifold for problem (Pλ) defined by

Nλ =

⎧⎨
⎩u ∈ W 1,p

0 (Ω) : ‖∇u‖pp +
∫
Ω

ξ(z)|∇u|qdz =
∫
Ω

a(z)|u|1−γdz + λ‖u‖rr, u 
= 0

⎫⎬
⎭ .

Evidently, the Nehari manifold contains the weak solutions of (Pλ) and as we will see in the sequel, for 
small λ > 0 one has Nλ 
= ∅. The Nehari manifold is much smaller than W 1,p

0 (Ω) and so ϕλ

∣∣∣
Nλ

can have 

nice properties which fail to be true globally.
It will be helpful to decompose Nλ into three disjoint parts:

N+
λ =

{
u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)

∫
Ω

ξ(z)|∇u|qdz

− λ(r + γ − 1)‖u‖rr > 0
}
,

N0
λ =

{
u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)

∫
Ω

ξ(z)|∇u|qdz

= λ(r + γ − 1)‖u‖rr
}
,

N−
λ = {u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)

∫
Ω

ξ(z)|∇u|qdz

− λ(r + γ − 1)‖u‖rr < 0
}
.

3. The proof of Theorem 1.1

In this section, using the Nehari method, we shall prove our main result, Theorem 1.1, which asserts that 
for all small λ > 0, problem (Pλ) has at least two positive solutions. Our proof will be broken down in a 
sequence of propositions.
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Proposition 3.1. If hypotheses H(ξ), H(a) hold and λ > 0, then ϕλ

∣∣∣
Nλ

is coercive.

Proof. Let u ∈ Nλ. From the definition of Nλ, we have

−1
r
‖∇u‖pp −

1
r

∫
Ω

ξ(z)|∇u|qdz + 1
r

∫
Ω

a(z)|u|1−γdz + λ

r
‖u‖rr = 0. (1)

Using (1), we have

ϕλ(u) =
[
1
p
− 1

r

]
‖∇u‖pp +

[
1
q
− 1

r

] ∫
Ω

ξ(z)|∇u|qdz

+
[
1
r
− 1

1 − γ

] ∫
Ω

a(z)|u|1−γdz

⇒ ϕλ(u) ≥ c1‖u‖p − c2‖u‖1−γ for some c1, c2 > 0 (since q < p < r).

Here we have used the Poincaré’s inequality, Theorem 13.17 on p. 196 of Hewitt-Stromberg [8] and the 

Sobolev embedding theorem. From the last inequality and since p > 1 > 1 − γ, we can conclude that ϕλ

∣∣∣
Nλ

is coercive. �
Let m+

λ = infN+
λ
ϕλ.

Proposition 3.2. If hypotheses H(ξ), H(a) hold and N+
λ 
= ∅, then m+

λ < 0.

Proof. By the definition of N+
λ , we have

λ‖u‖rr <
p + γ − 1
r + γ − 1‖∇u‖pp + q + γ − 1

r + γ − 1

∫
Ω

ξ(z)|∇u|qdz for all u ∈ N+
λ . (2)

We know that N+
λ ⊆ Nλ. So, we have

− 1
1 − γ

∫
Ω

a(z)|u|1−γdz = − 1
1 − γ

‖∇u‖pp −
1

1 − γ

∫
Ω

ξ(z)|∇u|qdz + λ

1 − γ
‖u‖rr (3)

for all u ∈ N+
λ . Now, for all u ∈ N+

λ , we have

ϕλ(u)

= 1
p
‖∇u‖pp + 1

q

∫
Ω

ξ(z)|∇u|qdz − 1
1 − γ

∫
Ω

a(z)|u|1−γdz − λ

r
‖u‖rr

=
[
1
p
− 1

1 − γ

]
‖∇u‖pp +

[
1
q
− 1

1 − γ

] ∫
Ω

ξ(z)|∇u|qdz + λ

[
1

1 − γ
− 1

r

]
‖u‖rr

(see (3))

≤
[
−(p + γ − 1)

p(1 − γ) + p + γ − 1
r + γ − 1

r + γ − 1
r(1 − γ)

]
‖∇u‖pp

+
[
−(q + γ − 1)
q(1 − γ) + q + γ − 1

r + γ − 1
r + γ − 1
r(1 − γ)

] ∫
ξ(z)|∇u|qdz (see (2))
Ω
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= p + γ − 1
1 − γ

[
1
r
− 1

p

]
‖∇u‖pp + q + γ − 1

1 − γ

[
1
r
− 1

q

] ∫
Ω

ξ(z)|∇u|qdz

< 0 (see hypothesis H(ξ) and recall that q < p < r),

⇒ϕλ

∣∣∣
N+

λ

< 0,

⇒m+
λ < 0. �

Proposition 3.3. If hypotheses H(ξ), H(a) hold, then there exists λ∗ > 0 such that N0
λ = ∅ for all λ ∈ (0, λ∗).

Proof. Arguing by contradiction, suppose that N0
λ 
= ∅ for all λ > 0. So, for every λ > 0, we can find u ∈ Nλ

such that

(p + γ − 1)‖∇u‖pp + (q + γ − 1)
∫
Ω

ξ(z)|∇u|qdz = λ(r + γ − 1)‖u‖rr. (4)

Since u ∈ Nλ, we also have

(r + γ − 1)‖∇u‖pp + (r + γ − 1)
∫
Ω

ξ(z)|∇u|qdz − (r + γ − 1)
∫
Ω

a(z)|u|1−γdz

= λ(r + γ − 1)‖u‖rr. (5)

We subtract (4) from (5) and obtain

(r − p)‖∇u‖pp + (r − q)
∫
Ω

ξ(z)|∇u|qdz = (r + γ − 1)
∫
Ω

a(z)|u|1−γdz,

⇒ ‖u‖p ≤ c3‖u‖ for some c3 > 0,

⇒ ‖u‖p−1 ≤ c3. (6)

From (4) and the Sobolev embedding theorem, we have

‖u‖p ≤ λc4‖u‖r for some c4 > 0,

⇒
[

1
λc4

] 1
r−p

≤ ‖u‖.

If λ → 0+, then ‖u‖ → +∞ and this contradicts (6). This shows that there exists λ∗ > 0 such that 
N0

λ = ∅ for all λ ∈ (0, λ∗). �
Now let u ∈ W 1,p

0 (Ω) and consider the function ŵu : (0, +∞) → R defined by

ŵu(t) = tp−r‖∇u‖pp − t−r−γ+1
∫
Ω

a(z)|u|1−γdz for all t > 0.

Since r − p < r + γ − 1, we see that there exists t̂0 > 0 such that

ŵu(t̂0) = max ŵu.

t>0
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Then we have

ŵ′
u(t̂0) = 0,

⇒ (p− r)t̂p−r−1
0 ‖∇u‖pp + (r + γ − 1)t̂−r−γ

0

∫
Ω

a(z)|u|1−γdz = 0,

⇒ t̂0 =
[ (r + γ − 1)

∫
Ω a(z)|u|1−γdz

(r − p)‖∇u‖pp

] 1
p+γ−1

.

Therefore we have

ŵu(t̂0) =
[
(r − p)‖∇u‖pp

] r−p
p+γ−1[

(r + γ − 1)
∫
Ω a(z)|u|1−γdz

] r−p
p+γ−1

‖∇u‖pp

−
[
(r − p)‖∇u‖pp

] r+γ−1
p+γ−1[

(r + γ − 1)
∫
Ω a(z)|u|1−γdz

] r+γ−1
p+γ−1

∫
Ω

a(z)|u|1−γdz

= (r − p)
r−p

p+γ−1 ‖∇u‖
p(r+γ−1)
p+γ−1

p[
(r + γ − 1)

∫
Ω a(z)|u|1−γdz

] r−p
p+γ−1

− (r − p)
r+γ−1
p+γ−1 ‖∇u‖

p(r+γ−1)
p+γ−1

p[
(r + γ − 1)

∫
Ω a(z)|u|1−γdz

] r−p
p+γ−1

= p + γ − 1
r − p

[
r − p

r + γ − 1

] r+γ−1
p+γ−1 ‖∇u‖

p(r+γ−1)
p+γ−1

p[∫
Ω a(z)|u|1−γdz

] r−p
p+γ−1

. (7)

If S denotes the best Sobolev constant, we have

S‖u‖pp∗ ≤ ‖∇u‖pp. (8)

Also, we have ∫
Ω

a(z)|u|1−γdz ≤ c5‖u‖1−γ
p∗ for some c5 > 0. (9)

Then we have

ŵu(t̂0) − λ‖u‖rr

≥ p + γ − 1
r − p

[
r − p

r + γ − 1

] r+γ−1
p+γ−1 S

p(r+γ−1)
p+γ−1

(
‖u‖pp∗

) r+γ−1
p+γ−1(

c5‖u‖1−γ
p∗

) r−p
p+γ−1

− λc6‖u‖rp∗

for some c6 > 0 (see (7), (8), (9) and recall r < p∗)

= [c7 − λc6] ‖u‖rp∗ for some c7 > 0.

So, there exists λ̂∗ ∈ (0, λ∗] independent of u, such that

ŵu(t̂0) − λ‖u‖rr > 0 for all λ ∈ (0, λ̂∗). (10)
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Proposition 3.4. If hypotheses H(ξ), H(a) hold, then there exists λ̂∗ ∈ (0, λ∗] such that for every λ ∈ (0, λ∗)
we can find u∗ ∈ N+

λ such that ϕλ(u∗) = m+
λ < 0 and u∗(z) ≥ 0 for a.a. z ∈ Ω.

Proof. For u ∈ W 1,p
0 (Ω) we consider the function wu : (0, +∞) → R defined by

wu(t) = tp−r‖∇u‖pp + tq−r

∫
Ω

ξ(z)|∇u|qdz − t−r−γ+1
∫
Ω

a(z)|u|1−γdz for all t > 0.

Since r − p < r − q < r + γ − 1, we can find t0 > 0 such that

wu(t0) = max
t>0

wu.

Evidently, we have wu ≥ ŵu and so from (10) we see that we can find λ̂∗ ∈ (0, λ∗] such that

wu(t0) − λ‖u‖rr > 0 for all λ ∈ (0, λ̂∗).

Consequently, we can find t1 < t0 < t2 such that

wu(t1) = λ‖u‖rr = wu(t2) and w′
u(t2) < 0 < w′

u(t1). (11)

Now we see that

t1u ∈ N+
λ and t2u ∈ N−

λ .

Therefore for all λ ∈ (0, ̂λ∗), we have N±
λ 
= ∅ while N0

λ = ∅ (see Proposition 3.3).
Now consider a minimizing sequence {un}n≥1 ⊆ N+

λ , that is,

ϕλ(un) ↓ m+
λ as n → +∞.

On account of Proposition 3.1, we have that

{un}n≥1 ⊆ W 1,p
0 (Ω) is bounded (recall that N+

λ ⊆ Nλ).

So, by passing to a suitable subsequence if necessary, we may assume that

un
w−→ u∗ in W 1,p

0 (Ω) and un → u∗ in Lr(Ω).

We consider the function wu∗(·) and let t1 < t0 be as in (11) (with u = u∗). From the first part of the 
proof we know that t1u∗ ∈ N+

λ .
We claim that un → u∗ in W 1,p

0 (Ω) as n → +∞. Arguing by contradiction, suppose that un 
→ u∗ in 
W 1,p

0 (Ω). Then we will have

lim inf
n→+∞

‖∇un‖pp > ‖∇u‖pp. (12)

For u ∈ W 1,p
0 (Ω) we consider the fibering function μu : (0, +∞) → R defined by

μu(t) = ϕλ(tu) for all t > 0.
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Using (12) (see also [2,14]), we have

lim inf
n→+∞

μ′
un

(t1)

= lim inf
n→+∞

⎡
⎣tp−1

1 ‖∇un‖pp + tq−1
1

∫
Ω

ξ(z)|∇un|qdz − t−γ
1

∫
Ω

a(z)|un|1−γdz

−λtr−1
1 ‖un‖rr

]
> tp−1

1 ‖∇u∗‖pp + tq−1
1

∫
Ω

ξ(z)|∇u∗|qdz − t−γ
1

∫
Ω

a(z)|u∗|1−γdz − λtr−1
1 ‖u∗‖rr

(see (12))

= μ′
u∗(t1) = 0 (see (11)). (13)

Then it follows from (13) that we can find n0 ∈ N such that

μ′
u∗(t1) > 0 for all n ≥ n0. (14)

Since un ∈ N+
λ ⊆ Nλ and μ′

un
(t) = tr [wun

(t) − λ‖un‖rr], we have

μ′
un

(t) < 0 for all t ∈ (0, 1) and μ′
un

(1) = 0,

⇒ t1 > 0 (see (14)).

The function μu∗(·) is decreasing on (0, t1). Hence we have

ϕλ(t1u∗) ≤ ϕλ(u∗) < m+
λ (see (12)). (15)

However, t1u∗ ∈ N+
λ . Hence

m+
λ ≤ ϕλ(tu∗) < m+

λ (see (15)),

a contradiction. This proves that our initial claim holds and we have

un → u∗ in W 1,p
0 (Ω), (16)

⇒ ϕλ(un) → ϕλ(u∗),

⇒ ϕλ(u∗) = m+
λ .

Since un ∈ N+
λ for all n ∈ N, we have

(p + γ − 1)‖∇un‖pp + (q + γ − 1)
∫
Ω

ξ(z)|∇un|qdz > λ(r + γ − 1)‖un‖rr,

⇒ (p + γ − 1)‖∇u∗‖pp + (q + γ − 1)
∫
Ω

ξ(z)|∇u∗|qdz ≥ λ(r + γ − 1)‖u∗‖rr (17)

(see (16)).

However, λ ∈ (0, ̂λ∗) and λ̂∗ ≤ λ∗. So, from Proposition 3.3, we know that N0
λ = ∅. Therefore in (17)

equality cannot hold and so we can conclude that u∗ ∈ N+
λ .

Clearly, we can replace u∗ by |u∗| and so we can say that u∗(z) ≥ 0 for a.a. z ∈ Ω. �
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We will need the following lemma which was inspired by Lemma 3 of Sun-Wu-Long [17]. In what follows, 
Bε(0) = {w ∈ W 1,p

0 (Ω) : ‖w‖ < ε}, ε > 0.

Lemma 3.1. If hypotheses H(ξ), H(a) hold and u ∈ N±
λ , then there exist ε > 0 and a continuous function 

β : Bε(0) → R+ such that β(0) = 1, β(w)(u + w) ∈ N+
λ for all w ∈ Bε(0).

Proof. We shall only give the proof for u ∈ N+
λ , the proof for u ∈ N−

λ is similar.
Consider the function E : W 1,p

0 (Ω) ×R → R defined by

E(w, t) = tp+γ−1‖∇(u + w)‖pp + tq+γ−1
∫
Ω

ξ(z)|∇(u + w)|qdz

−
∫
Ω

a(z)|u + w|1−γdz − λtr+γ−1‖u + w‖rr for all w ∈ W 1,p
0 (Ω).

We have

E(0, 1) = 0 (since u ∈ N+
λ ⊆ Nλ),

E′
t(0, 1) = (p + γ − 1)‖∇u‖pp + (q + γ − 1)

∫
Ω

ξ(z)|∇u|qdz

− λ(r + γ − 1)‖u‖rr > 0 (since u ∈ N+
λ ).

Invoking the implicit function theorem (see Gasiński-Papageorgiou [7], p. 481), we can find ε > 0 and 
continuous β : Bε(0) → R+ = (0, +∞) such that

β(0) = 1, β(w)(u + w) ∈ Nλ for all w ∈ Bε(0).

Taking ε > 0 even smaller if necessary, we can also have

β(w)(u + w) ∈ N+
λ for all w ∈ Bε(0). �

Proposition 3.5. If hypotheses H(ξ), H(a) hold, λ ∈ (0, ̂λ∗], and h ∈ W 1,p
0 (Ω), then we can find b > 0 such 

that ϕλ(u∗) ≤ ϕλ(u∗ + th) for all t ∈ [0, b].

Proof. We introduce the function ηh : [0, +∞) → R defined by

ηh(t) = (p− 1)‖∇u∗ + t∇h‖pp + (q − 1)
∫
Ω

ξ(z)|∇u∗ + t∇h|qdz

+ γ

∫
Ω

a(z)|u∗ + th|1−γdz − λ(r − 1)‖u∗ + th‖rr. (18)

Since u∗ ∈ N+
λ ⊆ Nλ (see Proposition 3.4), we have

γ

∫
Ω

a(z)|u∗|1−γdz = γ‖∇u∗‖pp + γ

∫
Ω

ξ(z)|u∗|qdz − λγ‖u∗‖rr, (19)

(p + γ − 1)‖∇u∗‖pp + (q + γ − 1)
∫
Ω

ξ(z)|∇u∗|qdz − λ(r + γ − 1)‖u∗‖rr > 0. (20)
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It follows from (18), (19), (20) that ηh(0) > 0.
The continuity of ηh(·) implies that we can find b0 > 0 such that

ηh(t) > 0 for all t ∈ [0, b0].

On account of Lemma 3.1, we can find ϑ(t) > 0, t ∈ [0, b0] such that

ϑ(t)(u∗ + th) ∈ N+
λ , ϑ(t) → 1 as t → 0+. (21)

Therefore we have

m+
λ = ϕλ(u∗) ≤ ϕλ(ϑ(t)(u∗ + th)) for all t ∈ [0, b0],

⇒ m+
λ ≤ ϕλ(u∗) ≤ ϕλ(u∗ + th) for all t ∈ [0, b] with 0 < b ≤ b0 (see (21)). �

The next proposition shows that N+
λ is in fact, a natural constraint for the energy functional ϕλ (see 

Papageorgiou-Rǎdulescu-Repovš [11], p. 425).

Proposition 3.6. If hypotheses H(ξ), H(a) hold and λ ∈ (0, ̂λ∗), then u∗ is a weak solution of (Pλ).

Proof. Let h ∈ W 1,p
0 (Ω) and let b > 0 as postulated by Proposition 3.5. For 0 ≤ t ≤ b we have

0 ≤ ϕλ(u∗ + th) − ϕλ(u∗) (see Proposition 3.5),

⇒ 1
1 − γ

∫
Ω

a(z)
[
|u∗ + th|1−γ − |u∗|1−γ

]
dz

≤ 1
p

[
‖∇u∗ + t∇h‖pp − ‖∇u∗‖pp

]
+ 1

q

⎡
⎣∫

Ω

ξ(z) [|∇u∗ + t∇h|q − |∇u∗|q] dz

⎤
⎦

− λ

r
[‖u∗ + th‖rr − ‖u∗‖rr] .

We divide by t > 0 and then let t → 0+. We obtain
∫
Ω

a(z)(u∗)−γhdz

≤
∫
Ω

|∇u∗|p−2(∇u∗,∇h)RNdz +
∫
Ω

ξ(z)|∇u∗|q−2(∇u∗,∇h)RNdz

− λ

∫
Ω

(u∗)r−1hdz.

Since h ∈ W 1,p
0 (Ω) is arbitrary, equality must hold and so u∗ is a weak solution of (Pλ), λ ∈ (0, ̂λ∗). �

This proposition leads to the first positive solution of (Pλ), λ ∈ (0, ̂λ∗).

Proposition 3.7. If hypotheses H(ξ), H(a) hold and λ ∈ (0, ̂λ∗), then problem (Pλ) admits a positive solution 
u∗ ∈ W 1,p

0 (Ω) such that ϕλ(u∗) < 0 and u∗(z) ≥ 0 for a.a. z ∈ Ω, u∗ 
≡ 0.

Next, using the set N−
λ , we will generate a second positive solution for problem (Pλ) when λ > 0 is small.
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Proposition 3.8. If hypotheses H(ξ), H(a) hold, then we can find λ̂∗
0 ∈ (0, ̂λ∗] such that ϕλ

∣∣∣
N−

λ

≥ 0 for all 

λ ∈ (0, ̂λ∗
0].

Proof. Let u ∈ N−
λ . We have

(p + γ − 1)‖∇u‖pp + (q + γ − 1)
∫
Ω

ξ(z)|∇u|qdz < λ(r + γ − 1)‖u‖rr,

⇒ (p + γ − 1)c8‖u‖pr < λ(r + γ − 1)‖u‖rr for some c8 > 0
(here we have used the fact that W 1,p

0 (Ω) ↪→ Lr(Ω)),

⇒
[
(p + γ − 1)c8
λ(r + γ − 1)

] 1
r−p

≤ ‖u‖r. (22)

Arguing by contradiction, suppose that the proposition is not true. Then we can find u ∈ N−
λ such that

ϕλ(u) < 0,

⇒ 1
p
‖∇u‖pp + 1

q

∫
Ω

ξ(z)|∇u|qdz − 1
1 − γ

∫
Ω

a(z)|u|1−γdz − λ

r
‖u‖rr < 0. (23)

We know that u ∈ Nλ. Therefore

‖∇u‖pp =
∫
Ω

a(z)|u|1−γdz + λ‖u‖rr −
∫
Ω

ξ(z)|∇u|qdz. (24)

We use (24) in (23) and obtain[
1
p
− 1

1 − γ

] ∫
Ω

a(z)|u|1−γdz +
[
1
q
− 1

p

] ∫
Ω

ξ(z)|∇u|qdz

+ λ

[
1
p
− 1

r

]
‖u‖rr < 0,

⇒λ

[
1
p
− 1

r

]
‖u‖rr <

p + γ − 1
p(1 − γ) c9‖u‖1−γ

r for some c9 > 0 (recall that q < p < r),

⇒‖u‖r+γ−1
r ≤ (p + γ − 1)rc9

λ(r − p)(1 − γ) ,

⇒‖u‖r ≤ c10

(
1
λ

) 1
r+γ−1

for some c10 > 0. (25)

We use (25) in (22) and obtain

c11

(
1
λ

) 1
r−p

≤ c10

(
1
λ

) 1
r+γ−1

with c11 =
[
(p + γ − 1)c8
r + γ − 1

] 1
r−p

> 0,

⇒ c12 ≤ λ
1

r−p− 1
r+γ−1 with c12 = c11

c10
> 0,

⇒ c12 ≤ λ
p+γ−1

(r−p)(r+γ−1) → 0 as λ → 0+ (since 1 < p < r, γ ∈ (0, 1)),

a contradiction. Therefore we conclude that we can find λ̂∗
0 ∈ (0, ̂λ∗] such that ϕλ

∣∣∣
N−

λ

≥ 0 for all λ ∈

(0, ̂λ∗
0]. �
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Proposition 3.9. If hypotheses H(ξ), H(a) hold and λ ∈ (0, ̂λ∗
0], then there exists v∗ ∈ N−

λ , v∗ ≥ 0 such that 
m−

λ = infN−
λ
ϕλ = ϕλ(v∗).

Proof. The reasoning is similar to that in the proof of Proposition 3.4. If {vn}n≥1 ⊆ N−
λ is a minimizing 

sequence, then on account of Proposition 3.1, we have that {vn}n≥1 ⊆ W 1,p
0 (Ω) is bounded. So, we may 

assume that

vn
w−→ v∗ in W 1,p

0 (Ω) and vn → v∗ in Lr(Ω) as n → +∞.

From the proof of Proposition 3.4 we can find t0 < t2 such that

w′
v∗(t2) < 0 and wv∗(t2) = λ‖v∗‖rr (see (11)), (26)

(t0 > 0 being the maximizer of wv∗). We argue as in the proof of Proposition 3.4 and using (26), we obtain 
that v∗ ∈ N−

λ , v∗ ≥ 0, m−
λ = ϕλ(v∗). �

Using Lemma 3.1 and reasoning as in the proofs of Propositions 3.5 and 3.6, we can also prove the 
following proposition.

Proposition 3.10. If hypotheses H(ξ), H(a) hold and λ ∈ (0, ̂λ∗), then v∗ is a weak solution of (Pλ). �
This also completes the proof of our main result, Theorem 1.1. �

Remark 3.1. It would be interesting to study if one can get such a multiplicity result for double phase 
problems with a differential operator of unbalanced growth, that is, of the form

−div
(
ξ(z)|∇u|p−2∇u

)
− Δqu with 1 < q < p.

For this operator, the integrand in the corresponding energy functional is

k(z, t) = 1
p
ξ(z)tp + 1

q
tq for all t > 0.

Note that for this integrand we have

1
q
tq ≤ k(z, t) ≤ ĉ[1 + tp] for some ĉ > 0, all t > 0,

(unbalanced growth). For such problems we need to work with Musielak-Orlicz-Sobolev spaces. Also, we 
need to strengthen the condition of ξ(·) (ξ : Ω → R is Lipschitz continuous, ξ(z) > 0 for all z ∈ Ω), as well 
as restrict the exponents 1 < q < p and require that pq < 1 + 1

N , which means that p and q cannot differ 
much (see [4,10]).
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