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Abstract
We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential
operator plus an indefinite potential. In the reaction we have the competing effects of
a singular term and of concave and convex nonlinearities. In this paper the concave
term will be parametric. We prove a bifurcation-type theorem describing the changes
in the set of positive solutions as the positive parameter λ varies.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonlinear nonhomogeneous parametric singular problem:

{−div a(Du(z)) + ξ(z)u(z)p−1 = ϑ(u(z)) + λu(z)q−1 + f (z, u(z)) in �,

u|∂� = 0, u > 0, λ > 0, 1 < q < p < ∞.

}

(Pλ)

The map a : RN → R
N involved in the differential operator of (Pλ) is strictly

monotone, continuous (hence maximal monotone, too) and satisfies certain other reg-
ularity and growth conditions which are listed in hypotheses H(a) below (see Sect. 2).
These conditions are general enough to incorporate in our framework many differen-
tial operators of interest such as the p-Laplacian and the (p, q)-Laplacian (that is,
the sum of a p-Laplacian and a q-Laplacian). The operator u �→ div a(Du) is not
homogeneous and this is a source of difficulties in the analysis of problem (Pλ). The
potential function ξ ∈ L∞(�) is indefinite (that is, sign changing). So the operator
u �→ −div a(Du) + ξ(z)|u|p−2u is not coercive and this is one more difficulty in the
analysis of problem (Pλ). In the reaction (the right-hand side of (Pλ)), the term ϑ(·)
is singular at x = 0, while the perturbation contains the combined effects of a para-
metric concave term x �→ λxq−1 (x � 0) (recall that q < p), with λ > 0 being the
parameter and of a Carathéodory function f (z, x) (that is, for all x ∈ R the mapping
z �→ f (z, x) is measurable and for almost all z ∈ � the mapping x �→ f (z, x) is
continuous), which is assumed to exhibit (p − 1)-superlinear growth near +∞, but
without satisfying the usual for superlinear problems Ambrosetti-Rabinowitz condi-
tion (the AR-condition for short). So in problem (Pλ) we have the competing effects
of singular, concave and convex terms.

Usingvariationalmethods related to the critical point theory, combinedwith suitable
truncation, perturbation and comparison techniques, we produce a critical parameter
value λ∗ > 0 such that

(i) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions;
(ii) for λ = λ∗ problem (Pλ) has at least one positive solution;
(iii) for all λ > λ∗ problem (Pλ) has no positive solutions.

This work continues the recent paper by Papageorgiou et al. [16], where ξ ≡ 0 and
in the reaction the parametric term is the singular one. It is also related to the works of
Papageorgiou and Smyrlis [17] and Papageorgiou and Winkert [19], where the differ-
ential operator is the p-Laplacian, ξ ≡ 0 and no concave terms are allowed. Singular
p-Laplacian equations with no potential term and reactions of special form were con-
sidered by Chu et al. [2], Giacomoni et al. [5], Li and Gao [10], Mohammed [12],
Perera and Zhang [20], and Papageorgiou et al. [14].
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2 Mathematical background and hypotheses

In this sectionwe present themainmathematical toolswhichwewill use in the analysis
of problem (Pλ). We also fix our notation and state the hypotheses on the data of the
problem.

So, let X be a Banach space, X∗ its topological dual, and let ϕ ∈ C1(X). We say
that ϕ(·) satisfies the “C-condition”, if the following property holds:

“Every sequence {un}n�1 ⊆ X such that
{ϕ(un)}n�1 ⊆ R is bounded and (1 + ||un||X )ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence′′.

This is a compactness-type condition on the functional ϕ(·), which leads to themin-
imax theory of the critical values of ϕ(·) (see, for example, Papageorgiou et al. [15]).
We denote by Kϕ the critical set of ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

The main spaces in the analysis of problem (Pλ) are the Sobolev space W 1,p
0 (�)

(1 < p < ∞) and the Banach space C1
0(�) = {u ∈ C1(�) : u|∂� = 0}. We denote

by || · || the norm of W 1,p
0 . By the Poincaré inequality we have

||u|| = ||Du||p for all u ∈ W 1,p
0 (�).

The Banach space C1
0(�) is ordered with positive (order) cone

C+ = {u ∈ C1
0(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior given by

intC+ = {
u ∈ C+ : u(z) > 0 for all z ∈ �, ∂u

∂n |∂� < 0
}
,

with n(·) being the outward unit normal on ∂�.

We will also use two additional ordered Banach spaces. The first one is

C0(�) = {u ∈ C(�) : u|∂� = 0}.

This cone is ordered with positive (order) cone

K+ = {u ∈ C0(�) : u(z) � 0 for all z ∈ �}.

This cone has a nonempty interior given by

int K+ = {u ∈ K+ : cud̂ � u for some cu > 0},
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where d̂(z) = d(z, ∂�) for all z ∈ �. On account of Lemma 14.16 of Gilbarg and
Trudinger [6, p. 355], we have

“cud̂ � u for some cu > 0 if and only if ĉu û1 � u for some ĉu > 0′′, (1)

with û1 being the positive, L p-normalized (that is, ||û1||p = 1) eigenfunction cor-
responding to the principal eigenvalue λ̂1 > 0 of the Dirichlet p-Laplacian. The
nonlinear regularity theory and the nonlinear maximum principle (see, for example,
Gasinski and Papageorgiou [4, pp. 737–738]), imply that û1 ∈ intC+.

The second ordered space is C1(�) with positive (order) cone

Ĉ+ =
{
u ∈ C1(�) : u(z) � 0 for all z ∈ �,

∂u

∂n
|∂�∩u−1(0) < 0

}
.

Clearly, this cone has a nonempty interior.
Concerning ordered Banach spaces with an order cone which has a nonempty

interior (solid order cone), we have the following result which will be useful in our
analysis (see Papageorgiou et al. [15, Proposition 4.1.22]).

Proposition 1 If X is an ordered Banach space with positive (order) cone K, intK
�= ∅, and e ∈ int K , then for every u ∈ X we can find λu > 0 such that λue− u ∈ K .

Let l ∈ C1(0,∞) with l(t) > 0 for all t > 0. We assume that

0 < ĉ � l ′(t)t
l(t) � c0, c1t p−1 � l(t) � c2[t s−1 + t p−1]

for all t > 0, and some c1, c2 > 0, 1 � s < p.
(2)

Then the conditions on the map a(·) are the following:
H(a) : a(y) = a0(|y|)y for all y ∈ R

N , with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,+∞), t �→ a0(t) is strictly increasing on (0,+∞), a0(t)t → 0+ as
t → 0+ and

lim
t→0+

a′
0(t)t

a0(t)
> −1;

(ii) there exists c3 > 0 such that

|∇a(y)| � c3
l(|y|)
|y| for all y ∈ R

N\{0};

(iii) (∇a(y)ξ, ξ)RN � l(|y|)
|y| |ξ |2 for all y ∈ R

n\{0}, ξ ∈ R
N ;

(iv) if G0(t) = ∫ t
0 a0(s)sds, then there exists τ ∈ (q, p] such that

lim sup
t→0+

τG0(t)

tτ
� c∗

and 0 � pG0(t) − a0(t)t2 for all t > 0.
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Remark 1 Hypotheses H(a)(i), (i i), (i i i) are dictated by the nonlinear regularity the-
ory of Lieberman [10] and the nonlinear maximum principle of Pucci and Serrin [21].
Hypothesis H(a)(iv) serves the needs of our problem, but in fact, it is a mild condition
and it is satisfied in all cases of interest (see the examples below). These conditions
were used by Papageorgiou and Rădulescu [13] and by Papageorgiou et al. [16].

Hypotheses H(a) imply that the primitive G0(·) is strictly increasing and strictly
convex. We set G(y) = G0(|y|) for all y ∈ R

N . Evidently, G(·) is convex, G(0) = 0
and

∇G(y) = G ′
0(|y|) y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0}, ∇G(0) = 0,

that is, G(·) is the primitive of a(·). From the convexity of G(·) we have

G(y) � (a(y), y)RN for all y ∈ R
N . (3)

Using hypotheses H(a)(i), (i i), (i i i) and (2), we can easily obtain the following
lemma, which summarizes the main properties of the map a(·).
Lemma 2 If hypotheses H(a)(i), (i i), (i i i) hold, then

(a) the map y �→ a(y) is continuous, strictly monotone (hence maximal monotone,
too);

(b) |a(y)| � c4(|y|s−1 + |y|p−1) for some c4 > 0, and all y ∈ R
N ;

(c) (a(y), y)RN � c1
p−1 |y|p for all y ∈ R

N .

Using this lemma and (3),we obtain the following growth estimates for the primitive
G(·).
Corollary 3 If hypotheses H(a)(i), (i i), (i i i) hold, then c1

p(p−1) |y|p � G(y) � c5(1+
|y|p) for some c5 > 0, and all y ∈ R

N .

The examples that follow confirm that the framework provided by hypotheses H(a)

is broad and includes many differential operators of interest (see [13]).

Example 1 (a) a(y) = |y|p−2y with 1 < p < ∞.
This map corresponds to the p-Laplace differential operator defined by

	pu = div (|Du|p−2Du) for all u ∈ W 1,p
0 (�).

(b) a(y) = |y|p−2y + μ|y|q−2y with 1 < q < p < ∞, μ � 0.
This map corresponds to the (p, q)-Laplace differential operator defined by

	pu + 	qu for all u ∈ W 1,p
0 (�).

Such operators arise in models of physical processes. We mention the works of
Cherfils and Ilyasov [1] (reaction-diffusion systems) and Zhikov [22] (homog-
enization of composites consisting of two materials with distinct hardening
exponent in elasticity theory).
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(c) a(y) = (1 + |y|2) p−2
2 y with 1 < p < ∞.

This map corresponds to the modified capillary operator.

(d) a(y) = |y|p−2y
(
1 + 1

1+|y|p
)
with 1 < p < ∞.

The hypotheses on the potential term ξ(·) and on the singular part ϑ(·) of the
reaction are the following:

H(ξ) : ξ ∈ L∞(�).

H(ϑ) : ϑ : (0,+∞) → (0,+∞) is a locally Lipschitz function such that

(i) for some γ ∈ (0, 1) we have

0 < c6 � lim inf
x→0+ ϑ(x)xγ � lim sup

x→0+
ϑ(x)xγ � c7;

(ii) ϑ(·) is nonincreasing.
Remark 2 In the literature we almost always encounter the following particular sin-
gular term

ϑ(x) = x−γ for all x > 0, with 0 < γ < 1.

Of course, hypotheses H(ϑ) provide a much more general framework and can
accomodate also singularities like the ones that follow:

ϑ1(x) = x−γ [1 + ln(1 + x)] , x > 0,

ϑ2(x) = x−γ e−x , x > 0

ϑ3(x) =
{
x−γ (1 − η sin x) 0 < x � π

2
x−γ (1 − η) if π

2 < x
with 0 < γ < 1.

The following strong comparison principle can be found in Papageorgiou et al. [16,
Proposition 6] (see also Papageorgiou and Smyrlis [17, Proposition 4]).

Proposition 4 If hypotheses H(a), H(ϑ) hold, ξ̂ ∈ L∞(�), ξ̂ (z) � 0 for almost all
z ∈ �, h1, h2 ∈ L∞(�) satisfy

0 < c8 � h2(z) − h1(z) for almost all z ∈ �

and u, v ∈ C1,α(�) satisfy 0 < u(z) � v(z) for all z ∈ � and for almost all z ∈ �

we have

• −div a(Du(z)) − ϑ(u(z)) + ξ(z)u(z)p−1 = h1(z)
• −div a(Dv(z) − ϑ(v(z)) + ξ(z)v(z)p−1 = h2(z),

then v − u ∈ int Ĉ+.

In what follows, p∗ is the critical Sobolev exponent corresponding to p, that is,

p∗ =
{

Np
N−p if p < N .

+∞ if N � p.
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Now we introduce our hypotheses on the nonlinearity f (z, x).
H( f ) : f : � × R → R+ is a Carathéodory function such that f (z, 0) = 0 for

almost all z ∈ � and

(i) f (z, x) � a(z)(1+ xr−1) for almost all z ∈ �, and all x � 0, with a ∈ L∞(�),
p < r < p∗;

(ii) if F(z, x) = ∫ x
0 f (z, s)ds,

then limx→+∞ F(z,x)
x p = +∞ uniformly for almost all z ∈ �;

(iii) there exists σ ∈ ((r − p)max{ Np , 1}, p∗), σ > q such that

0 < β̂0 � lim inf
x→+∞

f (z, x)x − pF(z, x)

xσ
uniformly for almost all z ∈ �;

(iv) lim supx→0+ f (z,x)
xr−1 � η0 uniformly for almost all z ∈ �;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ � the function

x �→ f (z, x) + ξ̂ρx
ρ−1

is nondecreasing on [0, ρ].
Remark 3 Since our aim is to find positive solutions and the above hypotheses concern
the positive semiaxis R+ = [0,+∞), we may assume that

f (z, x) = 0, for almost all z ∈ �, and all x � 0. (4)

Hypotheses H( f )(i i), (i i i) imply that

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for almost all z ∈ �. (5)

So, the nonlinearity f (z, ·) is (p − 1)-superlinear near +∞. However, this super-
linearity of f (z, ·) is not formulated using the AR-condition. We recall that the
AR-condition (unilateral version due to (4)), says that there exist γ > p and M > 0
such that

0 < γ F(z, x) � f (z, x)x for almost all z ∈ �, and all x � M, (6a)

0 < ess inf�F(·, M). (6b)

If we integrate (6a) and use (6b), we obtain the weaker condition

c9xγ � F(z, x) for almost all z ∈ �, all x � M, and some c9 > 0,
⇒ c9xγ−1 � f (z, x) for almost all z ∈ �, and all x � M .

(7)

Therefore theAR-condition implies that f (z, ·) exhibits at least (γ −1)-polynomial
growth. Evidently, (7) implies the much weaker condition (5). In this work instead
of the standard AR-condition, we employ the less restrictive hypothesis H( f )(i i i).
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In this way we incorporate in our framework also (p − 1)-superlinear terms with
“slower” growth near +∞, which fail to satisfy the AR-condition. The following
function satisfies hypotheses H( f ) but fails to satisfy the AR-condition (for the sake
of simplicity we drop the z-dependence)

f (x) = x p−1 ln(1 + x) for all x � 0.

Finally, let us fix the notationwhichwewill use throughout this work. For x ∈ Rwe
set x± = max{±x, 0}. Then for u ∈ W 1,p

0 (�) we define u±(z) = u(z)± for almost
all z ∈ �. It follows that

u± ∈ W 1,p
0 (�), u = u+ − u−, |u| = u+ + u−.

If u, v ∈ W 1,p
0 (�) and u � v, then we define.

[u, v] = {y ∈ W 1,p
0 (�) : u(z) � y(z) � v(z) for almost all z ∈ �},

[u) = {y ∈ W 1,p
0 (�) : u(z) � y(z) for almost all z ∈ �}.

Also, by intc10(�)[u, v] we denote the interior in the C1
0(�)-norm topology of the

set [u, v] ∩ C1
0(�).

By A : W 1,p
0 (�) → W−1,p′

(�) = W 1,p
0 (�)∗ ( 1p + 1

p′ = 1) we denote the
nonlinear operator defined by

〈A(u), h〉 =
∫

�

(a(Du), Dh)RN dz for all u, h ∈ W 1,p
0 (�).

We know (see Gasinski and Papageorgiou [4]), that A(·) is continuous, strictly
monotone (hence maximal monotone, too) and of type (S)+, that is,

“if un
w→ u in W 1,p

0 (�) and lim supn→∞〈A(un), un − u〉 � 0,
then un → u in W 1,p

0 (�).′′

We introduce the following two sets related to problem (Pλ):

L = {λ > 0 : problem (Pλ) admits a positive solution},
Sλ = the set of positive solutions for problem (Pλ).

We let λ∗ = supL.

3 Positive solutions

We start by considering the following purely singular problem:

− div a(Du(z))) + ξ+(z)u(z)p−1 = ϑ(u(z)) in �, u|∂� = 0, u > 0. (8)
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From Papageorgiou et al. [16, Proposition 10], we have the following property.

Proposition 5 If hypotheses H(a), H(ξ), H(ϑ) hold, then problem (8) admits a
unique positive solution v ∈ intC+.

Let β > ||ξ ||∞. Then hypotheses H( f )(i), (iv) and since 1 < q < p < r , imply
that we can find c10, c11 > 0 such that

λxq−1+ f (z, x) � λc10x
q−1+c11x

r−1−βx p−1 for almost all z ∈ �, and all x � 0.
(9)

Let kλ(x) = λc10xq−1 + c11xr−1 − βx p−1 for all x � 0. With v ∈ intC+ from
Proposition 5, we consider the following auxiliary Dirichlet problem:

{−div a(Du(z)) + ξ(z)u(z)p−1 = ϑ(v(z)) + kλ(u(z)) in �

u|∂� = 0, u > 0.

}
(10)λ

For this problem we prove the following result.

Proposition 6 If hypotheses H(a), H(ξ), H(ϑ) hold, then for all small enough λ > 0
problem (10)λ has a smallest positive solution

uλ ∈ intC+.

Proof Recall that v ∈ intC+ (see Proposition 5). Hence v ∈ int K+ (see (1)). For
s > N we consider the function û1/s1 ∈ K+. According to Proposition 1, we can find
μ > 0 such that

û1/s1 � μv,

⇒ v−γ � μγ û−γ /s
1 .

(11)

From the Lemma in Lazer and McKenna [9, p. 726], we have

û−γ /s
1 ∈ Ls(�),

⇒ v−γ ∈ Ls(�) (see (11)).
(12)

Hypotheses H(ϑ) imply that we can find c12 > 0 and δ > 0 such that

0 � ϑ(x) � c12x
−γ for all 0 � x � δ and 0 � ϑ(x) � ϑ(δ) for all x > δ. (13)

It follows from (12), (13) that

ϑ(v(·)) ∈ Ls(�) (s > N ).

Let k̂λ(x) = λc10xq−1 + c11xr−1 for all x � 0 and set K̂λ(x) = ∫ x
0 k̂λ(s)ds. We

consider the C1-functional ψλ : W 1,p
0 (�) → R defined by

ψλ(u) =
∫

�

G(Du)dz + 1

p

∫
�

[ξ(z) + β]|u|pdz −
∫

�

K̂λ(u
+)dz −

∫
�

ϑ(v)u+dz
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for all u ∈ W 1,p
0 (�)

� c1
p(p − 1)

||Du||pp + 1

p

∫
�

[ξ(z) + β]|u|pdz − λc10
q

||u||qq

−c11
r

||u||rr −
∫

�

ϑ(v)|u|dz
(see Corollary 3)

� c12||u||p − c13[λ||u|| + ||u||r ]
for some c12, c13 > 0 and all 0 < λ � 1 (recall that β > ||ξ ||∞ and 1 < q < r)

= [c12 − c13(λ||u||1−p + ||u||r−p)]||u||p. (14)

We introduce the function �λ(t) = λt1−p + tr−p, t > 0. Evidently, �λ ∈
C1(0,+∞) and since 1 < p < r , we see that

�λ(t) → +∞ as t → 0+ and as t → +∞.

So, we can find t0 > 0 such that

�λ(t0) = inf{�λ(t) : t > 0},
⇒ �′

λ(t0) = 0,
⇒ λ(p − 1)t−p

0 = (r − p)tr−p−1
0

⇒ t0 =
[

λ(p−1)
r−p

] 1
r−1

.

Since p−1
r−1 < 1, it follows that

�λ(t0) → 0 as λ → 0+.

So, we can find λ0 ∈ (0, 1] such that

�λ(t0) � c12
c13

for all λ ∈ (0, λ0].

For ρ = t0, we see from (14) that

ψλ|∂Bρ
> 0, (15)

where Bρ = {u ∈ W 1,p
0 (�) : ||u|| � ρ} and ∂Bρ = {u ∈ W 1,p

0 (�) : ||u|| = ρ}.
We fix λ ∈ (0, λ0]. Hypothesis H(a)(iv) implies that we can find c∗

0 > c∗ and
δ > 0 such that

G(y) � c∗
0

τ
|y|τ for all |y| � δ.

Let u ∈ intC+ and choose small enough t ∈ (0, 1) such that

t |Du(z)| � δ for all z ∈ �.
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Then we have

ψλ(tu) � tτ c∗
0

τ
||Du||ττ + t p

p

∫
�

[ξ(z) + β]|u|pdz − λtq

q
||u||qq .

Since q < τ � p, choosing t ∈ (0, 1) even smaller if necessary, we have

ψλ(tu) < 0,

⇒ infBρ
ψλ < 0. (16)

The functional ψλ(·) is sequentially weakly lower semicontinuous and by the
Eberlein-Smulian theorem and the reflexivity of W 1,p

0 (�), the set Bρ is sequentially

weakly compact. So, by the Weierstrass-Tonelli theorem, we can find u ∈ W 1,p
0 (�)

such that
ψλ(u) = inf{ψλ(u) : u ∈ W 1,p

0 (�)} (λ ∈ (0, λ0]). (17)

From (15), (16) and (17) it follows that

0 < ||u|| < ρ,

⇒ ψ ′
λ(u) = 0 (see (17)),

⇒ 〈A(u), h〉 +
∫

�

[ξ(z) + β]|u|p−2uhdz =
∫

�

[ϑ(v) + k̂λ(u
+)]hdz

for all h ∈ W 1,p
0 (�). (18)

In (18) we choose h = −u− ∈ W 1,p
0 (�). Using Lemma 2(c) and since β > ||ξ ||∞

we obtain

c14||u−||p � 0 for some c14 > 0,

⇒ u � 0, u �= 0.

Then from (18) we have

−div a(Du(z)) + ξ(z)u(z)p−1 = ϑ(v(z)) + kλ(u(z)) for almost all z ∈ �,

⇒ u ∈ W 1,p
0 (�) is a positive of problem (10)λ for λ ∈ (0, λ0]. (19)

From (19) and Theorem 7.1 of Ladyzhenskaya and Uraltseva [8, p. 286], we have
u ∈ L∞(�). Hence kλ(u(·)) ∈ L∞(�). Recall that ϑ(v(·)) ∈ Ls(�) with s > N .
From Theorem 9.15 of Gilbarg and Trudinger [6, p. 241], we know that there exists a
unique solution y0 ∈ W 2,s(�) to the following linear Dirichlet problem

−	y(z) = ϑ(v(z)) in �, y|∂� = 0.

By the Sobolev embedding theorem, we have

W 2,s(�) ↪→ C1,α(�) with α = 1 − N

s
> 0.
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Let η0(z) = Dy0(z). Then η0 ∈ Cα(�,RN ) and we have

−div (a(Du(z)) − η0(z)) + ξ(z)u(z)p−1 = kλ(u(z)) for almost all z ∈ �.

The regularity theory of Lieberman [11] implies that u ∈ C+\{0}. Moreover, from
(19) we have

div a(Du(z)) � ||ξ ||∞u(z)p−1 for almost all z ∈ �,

⇒ u ∈ intC+

(from the nonlinear maximum principle, see Pucci and Serrin [21, pp. 111,120]).
Let Ŝλ denote the set of positive solutions of problem (10)λ. We have just seen that

∅ �= Ŝλ ⊆ intC+ for λ ∈ (0, λ0].Moreover, from Papageorgiou et al. [16, Proposition
18], we know that Ŝλ is downward directed (that is, if u1, u2,∈ Ŝλ, then we can find
u ∈ Ŝλ such that u � u1, u � u2). So, by Lemma 3.10 of Hu and Papageorgiou [7, p.
178], we can find a decreasing sequence {un}n�1 ⊆ Ŝλ such that

inf Ŝλ = inf
n�1

un .

For every n ∈ N we have

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n hdz =

∫
�

[ϑ(v) + kλ(un)]hdz for all h ∈ W 1,p
0 (�). (20)

Choosing h = un ∈ W 1,p
0 and since 0 � un � u1 for all n ∈ N, using Lemma

2(c), we see that {un}n�1 ⊆ W 1,p
0 (�) is bounded. So, we have

un
w→ uλ in W 1,p

0 (�). (21)

Next, in (20) we choose h = un − u ∈ W 1,p
0 (�), pass to the limit as n → ∞ and

use (21). Then

lim
n→∞〈A(un), un − uλ〉 = 0,

⇒ un → uλ in W 1,p
0 (�), uλ � 0

(recall that A(·) is of type (S)+, see Sect. 2). (22)

We pass to the limit as n → ∞ in (20) and use (22). Then

〈A(uλ), h〉 +
∫

�

ξ(z)u p−1
λ hdz =

∫
�

[ϑ(v) + kλ(uλ)]hdz

for all h ∈ W 1,p
0 (�),

⇒ uλ is a nonnegative solution of (10)λ
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Note that for all n ∈ N, we have

−div a(Dun(z)) + ξ+(z)un(z)p−1 � ϑ(v(z)) + kλ(un(z))
� ϑ(v(z)) = −div a(Dv(z)) + ξ+(z)v(z)p−1

for almost all z ∈ �,

⇒ v � un for all n ∈ N

(by the weak comparison principle, see Damascelli [3, Theorem 1.2])

⇒ v � uλ (see (22)), hence uλ �= 0. (23)

Therefore uλ ∈ Ŝλ ⊆ intC+ and uλ = inf Ŝλ. ��
We will use ūλ ∈ intC+ from Proposition 6 to show the nonemptiness of L.

Proposition 7 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold, then L �= ∅ and Sλ ⊆
intC+.

Proof From (9) we have

λxq−1 + f (z, x) � kλ(x) for almost all z ∈ �, and all x � 0, λ > 0. (24)

For λ ∈ (0, λ0] we have

− div a(Dūλ(z)) + ξ(z)ūλ(z)
p−1 = ϑ(v(z)) + kλ(ūλ(z))

(see Proposition 6)

� ϑ(ūλ(z)) + kλ(ū(z))

(see (23) and hypothesis H(ϑ)(i i))

� ϑ(ūλ(z)) + λūλ(z)
q−1 + f (z, ūλ(z))

for almost all z ∈ � (see (24)). (25)

Withβ > ||ξ ||∞ andλ ∈ (0, λ0], we consider the following truncation-perturbation
of the reaction in problem (Pλ):

γλ(z, x) =
⎧⎨
⎩

ϑ(v(z)) + λv(z)q−1 + f (z, v(z)) + βv(z)p−1 if x < v(z)
ϑ(x) + λxq−1 + f (z, x) + βx p−1 if v(z) � x � ūλ(z)
ϑ(ūλ(z)) + λūλ(z)q−1 + f (z, ūλ(z)) + βūλ(z)p−1 if ūλ(z) < x .

(26)

This is a Carathéodory function. We set �λ(z, x) = ∫ x
0 γλ(z, s)ds and consider the

functional σ̂λ : W 1,p
0 (�) → R defined by

σ̂λ(u) =
∫

�

G(Du)dz + 1

p

∫
�

[ξ(z) + β]|u|pdz −
∫

�

�λ(z, u)dz

for all u ∈ W 1,p
0 (�).
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Using Proposition 3 of Papageorgiou and Smyrlis [17], we see that σ̂λ ∈
C1(W 1,p

0 (�)). Also, from (26), Corollary 3 and since β > ||ξ ||∞, we see that σ̂λ(·) is
coercive. In addition, it is sequentially weakly lower semicontinuous. So, we can find
uλ ∈ W 1,p

0 (�) such that

σ̂λ(uλ) = inf{σ̂ (u) : u ∈ W 1,p
0 (�)},

⇒ σ̂ ′
λ(uλ) = 0,

⇒ 〈A(uλ, h)〉 +
∫

�

[ξ(z) + β]|uλ|p−2uλhdz

=
∫

�

γλ(z, uλ)hdz

for all h ∈ W 1,p
0 (�). (27)

In (27) first we choose h = (uλ − ūλ)
+ ∈ W 1,p

0 (�). Then we have

〈
A(uλ), (uλ − ūλ)

+〉 +
∫

�

[ξ(z) + β]u p−1
λ (uλ − ūλ)

+dz

=
∫

�

[ϑ(ūλ) + λūq−1
λ + f (z, ūλ) + βū p−1

λ ](uλ − ūλ)
+dz (see (26))

�
〈
A(ūλ), (uλ − ūλ)

+〉 +
∫

�

[ξ(z) + β]ū p−1
λ (uλ − ūλ)

+dz (see (25)),

⇒ uλ � ūλ (since β > ||ξ ||∞).

Next, in (27) we choose h = (v − uλ)
+ ∈ W 1,p

0 (�). Then we have

〈
A(uλ), (v − uλ)

+〉 +
∫

�

[ξ(z) + β]|uλ|p−2uλ(v − uλ)
+dz

=
∫

�

[ϑ(v) + λvq−1 + f (z, v) + βv p−1](v − uλ)
+dz (see (26))

�
∫

�

[ϑ(v) + βv p−1](v − uλ)
+dz (since f � 0)

= 〈
A(v), (v − uλ)

+〉 +
∫

�

[ξ(z) + β]v p−1(v − uλ)
+dz (see Proposition 5),

⇒ v � uλ.

So, we have proved that

uλ ∈ [v, ūλ] (λ ∈ (0, λ0]). (28)

It follows from (26), (27) and (28) that

−div a(Duλ(z)) + ξ(z)uλ(z)
p−1 = ϑ(uλ(z)) + λuλ(z)

q−1 + f (z, uλ(z))

for almost all z ∈ �.
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Note that ϑλ(uλ) � ϑ(v) (see (28) and hypothesis H(ϑ)(i i)) and ϑ(v) ∈ Ls(�).
So, as before (see the proof of Proposition 6), we infer that

uλ ∈ intC+ .

Therefore we have seen that

(0, λ0] ⊆ L, hence L �= ∅
and Sλ ⊆ intC+.

The proof is now complete. ��

Forη > 0, let ũη ∈ intC+ be the unique solution of the followingDirichlet problem

−div a(Du(z)) + ξ+(z)u(z)p−1 = η in �, u|∂� = 0.

By Proposition 9 of Papageorgiou et al. [16], we see that given u ∈ Sλ ⊆ intC+
(that is, λ ∈ L), we can find small η > 0 such that

ũη � u and η � ϑ(ũη). (29)

We will use this to obtain a lower bound for the elements of Sλ.

Proposition 8 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold and λ ∈ L, then v � u
for all u ∈ Sλ.

Proof Let u ∈ Sλ ⊆ intC+. Then on account of (29) we can define the following
Carathéodory function

e(z, x) =
⎧⎨
⎩

ϑ(ũη(z)) if x < ũη(z)
ϑ(x) if ũη(z) � x � u(z)
ϑ(u(z)) if u(z) < x .

(30)

We set E(z, x) = ∫ x
0 e(z, s)ds and consider the functional μ : W 1,p

0 (�) → R

defined by

μ(u) =
∫

�

G(Du)dz + 1

p

∫
�

ξ+(z)|u|pdz −
∫

�

E(z, u)dz for all u ∈ W 1,p
0 (�).

As before, Proposition 3 of Papageorgiou and Smyrlis [17] implies that μ ∈
C1(W 1,p

0 (�)). The coercivity of μ(·) (see (30)) and the sequential weak lower semi-

continuity guarantee the existence of ṽ ∈ W 1,p
0 (�) such that
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μ(ṽ) = inf{μ(u) : u ∈ W 1,p
0 (�)},

⇒ μ′(ṽ) = 0,

⇒ 〈A(ṽ), h〉 +
∫

�

ξ+(z)|ṽ|p−2ṽhdz =
∫

�

e(z, ṽ)hdz for all h ∈ W 1,p
0 (�).

(31)

In (31) we choose h = (ṽ − u)+ ∈ W 1,p
0 (�). Then we have

〈
A(ṽ), (ṽ − u)+

〉 +
∫

�

ξ+(z)ṽ p−1(ṽ − u)+dz

=
∫

�

ϑ(u)(ṽ − u)+dz (see (30))

�
∫

�

[ϑ(u) + λuq−1 + f (z, u)](ṽ − u)+dz (since u ∈ intC+, f � 0)

�
〈
A(u), (ṽ − u)+

〉 +
∫

�

ξ+(z)u p−1(ṽ − u)+dz (since u ∈ Sλ),

⇒ ṽ � u.

Similarly, if in (31) we choose h = (ũη − ṽ)+ ∈ W 1,p
0 (�), then we have

〈
A(ṽ), (ũη − ṽ)+

〉 +
∫

�

ξ+(z)|ṽ|p−2ṽ(ũη − ṽ)+dz

=
∫

�

ϑ(ũη)(ũη − ṽ)+dz (see (30))

�
∫

�

η(ũη − ṽ)+dz (see (29))

= 〈
A(ũη), (ũη − v)+

〉 +
∫

�

ξ+(z)ũ p−1
η (ũη − v)+dz,

⇒ ũη � ṽ.

So, we have proved that
ṽ ∈ [ũη, u]. (32)

It follows from (30), (31), (32) that ṽ is a positive solution of (18). Then on account
of Proposition 5, we have

ṽ = v ∈ intC+,

⇒ v � u for all u ∈ Sλ (see (32)).

The proof is now complete. ��
Next, we show a structural property of the set L, namely that L is an interval.

Moreover, we establish a kind of strong monotonicity property for the solution set Sλ.
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Proposition 9 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold, λ ∈ L, 0 < μ < λ

and uλ ∈ Sλ ⊆ intC+, then μ ∈ L and there exists uμ ∈ Sμ ⊆ intC+ such that
uλ − uμ ∈ intC+.

Proof From Proposition 8 we know that v � uλ. Then with β > ||ξ ||∞ we can define
the following truncation-perturbation of the reaction in problem (Pμ):

eμ(z, x) =
⎧⎨
⎩

ϑ(v(z)) + μv(z)q−1 + f (z, v(z)) + βv(z)p−1 if x < v(z)
ϑ(x) + μxq−1 + f (z, x) + βx p−1 if v(z) � x � uλ(z)
ϑ(uλ(z)) + μuλ(z)q−1 + f (z, uλ(z)) + βuλ(z)p−1 if uλ(z) < x .

(33)
Evidently, eμ(z, x) is a Carathéodory function. We set Eμ(z, x) = ∫ x

0 eμ(z, s)ds

and consider the C1-functional ψ̂μ : W 1,p
0 (�) → R defined by

ψ̂μ(u) =
∫

�

G(Du)dz + 1

p

∫
�

[ξ(z) + β]|u|pdz

−
∫

�

Eμ(z, u)dz for all u ∈ W 1,p
0 (�).

Clearly, ψ̂μ(·) is coercive (see (33) and recall thatβ > ||ξ ||∞). It is also sequentially

weakly lower semicontinuous. So, we can find uμ ∈ W 1,p
0 (�) such that

ψ̂μ(uμ) = inf{ψ̂μ(u) : u ∈ W 1,p
0 (�)},

⇒ ψ̂ ′
μ(uμ) = 0,

⇒ 〈
A(uμ), h

〉 +
∫

�

[ξ(z) + β]|uμ|p−2uμhdz

=
∫

�

eμ(z, uμ)hdz for all h ∈ W 1,p
0 (�). (34)

In (34) we first use h = (uμ − uλ)
+ ∈ W 1,p

0 (�). Then

〈
A(uμ), (uμ − uλ)

+〉 +
∫

�

[ξ(z) + β]u p−1
μ (uμ − uλ)

+dz

=
∫

�

[ϑ(uλ) + μuq−1
λ + f (z, uλ) + βu p−1

λ ](uμ − uλ)
+dz (see (33))

�
∫

�

[ϑ(uλ) + λuq−1
λ + f (z, uλ) + βu p−1

λ ](uμ − uλ)
+dz (since λ > μ)

= 〈
A(uλ), (uμ − uλ)

+〉 +
∫

�

[ξ(z) + β]u p−1
λ (uμ − uλ)

+dz (since uλ ∈ Sλ),

⇒ uμ � uλ (recall that β > ||ξ ||∞).



2254 N. S. Papageorgiou et al.

Next, in (34) we use h = (v − uμ)+ ∈ W 1,p
0 (�). Then from Proposition 5 and

since f � 0, we obtain

v � uμ .

We have proved that
uμ ∈ [v, uλ]. (35)

It follows from (33), (34), (35) that uμ ∈ Sμ ⊆ intC+ and so μ ∈ L.
Let ρ = ||uλ||∞ and let ξ̂ρ > 0 as postulated by hypothesis H( f )(v). We have

−div a(Duμ) + [ξ(z) + ξ̂ρ]u p−1
μ − ϑ(uμ)

= μuq−1
μ + f (z, uμ) + ξ̂ρu

p−1
μ

� λuq−1
λ + f (z, uλ) + ξ̂ρu

p−1
λ (see hypothesis H( f )(vi),

(35) and recall that μ < λ)

= −div a(Duλ) + [ξ(z) + ξ̂ρ]u p−1
λ − ϑ(uλ). (36)

From (36) and Proposition 4 of Papageorgiou and Smyrlis [17], we obtain

uλ − uμ ∈ intC+.

The proof is now complete. ��
Proposition 10 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold, then λ∗ < +∞.

Proof Recall that by hypotheses H( f )(i i), (i i i), we have

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for almost all z ∈ �.

So, we can find M > 0 such that

f (z, x) � x p−1 for almost all z ∈ �, and all x � M . (37)

Hypotheses H(ϑ) imply that we can find small δ ∈ (0, 1] such that

ϑ(x) � ϑ(δ) � 1 � δ p−1 � x p−1 for all x ∈ (0, δ] . (38)

Finally, hypotheses H( f )(i), (v) imply that we can find big λ0 > 0 such that

λ0x
q−1 + f (z, x) � x p−1 for almost all z ∈ � and all δ � x � M . (39)

Combining (37), (38), (39) we have

ϑ(x) + λ0x
q−1 + f (z, x) � x p−1 for almost all z ∈ � and all x � 0. (40)
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Let λ > λ0 and assume that λ ∈ L. Then according to Proposition 7 we can find
uλ ∈ Sλ ⊆ intC+. Let �0 ⊆ � be an open set with �0 ⊆ � and C2-boundary ∂�0.
We have

0 < m0 = min
�0

uλ.

For ε > 0, let mε
0 = m0 + ε and with ρ = ||uλ||∞, let ξ̂ρ > 0 be as postulated by

hypothesis H( f )(v). We can always take ξ̂ρ > ||ξ ||∞. We have

−div a(Dmε
0) + [ξ(z) + ξ̂ρ](mε

0)
p−1 − ϑ(mε

0)

� [ξ(z) + ξ̂ρ]mp−1
0 + χ(ε) − ϑ(m0)

with χ(ε) → 0+ as ε → 0+ (see hypotheses H(ϑ))

< [ξ(z) + ξ̂ρ]u p−1
λ + u p−1

λ − ϑ(uλ) + χ(ε)

< [ξ(z) + ξ̂ρ]u p−1
λ + λ0u

p−1
λ + f (z, uλ) + χ(ε) (see (40))

= [ξ(z) + ξ̂ρ]u p−1
λ + λuq−1

λ + f (z, uλ) − (λ − λ0)u
q−1
λ + χ(ε)

< [ξ(z) + ξ̂ρ]u p−1
λ + λuq−1

λ + f (z, uλ) for ε > 0 small enough

= −div a(Duλ) + [ξ(z) + ξ̂p]u p−1
λ − ϑ(uλ)

for almost all z ∈ �0 (recall that uλ ∈ Sλ). (41)

Then from (40) and Proposition 4, we see that for small enough ε > 0 we have

uλ − mε
0 ∈ int Ĉ+(�0),

which contradicts the definition of m0. Hence λ /∈ L and so λ∗ � λ0 < +∞. ��
By Propositions 9 and 10 it follows that

(0, λ∗) ⊆ L ⊆ (
0, λ∗] . (42)

Proposition 11 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold and λ ∈ (0, λ∗), then
problem (Pλ) admits at least two positive solutions

u0, û ∈ intC+, u0 �= û.

Proof Let 0 < μ < λ < η < λ∗. We have μ, η ∈ L (see (42)). On account of
Proposition 9 we can find uμ ∈ Sμ ⊆ intC+, u0 ∈ Sλ ⊆ intC+, uη ∈ Sη ⊆ intC+
such that

u0 − uη ∈ intC+ and uη − u0 ∈ intC+,

⇒ u0 ∈ intC1
0 (�)[uμ, uη]. (43)
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With β > ||ξ ||∞, we introduce the Carathéodory function dλ(z, x) defined by

dλ(z, x) =
{

ϑ(uμ(z)) + λuμ(z)q−1 + f (z, uμ(z)) + βuμ(z)p−1 if x � uμ(z)
ϑ(x) + λxq−1 + f (z, x) + βx p−1 if uμ(z) < x .

(44)
We set Dλ(z, x) = ∫ x

0 dλ(z, s)ds and consider the functional ϕλ : W 1,p
0 (�) → R

defined by

ϕλ(u) =
∫

�

G(Du)dz + 1

p

∫
�

[ξ(z) + β]|u|pdz −
∫

�

Dλ(z, u)dz for all u ∈ W 1,p
0 (�).

We know that ϕλ ∈ C1(W 1,p
0 (�)) (see Papageorgiou and Smyrlis [17, Proposition

3]). Also, let

d̂λ(z, x) =
{
dλ(z, x) if x � uη(z)
dλ(z, uη(z)) if uη(z) < x .

(45)

This is a Carathéodory function. We set D̂λ(z, x) = ∫ x
0 d̂λ(z, s)ds and consider the

C1-functional ϕ̂λ : W 1,p
0 (�) → R defined by

ϕ̂λ(u) =
∫

�

G(Du)dz + 1

p

∫
�

[ξ(z) + β]|u|pdz −
∫

�

D̂λ(z, u)dz for all u ∈ W 1,p
0 (�).

Using (44) and (45) and the nonlinear regularity theory (see the proof of Proposition
7), we show that

Kϕλ ⊆ [
uμ

) ∩ intC+, (46)

Kϕ̂λ
⊆ [uμ, uη] ∩ intC+. (47)

From (47) we see that we can assume that

Kϕ̂λ
= {u0} (48)

or otherwise we already have a second positive solution for (Pλ) (see (45)) and so we
are done.

Clearly, ϕ̂λ(·) is coercive (see (45)) and sequentially weakly lower semicontinuous.
So, we can find û0 ∈ W 1,p

0 (�) such that

ϕ̂λ(û0) = inf{ϕ̂λ(u) : u ∈ W 1,p
0 (�)},

⇒ û0 ∈ Kϕ̂λ
,

⇒ û0 = u0 (see (48)). (49)

But from (44) and (45) we see that

ϕ̂λ

∣∣[uμ,uη] = ϕλ|[uμ,uη] . (50)
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It follows from (43), (49), (50) that

u0 is a local C
1
0(�)-minimizer of ϕλ,

⇒ u0 is a local W
1,p
0 (�)-minimizer of ϕλ (see [5]). (51)

On account of (44) and (46), we may assume that

Kϕλ is finite. (52)

Otherwise we already have an infinity of positive smooth solutions. From (51), (52)
and Theorem 5.7.6 of Papageorgiou et al. [15], we see that we can find small ρ ∈ (0, 1)
such that

ϕλ(u0) < inf{ϕλ(u) : ||u − u0|| = ρ} = mρ. (53)

Hypothesis H( f )(i i) and Corollary 3 imply that if u ∈ intC+, then

ϕλ(tu) → −∞ as t → +∞. (54)

Claim 1 ϕλ satisfies the C-condition.

Consider a sequence {un}n�1 ⊆ W 1,p
0 (�) such that

|ϕλ(un)| � c15 for some c15 > 0, and all n ∈ N, (55)

(1 + ||un||)ϕ′
λ(un) → in W−1,p′

(�) = W 1,p
0 (�)∗ as n → ∞. (56)

From (56) we have

∣∣∣∣〈A(un), h〉 +
∫

�

[ξ(z) + β]|un|p−2unhdz −
∫

�

dλ(z, un)hdz

∣∣∣∣ � εn||h||
1 + ||un||

for all h ∈ W 1,p
0 (�), with εn → 0+. (57)

In (57) we choose h = −u−
n ∈ W 1,p

0 (�). From (44) and Lemma 2, we have

c1
p − 1

||Du−
n ||pp +

∫
�

[ξ(z) + β](u−
n )pdz � εn + c16||u−

n ||
for some c16 > 0, and all n ∈ N,

⇒ {u−
n }n�1 ⊆ W 1,p

0 (�) is bounded (recall that β > ||ξ ||∞). (58)
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Next, in (57) we choose h = u+
n ∈ W 1,p

0 (�). Then

−
∫

�

(a(Du+
n ), Du+

n )RN dz −
∫

�

[ξ(z) + β](u+
n )pdz

+
∫

�

[λ(u+
n )q + f (z, u+

n )u+
n ]dz � c17

for some c17 > 0 and all n ∈ N (see (44) and hypothesis H(ϑ)(i i)). (59)

From (55) and (58) we obtain

∫
�

pG(Du+
n )dz +

∫
�

[ξ(z) + β](u+
n )pdz −

∫
�

[
λp

q
(u+

n )q + pF(z, u+
n )

]
dz � c18

for some c18 > 0 and all n ∈ N. (60)

Adding (59) and (60) and using hypothesis H(a)(iv), we obtain

∫
�

[ f (z, u+
n )u+

n − pF(z, u+
n )]dz � c19 + λ

[
p

q
− 1

]
||u+

n ||qq
for some c19 > 0, all n ∈ N. (61)

From hypotheses H( f )(i), (i i i) we see that we can find β̂1 ∈ (0, β̂0) and c20 > 0
such that

β̂1x
σ − c20 � f (z, x)x − pF(z, x) for almost all z ∈ � and all x � 0. (62)

Using (62) in (61) and recalling that q < σ (see hypothesis H( f )(i i i)) we obtain
that

{u+
n }n�1 ⊆ Lσ (�) is bounded. (63)

First, suppose that N �= p. It is clear from hypothesis H( f )(i i i) that we may
assume that σ < r < p∗ (recall that p∗ = +∞ if N � p). Let t ∈ (0, 1) be such that

1

r
= 1 − t

σ
+ t

p∗ .

From the interpolation inequality (see, for example, Papageorgiou andWinkert [18,
Proposition 2.3.17, p.116]), we have

||u+
n ||r � ||u+

n ||1−t
σ ||u+

n ||tp∗ ,

⇒ ||u+
n ||rr � c21||u+

n ||tr
for some c21 > 0 and all n ∈ N (see (63)). (64)

From hypothesis H( f )(i), we have

f (z, x)x � c22[1 + xr ] for almost all z ∈ �, all x � 0 and some c22 > 0. (65)
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In (57) we choose h = u+
n ∈ W 1,p

0 (�) and use Lemma 2. Then

c1
p − 1

||Du+
n ||pp +

∫
�

[ξ(z) + β](u+
n )pdz � εn +

∫
�

dλ(z, un)u
+
n dz,

⇒ c1
p − 1

||Du+
n ||pp � c23 +

∫
�

[λ(u+
n )q + f (z, u+

n )u+
n ]dz

for some c23 > 0 and all n ∈ N (see (44))

� c24[1 + λ||u+
n ||q + ||u+

n ||tr ]
for some c24 > 0 and all n ∈ N (see (64) and (65)). (66)

The hypothesis on σ (see H( f )(i i i)) implies that tr < p. Also we have q < p.
Therefore it follows from (66) that

{u+
n }n�1 ⊆ W 1,p

0 (�) is bounded. (67)

If p = N , then p∗ = +∞ and by the Sobolev embedding theorem, we have that
W 1,p

0 (�) ↪→ Ls(�) for all 1 � s < ∞. So, we need to replace in the previous
argument p∗ by s > r > σ big enough. More precisely, as before, let t ∈ (0, 1) be
such that

1

r
= 1 − t

σ
+ t

s
,

⇒ tr = s(r − σ)

s − σ
→ r − σ as s → +∞.

Recall that r − σ < p (see hypothesis H( f )(i i i)). Hence for large enough s > r

tr = s(r − σ)

s − σ
< p.

Then for such large s > r , the previous argument is valid and we again obtain (67).
From (58) and (67) we have that {un}n�1 ⊆ W 1,p

0 (�) is bounded. So, we may
assume that

un
w→ u in W 1,p

0 (�). (68)

In (57) we choose h = un − u ∈ W 1,p
0 (�), pass to the limit as n → ∞, and use

(68). Then

lim
n→∞ 〈A(un), un − u〉 = 0,

⇒ un → u in W 1,p
0 (�)

(using the (S)+ property of A(·), seesee Sect. 2),

⇒ ϕλ(·) satisfies the C − condition.

This proves Claim 1.
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From (53), (54) and Claim 1, we see that we can apply the mountain pass theorem.
So, we can find û ∈ W 1,p

0 (�) such that

û ∈ Kϕλ ⊆ [
uμ

) ∩ intC+ (see (46)) and mρ � ϕλ(û) (see (53)). (69)

It follows rom (44) and (69) that

û ∈ Sλ ⊆ intC+ and u0 �= û.

The proof is now complete. ��
Proposition 12 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold, then λ∗ ∈ L.
Proof Let {λn}n�1 ⊆ (0, λ∗) be such that λn ↑ λ∗. We know that λn ∈ L for all n ∈ N

and so we can find un = uλn ∈ Sλn ⊆ intC+ (n ∈ N) increasing (see Proposition 9).
Let ϕ̂λn (·) be the functional from the proof of Proposition 11, with uμ =

un−1, uμ = un+1(n � 2). Then we have

ϕ̂λn (un) � ϕ̂λn (un−1)

=
∫

�

G(Dun−1)dz + 1

p

∫
�

[ξ(z) + β]u p
n−1dz −

∫
�

[ϑ(un−1) + λnu
q−1
n−1

+ f (z, un−1 + βu p−1
n−1 )]un−1dz

�
∫

�

G(Dun−1)dz + 1

p

∫
�

[ξ(z) + β]u p
n−1dz −

∫
�

[ϑ(un−1) + λn−1u
q−1
n−1

+ f (z, un−1) + βu p−1
n−1 ]un−1dz

�
∫

�

(a(Dun−1), Dun+1)dz +
∫

�

ξ(z)u p
n−1dz −

∫
�

[ϑ(un−1) + λn−1u
q−1
n−1

+ f (z, un−1)]un−1dz (see (3) and recall that β > ||ξ ||∞)

= 0 (since un−1 ∈ Sλn−1). (70)

Also, we have

〈A(un), h〉 +
∫

�

[ξ(z) + β]u p−1
n hdz =

∫
�

dλn (z, un)hdz

for all h ∈ W 1,p
0 (�) and all n ∈ N. (71)

Using (70), (71) and reasoning as in the proof of Proposition 11 (see Claim 1), we
obtain that

{un}n�1 ⊆ W 1,p
0 (�) is bounded.

From this, as in the proof of Proposition 11, exploiting the (S)+ property of A(·),
we obtain

un → u∗ in W 1,p
0 (�). (72)
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Passing to the limit as n → ∞ in (71) and using (72), we have

u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L.

The proof is now complete. ��
This proposition implies that

L = (
0, λ∗] .

Summarizing the situation for problem (Pλ), we can state the following bifurcation-
type result.

Theorem 13 If hypotheses H(a), H(ξ), H(ϑ), H( f ) hold, then there exists λ∗ > 0
such that

(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions

u0, û ∈ intC+, u0 �= û;

(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for all λ > λ∗ problem (Pλ) has no positive solutions.
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