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1 Introduction
LetΩ ⊆ ℝN be a bounded domainwith a C2-boundary ∂Ω. In this paper we study the following nonlinear and
nonhomogeneous Dirichlet problem:

−∆pu(z) − ∆u(z) = f(z, u(z)) in Ω (2 < p), u|∂Ω = 0, (1.1)

Here, for r ∈ (1,∞), we denote by ∆r the r-Laplacian defined by

∆ru = div(|Du|r−2Du) for all u ∈ W1,r
0 (Ω).

When r = 2, we write ∆2 = ∆ (the standard Laplace differential operator). The reaction term f(z, x) is a
Carathéodory function (that is, for all x ∈ ℝ, z Ü→ f(z, x) is measurable and for almost all z ∈ Ω, x Ü→ f(z, x) is
continuous). We assume that for almost all z ∈ Ω, f(z, ⋅ ) is (p − 1)-sublinear near ±∞, and asymptotically as
x → ±∞, the quotient f(z,x)

|x|p−2x interacts with the variational part of the spectrum of (−∆p ,W1,p
0 (Ω)) (resonant

problem). Equations driven by the sum of a p-Laplacian and a Laplacian (known as (p, 2)-equations) have
recently been studied in [3, 11, 27, 28, 30, 31, 34, 35]. The aforementioned works, either do not consider
resonant at ±∞ equations (see [3, 11, 34, 35]) or the resonance is with respect to the principal eigenvalue
(see [27, 28, 30, 31]). For p ̸= 2, we do not have a complete knowledge of the spectrum of (−∆p ,W1,p

0 (Ω)),
the eigenspaces are not linear subspaces ofW1,p

0 (Ω), and the Sobolev spaceW1,p
0 (Ω) cannot be expressed as

a direct sum of the eigenspaces. All these negative facts make difficult the study of problems with resonance
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at higher parts of the spectrum. Our present paper is closer to [11, 27]. Compared to [11], we allow resonance
to occur and so we improve their existence theorem. Compared to [27], the resonance is with respect to any
variational eigenvalue of (−∆p ,W1,p

0 (Ω)), not only the principal one.
Using tools from Morse theory and variational methods based on the critical point theory, we prove ex-

istence and multiplicity theorems for resonant (p, 2)-equations. We mention that (p, 2)-equations arise in
problems of mathematical physics. The Dirichlet (p, 2)-problem treated in this paper models some phenom-
ena in quantumphysics as first pointed out by Benci, Fortunato and Pisani [6]. We refer to theworks of Benci,
D’Avenia, Fortunato and Pisani [5] (in quantum physics), and Cherfils and Ilyasov [10] (in plasma physics).
Related results on (p, q)-Laplacian problems are due toMarano,Mosconi and Papageorgiou [21], andMugnai
and Papageorgiou [24].

In the next section we briefly recall the main mathematical tools which will be used in the sequel.

2 Mathematical Background
Let X be a Banach space and X∗ its topological dual. By ⟨ ⋅ , ⋅ ⟩we denote the duality brackets for the dual pair
(X∗, X). Also, let φ ∈ C1(X,ℝ). We say that φ satisfies the “Cerami condition” (the “C-condition” for short) if
the following property holds:
∙ Every sequence {un}n⩾1 ⊆ X such that {φ(un)}n⩾1 ⊆ ℝ is bounded and

(1 + ‖un‖)φ�(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.
This compactness-type condition on the functional φ leads to a deformation theorem fromwhich one derives
the minimax theory of the critical values of φ. A basic result in this theory is the celebrated “mountain pass
theorem” due to Ambrosetti and Rabinowitz [4]. Here, we state the result in a slightly more general form (see,
for example, [16, p. 648]).

Theorem 2.1. Let X be a Banach space, and assume that φ ∈ C1(X,ℝ) satisfies the C-condition, u0, u1 ∈ X,
‖u1 − u0‖ > ρ > 0,

max{φ(u0), φ(u1)} < inf{φ(u) : ‖u − u0‖ = ρ} = mρ

and
c = inf

γ∈Γ
max
0⩽t⩽1

φ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}.

Then c ⩾ mρ and c is a critical value of φ (that is, there exists u ∈ X such that φ�(u) = 0, φ(u) = c).

Three Banach spaces will be central in our analysis of problem (1.1). We refer to the Dirichlet Sobolev spaces
W1,p

0 (Ω) and H1
0(Ω), and the Banach space C

1
0(Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}.

By Poincaré’s inequality, the norm ofW1,p
0 (Ω) can be defined by

‖u‖ = ‖Du‖p for all u ∈ W1,p
0 (Ω).

The space H1
0(Ω) is a Hilbert space and again the Poincaré inequality implies that we can choose as inner

product
(u, h) = (Du, Dh)L2(Ω,ℝN ) for all u, h ∈ H1

0(Ω).

The corresponding norm is
‖u‖H1

0(Ω) = ‖Du‖2 for all u ∈ H1
0(Ω).

The Banach space C10(Ω) is an ordered Banach space with positive cone

C+ = {u ∈ C10(Ω) : u(z) ⩾ 0 for all z ∈ Ω}.
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This cone has a nonempty interior given by

int C+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω, ∂u
∂n

!!!!!!∂Ω
< 0}.

Here, ∂u∂n is the usual normal derivative defined by ∂u
∂n = (Du, n)ℝN , with n( ⋅ ) being the outward unit normal

on ∂Ω. Recall that C10(Ω) is dense in bothW
1,p
0 (Ω) and H1

0(Ω).
Given x ∈ ℝ, we set x± = max{±x, 0} and then define u±( ⋅ ) = u( ⋅ )± for all u ∈ W1,p

0 (Ω). We know that

u± ∈ W1,p
0 (Ω), u = u+ − u−, |u| = u+ + u−.

Also, we denote the Lebesgue measure onℝN by | ⋅ |N , and if g : Ω ×ℝ→ ℝ is a measurable function (for
example, a Carathéodory function), we define the Nemytskii map corresponding to g( ⋅ , ⋅ ) by

Ng(u)( ⋅ ) = g( ⋅ , u( ⋅ )) for all u ∈ W1,p
0 (Ω).

We will use the spectra of the operators (−∆p ,W1,p
0 (Ω)) and (−∆, H1

0(Ω)). We start with the spectrum of
(−∆p ,W1,p

0 (Ω)). So, consider the following nonlinear eigenvalue problem:

−∆pu(z) = λ̂|u(z)|p−2u(z) in Ω (1 < p < ∞), u|∂Ω = 0. (2.1)

We say that λ̂ ∈ ℝ is an eigenvalue of (−∆p ,W1,p
0 (Ω)) if problem (2.1) admits anontrivial solution û ∈ W1,p

0 (Ω),
known as the eigenfunction corresponding to λ̂. We know that there exists the smallest eigenvalue λ̂1(p) > 0,
which has the following properties:
∙ λ̂1(p) is isolated in the spectrum σ̂(p) of (−∆p ,W1,p

0 (Ω)); in other words, there exists ϵ > 0 such that
(λ̂1(p), λ̂1(p) + ϵ) ∩ σ̂(p) = 0.

∙ λ̂1(p) is simple; that is, if û, ũ ∈ W1,p
0 (Ω) are eigenfunctions corresponding to λ̂1(p), then û = ξ ũ with

ξ ∈ ℝ \ {0}.
∙ We have

λ̂1(p) = inf{
‖Du‖pp
‖u‖pp

: u ∈ W1,p
0 (Ω), u ̸= 0}. (2.2)

In (2.2) the infimum is realized on the one-dimensional eigenspace corresponding to λ̂1(p). The above prop-
erties imply that the elements of this eigenspace do not change sign. We point out that the nonlinear reg-
ularity theory (see, for example, [16, p. 737]) implies that all eigenfunctions of (−∆p ,W1,p

0 (Ω)) belong to
C10(Ω). By û1(p) we denote the positive Lp-normalized (that is, ‖û1(p)‖p = 1) eigenfunction corresponding
to λ̂1(p) > 0. As we have already mentioned, û1(p) ∈ C+ \ {0} and, in fact, the nonlinear maximum principle
(see, for example, [16, p. 738]) implies that û1(p) ∈ int C+. An eigenfunction ûwhich corresponds to an eigen-
value λ̂ ̸= λ̂1(p) is nodal (sign changing). Since σ̂(p) is closed and λ̂1(p) > 0 is isolated, the second eigenvalue
λ̂2(p) is well defined by

λ̂2(p) = min{λ̂ ∈ σ̂(p) : λ̂ > λ̂1(p)}.

For additional eigenvalues, we employ the Ljusternik–Schnirelmann minimax scheme, which gives
the entire nondecreasing sequence of eigenvalues {λ̂k(p)}k⩾1 such that λ̂k(p) → +∞. These eigenvalues are
known as “variational eigenvalues” and, depending on the index used in the Ljusternik–Schnirelmann
scheme, we can have various such sequences of variational eigenvalues, which all coincide in the first two
elements λ̂1(p) and λ̂2(p), defined as described above. For the other elements we do not know if their se-
quences coincide. Here,we use the sequence constructed by using the Fadell–Rabinowitz [14] cohomological
index (see [32]). Note that we do not know if the variational eigenvalues exhaust the spectrum σ̂(p). We have
full knowledge of the spectrum if N = 1 (ordinary differential equations) and when p = 2 (linear eigenvalue
problem). In the latter case, we have σ̂(2) = {λ̂k(2)}k⩾1 with 0 < λ̂1(2) < λ̂2(2) < ⋅ ⋅ ⋅ < λ̂k(2) → +∞ as k → ∞.
The corresponding eigenspaces, denoted by E(λ̂k(2)), are linear spaces, and we have the orthogonal direct
sum decomposition

H1
0(Ω) = ⨁

k⩾1
E(λ̂k(2)).
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For all k ∈ ℕ, each E(λ̂k(2)) is finite dimensional, E(λ̂k(2)) ⊆ C10(Ω), and has the so-called Unique Con-
tinuation Property (UCP for short), that is, if u ∈ E(λ̂k(2)) vanishes on a set of positive measure in Ω, then
u ≡ 0. For every k ∈ ℕ, we define

H̄k =
k

⨁
i=1

E(λ̂i(2)) and Ĥk+1 = ⨁
i⩾k+1

E(λ̂i(2)) = H̄⊥
k .

We have
H1
0(Ω) = H̄k ⊕ Ĥk+1.

In this case all eigenvalues admit variational characterizations and we have

λ̂1(2) = inf{
‖Du‖22
‖u‖22

: u ∈ H1
0(Ω), u ̸= 0}, (2.3)

λ̂k(2) = sup{
‖Du‖22
‖u‖22

: u ∈ H̄k , u ̸= 0} = inf{
‖Du‖22
‖u‖22

: u ∈ Ĥk , u ̸= 0}, k ⩾ 2. (2.4)

Again, the infimum in (2.3) is realized on the one-dimensional eigenspace E(λ̂1(2)), while both the supremum
and the infimum in (2.4) are realized on E(λ̂k(2)).

As a consequence of the UCP, we have the following convenient inequalities.

Lemma 2.2. (a) If ϑ ∈ L∞(Ω) and, for k ∈ ℕ, ϑ(z) ⩾ λ̂k(2) for almost all z ∈ Ω, with ϑ ̸≡ λ̂k(2), then there exists
a constant c0 > 0 such that

‖Du‖22 − ∫
Ω

ϑ(z)u2 dz ⩽ −c0‖u‖2 for all u ∈ H̄k .

(b) If ϑ ∈ L∞(Ω) and, for k ∈ ℕ, ϑ(z) ⩽ λ̂k(2) for almost all z ∈ Ω, with ϑ ̸≡ λ̂k(2), then there exists a constant
c1 > 0 such that

‖Du‖22 − ∫
Ω

ϑ(z)u2 dz ⩾ c1‖u‖2 for all u ∈ Ĥk .

In what follows, let Ap : W1,p
0 (Ω) → W−1,p� (Ω) = W1,p

0 (Ω)∗ ( 1p + 1
p� = 1, 1 < p < ∞) be the map defined by

⟨Ap(u), h⟩ = ∫
Ω

|Du|p−2(Du, Dh)ℝN dz for all u, h ∈ W1,p
0 (Ω).

By [23, p. 40], we have the following proposition.

Proposition 2.3. The map Ap : W1,p
0 (Ω) → W−1,p� (Ω) (1 < p < ∞) is bounded (that is, it maps bounded sets

to bounded sets), continuous, strictly monotone (hence maximal monotone, too) and of type (S)+, that is, if

un
w
ÚÚ→ u inW1,p

0 (Ω) and lim sup
n→∞

⟨A(un), un − u⟩ ⩽ 0,

then un → n inW1,p
0 (Ω).

If p = 2, then A2 = A ∈ L(H1
0(Ω), H−1(Ω)).

Consider a Carathéodory function f0 : Ω ×ℝ→ ℝ such that

|f0(z, x)| ⩽ a0(z)(1 + |x|r−1) for almost all z ∈ Ω and all x ∈ ℝ,

with a0 ∈ L∞(ℝ) and 1 < r < p∗, where the critical Sobolev exponent is defined by

p∗ =
{
{
{

Np
N−p if p < N,
+∞ if p ⩾ N.
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Let F0(z, x) = ∫
x
0 f0(z, s) ds and consider the C

1-functional φ0 : W1,p
0 (Ω) → ℝ defined by

φ0(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F0(z, u) dz for all u ∈ W1,p
0 (Ω).

The next proposition is a special case of amore general result by Aizicovici, Papageorgiou and Staicu [2],
see also [26, 29] for similar results in different spaces. All these results are consequences of the nonlinear
regularity theory of Lieberman [20].

Proposition 2.4. Let u0 ∈ W1,p
0 (Ω) be a local C10(Ω̄)-minimizer of φ0, that is, there exists ρ0 > 0 such that

φ0(u0) ⩽ φ0(u0 + h) for all h ∈ C10(Ω) with ‖h‖C10(Ω) ⩽ ρ0.

Then u0 ∈ C1,α0 (Ω) for some α ∈ (0, 1) and it is also a localW1,p
0 (Ω)-minimizer of φ0, that is, there exists ρ1 > 0

such that
φ0(u0) ⩽ φ0(u0 + h) for all h ∈ W1,p

0 (Ω) with ‖h‖ ⩽ ρ1.

Finally, we recall some basic definitions and facts from Morse theory (critical groups), which we will use in
the sequel.

So, let X be a Banach space, φ ∈ C1(X,ℝ) and c ∈ ℝ. We introduce the following sets:

Kφ = {u ∈ X : φ�(u) = 0}, Kcφ = {u ∈ Kφ : φ(u) = c}, φc = {u ∈ X : φ(u) ⩽ c}.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and k ∈ ℕ0. By Hk(Y1, Y2) we denote the kth
relative singular homology group with integer coefficients for the pair (Y1, Y2). Given an isolated u ∈ Kcφ, the
critical groups of φ at u are defined by

Ck(φ, u) = Hk(φc ∩ U, φc ∩ U \ {u}) for all k ∈ ℕ0,

where U is a neighborhood of u such that Kφ ∩ φc ∩ U = {u}. The excision property of singular homology
implies that the above definition of critical groups is independent of the particular choice of the neighbor-
hood U.

Suppose that φ satisfies the C-condition and inf φ(Kφ) > −∞. Let c < inf φ(Kφ). The critical groups of φ
at infinity are defined by

Ck(φ,∞) = Hk(X, φc) for all k ∈ ℕ0.

The second deformation theorem (see, for example, [16, p. 628]) implies that this definition is independent
of the choice of the level c < inf φ(Kφ).

In the next sectionwe prove an existence theorem under conditions of resonance both at ±∞ and at zero.

3 Existence of Nontrivial Solutions
The hypotheses on the reaction term f(z, x) are the following.

Hypotheses 3.1. f : Ω ×ℝ→ ℝ is a Carathéodory function with the following properties:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| ⩽ aρ(z) for almost all z ∈ Ω and all |x| ⩽ ρ.

(ii) There exists an integer m ⩾ 1 such that

lim
x→±∞

f(z, x)
|x|p−2x

= λ̂m(p) uniformly for almost all z ∈ Ω.

(iii) There exists τ ∈ (2, p) such that

0 < β0 ⩽ lim inf
x→±∞

f(z, x)x − pF(z, x)
|x|τ

uniformly for almost all z ∈ Ω,

where F(z, x) = ∫
x
0 f(z, s) ds.
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(iv) There exist integer l ⩾ 1, with dl ̸= m (dl = dim H̄l), δ > 0 and η ∈ L∞(Ω) such that

λ̂l(2) ⩽ η(z) for almost all z ∈ Ω, η ̸≡ λ̂l(2),

η(z)x2 ⩽ f(z, x)x ⩽ λ̂l+1x2 for almost all z ∈ Ω and all |x| ⩽ δ,

and for every x ̸= 0 the second inequality is strict on a subset of positive Lebesgue measure.

Remark 3.2. Hypothesis 3.1 (ii) says that asymptotically as x → ±∞, we have resonancewith respect to some
variational eigenvalue of (−∆p ,W1,p

0 (Ω)). Similarly,Hypothesis 3.1 (iv) permits resonance at zerowith respect
to the eigenvalue λ̂l+1(2) of (−∆, H1

0(Ω)). So, in a sense, we have a double resonance setting.

Let φ : H1(Ω) → ℝ be the energy (Euler) functional for problem (1.1) defined by

φ(u) = 1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F(z, u) dz for all u ∈ W1,p
0 (Ω).

Proposition 3.3. If Hypotheses 3.1 (i), (ii), (iii) hold, then φ satisfies the C-condition.

Proof. Let {un}n⩾1 ⊆ W1,p
0 (Ω) be a sequence such that

|φ(un)| ⩽ M1 for some M1 > 0 and all n ∈ ℕ, (3.1)

(1 + ‖un‖)φ�(un) → 0 inW−1,p� (Ω) = W1,p
0 (Ω)∗. (3.2)

By (3.2), we have

!!!!!!!
⟨Ap(un), h⟩ + ⟨A(un), h⟩ − ∫

Ω

f(z, un)h dz
!!!!!!!
⩽

ϵn‖h‖
1 + ‖un‖

for all h ∈ W1,p
0 (Ω) with ϵn → 0+. (3.3)

In (3.3) we choose h = un ∈ W1,p
0 (Ω) and obtain

−‖Dun‖
p
p − ‖Dun‖22 + ∫

Ω

f(z, un)un dz ⩽ ϵn for all n ∈ ℕ. (3.4)

On the other hand, from (3.1) we have

‖Dun‖
p
p +

p
2 ‖Dun‖

2
2 − ∫

Ω

pF(z, un) dz ⩽ pM1 for all n ∈ ℕ. (3.5)

We add (3.4) and (3.5) and obtain

∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ M2 + (1 −
p
2)‖Dun‖

2
2 for all n ∈ ℕ, (3.6)

for some M2 > 0. Hypotheses 3.1 (i), (iii) imply that we can find β1 ∈ (0, β0) and c2 > 0 such that

β1|x|τ − c2 ⩽ f(z, x)x − pF(z, x) for almost all z ∈ Ω and all x ∈ ℝ. (3.7)

Returning to (3.6) and using (3.7), we have (recall that τ > 2)

‖un‖ττ ⩽ c3(1 + ‖Dun‖22) for all n ∈ ℕ, (3.8)

for some c3 > 0.

Claim 1. {un}n⩾1 ⊆ W1,p
0 (Ω) is bounded.

Arguing by contradiction, suppose that the claim is not true. By passing to a subsequence if necessary, we
have

‖un‖ → ∞. (3.9)
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Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ, and so we may assume that

yn
w
ÚÚ→ y inW1,p

0 (Ω) and yn → y in Lp(Ω). (3.10)

From (3.3) we have
!!!!!!!
⟨Ap(yn), h⟩ +

1
‖un‖p−2

⟨A(yn), h⟩ − ∫
Ω

Nf (un)
‖un‖p−1

h dz
!!!!!!!
⩽

ϵn‖h‖
(1 + ‖un‖)‖un‖p−1

for all n ∈ ℕ. (3.11)

Hypotheses 3.1 (i), (ii) imply that

|f(z, x)| ⩽ c4(1 + |x|p−1) for almost all z ∈ Ω and all x ∈ ℝ, (3.12)

for some c4 > 0, and hence
{
Nf (un)
‖un‖p−1

}
n⩾1

⊆ Lp� (Ω) is bounded. (3.13)

In (3.11) we choose h = yn − y ∈ W
1,p
0 (Ω), pass to the limit as n → ∞ and use (3.9), (3.10), (3.13) and

the fact that p > 2. Then limn→∞⟨Ap(yn), yn − y⟩ = 0, which implies (see Proposition 2.3)

yn → y inW1,p
0 (Ω) â⇒ ‖y‖ = 1. (3.14)

From (3.8) we have

‖yn‖ττ ⩽
c3

‖un‖τ
+

c3
‖un‖τ−2

‖Dyn‖22 ⩽
c5

‖un‖τ−2
for all n ⩾ n0 ⩾ 1,

for some c5 > 0. This yields (see (3.9) and recall that τ > 2)

yn → 0 in Lτ(Ω) as n → ∞.

Thus, y = 0 (see (3.10)), a contradiction to (3.14). This proves the claim.
Because of Claim 1, we may assume that

un
w
ÚÚ→ u inW1,p

0 (Ω) and un → u in Lp(Ω). (3.15)

From (3.12) we see that
{Nf (un)}n⩾1 ⊆ Lp� (Ω) is bounded. (3.16)

So, if in (3.3) we choose h = yn − y ∈ W
1,p
0 (Ω), pass to the limit as n → ∞ and use (3.15) and (3.16), then

lim
n→∞

[⟨Ap(un), un − u⟩ + ⟨A(un), un − u⟩] = 0,

and since A( ⋅ ) is monotone, we have

lim sup
n→∞

[⟨Ap(un), un − u⟩ + ⟨A(u), un − u⟩] ⩽ 0.

From (3.15),
lim sup
n→∞

⟨Ap(un), un − u⟩ ⩽ 0,

which implies (see Proposition 2.3)
un → u inW1,p

0 (Ω).

Thus, φ satisfies the C-condition.

We can have two approaches in the proof of the existence theorem. We present both because we believe that
the particular tools used in each of them are of independent interest and can be used in different circum-
stances.

In the first approach we compute directly the critical groups at infinity of the energy functional φ. Note
that Proposition 3.3 permits this computation.
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Proposition 3.4. If Hypotheses 3.1 (i), (ii), (iii) hold, then Cm(φ,∞) ̸= 0.

Proof. Let λ ∈ (λ̂m(p), λ̂m+1(p)) \ σ̂(p) and consider the C2-functional ψ : W1,p
0 (Ω) → ℝ defined by

ψ(u) = 1
p
‖Du‖pp −

λ
p
‖u‖pp for all u ∈ W1,p

0 (Ω).

We also consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)φ(u) + tψ(u) for all (t, u) ∈ [0, 1] ×W1,p
0 (Ω).

Claim 2. There exist η ∈ ℝ and δ̂ > 0 such that

h(t, u) ⩽ η â⇒ (1 + ‖u‖)‖h�u(t, u)‖∗ ⩾ δ̂ for all t ∈ [0, 1].

We argue indirectly. So, suppose that the claim is not true. Since h( ⋅ , ⋅ )maps bounded sets to bounded sets,
we can find {tn}n⩾1 ⊆ [0, 1] and {un}n⩾1 ⊆ W1,p

0 (Ω) such that

tn → t, ‖un‖ → ∞, h(tn , un) → −∞ and (1 + ‖un‖)h�u(tn , un) → 0 inW−1,p� (Ω). (3.17)

From the last convergence in (3.17), we have
!!!!!!!
⟨Ap(un), h⟩ + (1 − tn)⟨A(un), h⟩ − (1 − tn)∫

Ω

f(z, un)h dz − tn ∫
Ω

λ|un|p−2unh dz
!!!!!!!
⩽

ϵn‖h‖
1 + ‖un‖

(3.18)

for all h ∈ W1,p
0 (Ω) with ϵn → 0+.

Let yn = un
‖un‖ , n ∈ ℕ. Then ‖yn‖ = 1 for all n ∈ ℕ, and so we may assume that

yn
w
ÚÚ→ y inW1,p

0 (Ω) and yn → y in Lp(Ω). (3.19)

From (3.18) we have
!!!!!!!
⟨Ap(yn), h⟩+

1 − tn
‖un‖p−2

⟨A(yn), h⟩− (1− tn)∫
Ω

Nf (un)
‖un‖p−1

h dz − tn ∫
Ω

λ|yn|p−2ynh dz
!!!!!!!
⩽

ϵn‖h‖
(1 + ‖un‖)‖un‖p−1

(3.20)

for all n ∈ ℕ.
From (3.12) and (3.19), we see that

{
Nf (un)
‖un‖p−1

}
n⩾1

⊆ Lp� (Ω) is bounded.

Hence, by passing to a subsequence if necessary and using Hypothesis 3.1 (ii), we obtain (see [15])

Nf (un)
‖un‖p−1

w
ÚÚ→ λ̂m(p)|y|p−2y in Lp� (Ω). (3.21)

In (3.20) we choose h = yn − y ∈ W
1,p
0 (Ω), pass to the limit as n → ∞ and use (3.17), (3.19), (3.21) and

the fact that 2 < p. Then limn→∞⟨Ap(yn), yn − y⟩ = 0, which implies (see Proposition 2.3)

yn → y inW1,p
0 (Ω) â⇒ ‖y‖ = 1. (3.22)

We return to (3.20), pass to the limit as n → ∞ and use (3.21) and (3.22). We obtain

⟨Ap(y), h⟩ = ∫
Ω

λt|y|p−2yh dz for all h ∈ W1,p
0 (Ω), with λt = (1 − t)λ̂m(p) + tλ,

hence
−∆py(z) = λt|y(z)|p−2y(z) for almost all z ∈ Ω, y|∂Ω = 0. (3.23)

If λt ∉ σ̂(p), then from (3.23) it follows that y = 0, a contradiction (see (3.22)).
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If λt ∈ σ̂(p), then for E = {z ∈ Ω : y(z) ̸= 0}, we have |E|N > 0. Hence,

|un(z)| → +∞ for almost all z ∈ Ω,

and thus
lim inf
n→∞

f(z, un(z))un(z) − pF(z, un(z))
|un(z)|τ

⩾ β0 > 0 for almost all z ∈ E. (3.24)

From (3.24), Hypothesis 3.1 (iii) and Fatou’s lemma, we have

lim inf
n→∞

1
‖un‖τ

∫
E

[f(z, un)un − pF(z, un)] dz > 0. (3.25)

Note that Hypothesis 3.1 (iii) implies that we can find M3 > 0 such that

f(z, x)x − pF(z, x) ⩾ 0 for almost all z ∈ Ω and all |x| ⩾ M3. (3.26)

Then, in view of (3.26) and Hypothesis 3.1 (i), we have

1
‖un‖τ

∫
Ω

[f(z, un)un − pF(z, un)] dz

=
1

‖un‖τ
∫

Ω∩{|un |⩾M3}

[f(z, un)un − pF(z, un)] dz +
1

‖un‖τ
∫

Ω∩{|un |<M3}

[f(z, un)un − pF(z, un)] dz

⩾
1

‖un‖τ
∫

E∩{|un |⩾M3}

[f(z, un)un − pF(z, un)] dz −
c6

‖un‖τ

⩾
1

‖un‖τ
∫
E

[f(z, un)un − pF(z, un)] dz −
c7

‖un‖τ
for all n ∈ ℕ,

for some c6, c7 > 0. Hence, by (3.25),

lim inf
n→∞

1
‖un‖τ

∫
Ω

[f(z, un)un − pF(z, un)] dz > 0. (3.27)

From the third convergence in (3.17), we see that we can find n0 ∈ ℕ such that

‖Dun‖
p
p +

(1 − tn)p
2 ‖Dun‖22 − (1 − tn)∫

Ω

pF(z, un) dz − tn ∫
Ω

λ|un|p dz ⩽ −1 for all n ⩾ n0. (3.28)

In (3.18) we choose h = un ∈ W1,p
0 (Ω). Then

−‖Dun‖
p
p − (1 − tn)‖Dun‖22 + (1 − tn)∫

Ω

f(z, un)un dz + tn ∫
Ω

λ|un|p dz ⩽ ϵm for all n ∈ ℕ. (3.29)

Since ϵn → 0+, by choosing n0 ∈ ℕ even bigger if necessary, we can get

ϵn ∈ (0, 1) for all n ⩾ n0. (3.30)

By adding (3.28) and (3.29), and using (3.30), we have

(1 − tn)∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ (1 − tn)(1 −
p
2)‖Dun‖

2
2.

Wemay assume that tn ̸= 1 for all n ∈ ℕ. Otherwise, t = 1, and so λt = λ ∉ σ(p), hence y = 0, a contradiction
to (3.22). Then

1
‖un‖τ

∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ (1 −
p
2)

1
‖un‖τ−2

‖Dyn‖22 for all n ∈ ℕ.
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Since p > τ > 2, it follows from (3.17) and (3.22) that

lim sup
n→∞

∫
Ω

[f(z, un)un − pF(z, un)] dz ⩽ 0,

which contradicts (3.27). This proves the claim.
In fact, the above argument with minor changes shows that for every t ∈ [0, 1], h(t, ⋅ ) satisfies the C-

condition. So, [9, Theorem 5.1.12] (see also [19, Proposition 3.2]) implies that

Ck(h(0, ⋅ ),∞) = Ck(h(1, ⋅ ),∞) for all k ∈ ℕ0,

and therefore
Ck(φ,∞) = Ck(ψ,∞) for all k ∈ ℕ0.

Since λ ∉ σ̂(p), we have Kψ = {0}, and so Ck(ψ,∞) = Ck(ψ, 0) for all k ∈ ℕ0. Hence,

Ck(φ,∞) = Ck(ψ, 0) for all k ∈ ℕ0.

But by [32, Proposition 1.1], we have Cm(ψ, 0) ̸= 0. So, Cm(φ,∞) ̸= 0.

In the second approach, we avoid the computation of the critical groups of φ at infinity. Instead we use the
following result which is essentially due to Perera [32, Lemma 4.1], here adapted to our setting.

Proposition 3.5. If Hypotheses 3.1 (i), (ii), (iii) hold, then there exist r > 0 and φ0 ∈ C1(W1,p
0 (Ω)) such that

φ0(u) =
{
{
{

φ(u) if ‖u‖ ⩽ r,
ψ(u) if ‖u‖ ⩾ 21/pr,

Kφ0 = Kφ and Cm(φ0,∞) ̸= 0.

Proof. Let ψ ∈ C2(W1,p
0 (Ω)) be as in the proof of Proposition 3.4. Also let τ : W1,p

0 (Ω) → ℝ be the C1-
functional defined by

τ(u) = ∫
Ω

F(z, u) dz − λ
p
‖u‖pp −

1
2 ‖Du‖

2
2 for all u ∈ W1,p

0 (Ω).

Evidently, we have
φ(u) = ψ(u) − τ(u) for all u ∈ W1,p

0 (Ω). (3.31)

Since λ ∉ σ̂(p), the functional ψ satisfies the C-condition, and so

μ = inf{‖ψ�(u)‖∗ : u ∈ W1,p
0 (Ω), ‖u‖ = 1} > 0.

We have
ψ�(u) = Ap(u) − λ|u|p−2u,

hence the (p − 1)-homogeneity of ψ�( ⋅ ) implies that

inf{‖ψ�(u)‖∗ : u ∈ W1,p
0 (Ω), ‖u‖ = r} = rp−1μ > 0 (r > 0). (3.32)

Since λ > λ̂m(p) and p > 2, it follows that

lim sup
‖u‖→∞

τ�(u)
‖u‖p−1

⩽ 0. (3.33)

From (3.31) we have
φ�(u) = ψ�(u) − τ�(u) for all u ∈ W1,p

0 (Ω).

Hence, using (3.32) and (3.33),

φ�(u) > 0 and φ�(u) + τ�(u) > 0 for all ‖u‖ > r. (3.34)
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Let ξ : ℝ+ → [0, 1] be a C1-function such that |ξ �(t)| ⩽ 1 for all t ⩾ 0 and

ξ(t) =
{
{
{

0 if t ∈ [0, 1],
1 if t ⩾ 2.

(3.35)

We define
φ0(u) = φ(u) + ξ(

‖u‖p

rp )τ(u) for all u ∈ W1,p
0 (Ω).

Evidently, φ0 ∈ C1(W1,p
0 (Ω)) and from (3.34) and (3.35), it follows that

φ0(u) =
{
{
{

φ(u) if ‖u‖ ⩽ r,
ψ(u) if ‖u‖ ⩾ 21/pr,

Kφ0 = Kφ ⊆ B̄r . (3.36)

Moreover, by (3.36), it is clear that

Ck(φ0,∞) = Ck(ψ,∞) for all k ∈ ℕ0,

and, since Kψ = {0} and λ ∉ σ̂(p), we have

Ck(φ0,∞) = Ck(ψ, 0) for all k ∈ ℕ.

Thus, Cm(φ0,∞) ̸= 0, see [32, Proposition 1.1].

Next,we turn our attention to the critical groups ofφ at the origin. To compute themweonly need a subcritical
growth on f(z, ⋅ ) and the behavior of f(z, ⋅ ) near zero. So, we introduce the followingweaker set of hypotheses
on f(z, x).

Hypotheses 3.6. f : Ω ×ℝ→ ℝ is a Carathéodory function with the following properties:
(i) |f(z, x)| ⩽ a(z)(1 + |x|r−1) for almost all z ∈ Ω and all x ∈ ℝ, with a ∈ L∞(Ω)+, p ⩽ r < p∗.
(ii) There exist l ∈ ℕ, δ > 0 and η ∈ L∞(Ω) such that

λ̂l(2) ⩽ η(z) for almost all z ∈ Ω, η ̸≡ λ̂l(2),

η(z)x2 ⩽ f(z, x)x ⩽ λ̂l+1(2)x2 for almost all z ∈ Ω and all |x| ⩽ δ,

and for every x ̸= 0, the second inequality is strict on a set of positive Lebesgue measure.

Proposition 3.7. If Hypotheses 3.6 hold and the functional φ satisfies the C-condition, then Ck(φ, 0) = δk,dlℤ
for all k ∈ ℕ0 with dl = dim H̄l .

Proof. We consider the C2-functional ψ̂ : H1
0(Ω) → ℝ defined by

ψ̂(u) = 1
2 ‖Du‖

2
2 − ∫

Ω

F(z, u) dz for all u ∈ H1
0(Ω).

We set ψ = ψ̂|W1,p
0 (Ω) (recall that p > 2).

Claim 3. Ck(ψ, 0) = δk,dlℤ for all k ∈ ℕ0.

To prove this claim, let ϑ ∈ (λ̂l(2), λ̂l+1(2)) and consider the C2-functional τ : H1
0(Ω) → ℝ defined by

τ(u) = 1
2 ‖Du‖

2
2 −

ϑ
2 ‖u‖

2
2 for all u ∈ H1

0(Ω).

We also consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)ψ̂(u) + tτ(u) for all (t, u) ∈ [0, 1] × H1
0(Ω).

First consider t ∈ (0, 1]. Let u ∈ C10(Ω)with ‖u‖C10(Ω) ⩽ δ, where δ > 0 is as inHypothesis 3.6 (ii). Let ⟨ ⋅ , ⋅ ⟩0
denote the duality brackets for the pair (H−1(Ω), H1

0(Ω)). Then we have

⟨h�u(t, u), v⟩ = (1 − t)⟨ψ̂�(u), v⟩0 + t⟨τ�(u), v⟩0 for all v ∈ H1
0(Ω). (3.37)

Brought to you by | National & University Library Ljubljana
Authenticated

Download Date | 1/17/18 12:15 PM



116 | N. S. Papageorgiou et al., Existence and Multiplicity of Solutions for Resonant (p, 2)-Equations

Recall that

H̄l =
l

⨁
k=1

E(λ̂k(2)), Ĥl+1 = H̄⊥
l = ⨁

k⩾l+1
E(λ̂k(2))

and consider the orthogonal direct sum decomposition

H1
0(Ω) = H̄l ⊕ Ĥl+1.

So, every u ∈ H1
0(Ω) admits a unique sum decomposition

u = ū + û, with ū ∈ H̄l , û ∈ Ĥl+1.

In (3.37) we choose v = û − ū. Exploiting the orthogonality of the component spaces, we have

⟨ψ̂(u), û − ū⟩0 = ‖Dû‖22 − ‖Dū‖22 − ∫
Ω

f(z, u)(û − ū) dz. (3.38)

Hypothesis 3.6 (ii) implies that

η(z) ⩽ f(z, x)
x

⩽ λ̂l+1(2) for almost all z ∈ Ω and all 0 < |x| ⩽ δ, (3.39)

and the second inequality is, for every x ̸= 0, strict on a set of positive Lebesguemeasure. Set y = û − ū. Then,
using (3.39), we have

f(z, u)(û − ū) = f(z, u)y = f(z, u)
u

uy ⩽
{
{
{

λ̂l+1(2)(û2 − ū2) if uy ⩾ 0,
η(z)(û2 − ū2) if uy < 0

⩽ λ̂l+1(2)û2 − η(z)ū2 for almost all z ∈ Ω. (3.40)

Returning to (3.38) and using (3.40), we obtain (see Hypothesis 3.6 (ii) and (2.4))

⟨ψ̂�(u), û − ū⟩0 ⩾ ‖Dû‖22 − λ̂l+1(2)‖û‖
2
2 − [‖Dū‖22 − λ̂l(2)‖ū‖

2
2] ⩾ 0. (3.41)

Also, using Lemma 2.2, for some c9 > 0, we have

⟨τ�(u), û − ū⟩0 = ‖Dû‖22 − ϑ‖û‖
2
2 − [‖Dū‖22 − ϑ‖ū‖

2
2] ⩾ c9‖u‖

2. (3.42)

So, if we use (3.41) and (3.42) in (3.37), then

⟨h�u(t, u), û − ū⟩ ⩾ tc9‖u‖2 > 0 for all t ∈ (0, 1].

Standard regularity theory implies that

Kh(t,⋅ ) ⊆ C10(Ω) for all t ∈ [0, 1].

Therefore, we infer that for all t ∈ (0, 1], u = 0 is isolated in Kh(t,⋅ ).
We have h(0, ⋅ ) = ψ̂( ⋅ ). Next, we show that 0 ∈ Kψ̂ s isolated. Arguing by contradiction, suppose that we

could find {un}n⩾1 ⊆ H1
0(Ω) such that

un → 0 in H1(Ω) and ψ̂�(un) = 0 for all n ∈ ℕ0. (3.43)

From the equation in (3.43), we have

−∆un(z) = f(z, un(z)) for almost all z ∈ Ω, un|∂Ω = 0, n ∈ ℕ. (3.44)

From (3.44) and standard regularity theory (see, for example, [16, pp. 737–738]), we can find α ∈ (0, 1) and
c10 > 0 such that

un ∈ C1,α0 (Ω) and ‖un‖C1,α0 (Ω) ⩽ c10 for all n ∈ ℕ. (3.45)
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Exploiting the compact embedding of C1,α0 (Ω) into C1(Ω) and using (3.45) and (3.43), we obtain

un → 0 in C10(Ω).

Therefore, we can find n0 ∈ ℕ such that

|un(z)| ⩽ δ for all n ⩾ n0 and all z ∈ Ω,

hence (see Hypothesis 3.6 (ii))

η(z)un(z)2 ⩽ f(z, un(z))un(z) ⩽ λ̂l+1(2)un(z)2 for almost all z ∈ Ω and all n ⩾ n0.

Then from (3.45) and the previous argument, we have

f(z, un(z))(ûn − ūn)(z) ⩽ λ̂l+1(2)ûn(z)2 − η(z)ūn(z)2 for almost all z ∈ Ω and all n ⩾ n0. (3.46)

From (3.44) we have
⟨A(un), v⟩ = ∫

Ω

f(z, un)v dz for all v ∈ H1
0(Ω).

Choosing v = ûn − ūn ∈ H1
0(Ω) and using the orthogonality of the component spaces and (3.46), we obtain

∫
Ω

(Dun , Dûn − Dūn)ℝN dz = ‖Dûn‖22 − ‖Dūn‖22 = ∫
Ω

f(z, un)(ûn − ūn) dz ⩽ ∫
Ω

[λ̂l+1(2)û2n − η(z)ū2n] dz.

Hence, by (2.4) and Lemma 2.2 (a),

0 ⩽ ‖Dûn‖22 − λ̂l+1(2)‖ûn‖
2
2 ⩽ ‖Dûn‖22 − ∫

Ω

η(z)ū2n dz ⩽ −c11‖ūn‖2 for all n ⩾ n0,

for some c11 > 0. Therefore,

ūn = 0 and ûn ∈ E(λ̂l+1(2)) for all n ∈ ℕ.

Then un = ûn for all n ⩾ n0, and the UCP implies that

un(z) ̸= 0 for almost all z ∈ Ω and all n ⩾ n0. (3.47)

From (3.44) and (3.47) we have (see Hypothesis 3.6 (ii))

λ̂l+1(2)‖un‖22 = ∫
Ω

f(z, un)un dz < λ̂l+1(2)‖un‖22 for all n ⩾ n0,

a contradiction. Therefore, 0 ∈ Kψ̂ is isolated and we can conclude that 0 ∈ Kh(t,⋅ ) is isolated for all t ∈ [0, 1].
So, [12, Theorem 5.2] implies that

Ck(ψ̂, 0) = Ck(τ, 0) for all k ∈ ℕ0,

and thus (see [23, Theorem 6.51])

Ck(ψ̂, 0) = δk,dlℤ for all k ∈ ℕ0.

SinceW1,p
0 (Ω) is dense in H1

0(Ω), it follows that (see [25] and [8, p. 14])

Ck(ψ̂, 0) = Ck(ψ, 0) for all k ∈ ℕ0,

and thus
Ck(ψ, 0) = δk,dlℤ for all k ∈ ℕ0. (3.48)
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We have
|φ(u) − ψ(u)| ⩽ 1

p
‖u‖p (3.49)

and
⟨φ�(u) − ψ�(u), v⟩| ⩽ c12‖u‖p−1‖v‖ for all v ∈ H1

0(Ω),

for some c12 > 0, which implies
‖φ�(u) − ψ�(u)‖∗ ⩽ c12‖u‖p−1. (3.50)

Then (3.49), (3.50) and the C1-continuity of the critical groups (see [12, Theorem 5.1]), imply that

Ck(φ, 0) = Ck(ψ, 0) for all k ∈ ℕ0,

and hence (see (3.48))
Ck(φ, 0) = δk,dlℤ for all k ∈ ℕ0.

This completes the proof.

Now we are ready for the existence theorem.

Theorem 3.8. If Hypotheses 3.1 hold, then problem (1.1) admits a nontrivial solution u0 ∈ C10(Ω).

Proof. As we have already mentioned, we can use two approaches.
In the first, we use Proposition 3.4 and have that Cm(φ,∞) ̸= 0. So, there exists u0 ∈ W1,p

0 (Ω) such that

u0 ∈ Kφ and Cm(φ, u0) ̸= 0. (3.51)

On the other hand, from Proposition 3.7, we have

Ck(φ, 0) = δk,dlℤ for all k ∈ ℕ0. (3.52)

Recalling that dl ̸= m (see Hypothesis 3.1 (iv)) and comparing (3.51) and (3.52), we see that u0 ̸= 0.
In the second approach, we use Proposition 3.5. According to that result, we have Cm(φ0,∞) ̸= 0. So, we

can find u0 ∈ W1,p
0 (Ω) such that

u0 ∈ Kφ0 and Cm(φ0, u0) ̸= 0. (3.53)

Note that φ0|B̄r = φ|B̄r (see Proposition 3.5). So,

Ck(φ0, 0) = Ck(φ, 0) for all k ∈ ℕ0,

and thus (see Proposition 3.7)
Ck(φ0, 0) = δk,dlℤ for all k ∈ ℕ0. (3.54)

Again, since dl ̸= m, from (3.53) and (3.54), it follows that (see Proposition 3.5)

u0 ̸= 0 and u0 ∈ Kφ .

So, with both approaches we produced a nontrivial critical point u0 of the functional φ. Then u0 is a
nontrivial solution of (1.1). Invoking [18, Theorem 7.1], we have u0 ∈ L∞(Ω). So, we apply [20, Theorem 1]
and conclude that u0 ∈ C1(Ω).

4 Multiple Nontrivial Solutions
In this section we strengthen the conclusions on the reaction term f(z, x) and prove a multiplicity theorem.
More precisely, the new conditions on f(z, x) are the following.
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Hypotheses 4.1. f : Ω ×ℝ→ ℝ is a Carathéodory function with the following properties:
(i) For every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

|f(z, x)| ⩽ aρ(z) for almost all z ∈ Ω and all |x| ⩽ ρ.

(ii) There exists an integer m ⩾ 1 such that

lim
x→±∞

f(z, x)
|x|p−2x

= λ̂m(p) uniformly for almost all z ∈ Ω.

(iii) There exists τ ∈ (2, p) such that

0 < β0 ⩽ lim inf
x→±∞

f(z, x)x − pF(z, x)
|x|τ

uniformly for almost all z ∈ Ω,

where F(z, x) = ∫
x
0 f(z, s) ds.

(iv) There exist functions w± ∈ W1,p(Ω) ∩ C(Ω) and constants c± ∈ ℝ such that

w−(z) ⩽ c− < 0 < c+ ⩽ w+(z) for all z ∈ Ω,
f(z, w+(z)) ⩽ 0 ⩽ f(z, w−(z)) for almost all z ∈ Ω,

Ap(w−) + A(w−) ⩽ 0 ⩽ Ap(w+) + A(w+) inW−1,p� (Ω) = W1,p
0 (Ω)∗.

(v) There exist an integer l ⩾ 1 with dl ̸= m (dl = dim H̄l), δ > 0 and η ∈ L∞(Ω) such that

λ̂l(2) ⩽ η(z) for almost all z ∈ Ω, η ̸≡ λ̂l(2),

η(z)x2 ⩽ f(z, x)x ⩽ λ̂l+1(2)x2 for almost all z ∈ Ω and all |x| ⩽ δ,

and for x ̸= 0, the second inequality is strict on a set of positive Lebesgue measure.
(vi) For every ρ > 0, there exists ̂ξρ > 0 such that for almost all z ∈ Ω, the function z Ü→ f(z, x) + ̂ξρ|x|p−2x is

nondecreasing on [−ρ, ρ].

Remark 4.2. We see that in comparison to the Hypotheses 3.1, we have added Hypotheses 4.1 (iv), (vi). So,
the problem remains resonant at both ±∞ and at zero. Hypothesis 3.1 (iv) is satisfied if, for example, we can
find c− < 0 < c+ such that

f(z, c+) ⩽ 0 ⩽ f(z, c−) for almost all z ∈ Ω.

Therefore, this hypothesis implies that near zero f(z, ⋅ ) exhibits an oscillatory behavior.

First, we produce two constant sign solutions.

Proposition 4.3. If Hypotheses 4.1 (i), (iv), (v), (vi) hold, then problem (1.1) admits two nontrivial smooth so-
lutions of constant sign:

u0 ∈ int C+, with u0(z) < w+(z) for all z ∈ Ω,

v0 ∈ − int C+, with w−(z) < v0(z) for all z ∈ Ω.

Proof. First, we produce the positive solution.
We introduce the following Carathéodory function:

̂f+(z, x) =
{{{
{{{
{

0 if x < 0,
f(z, x) if 0 ⩽ x ⩽ w+(z),
f(z, w+(z)) if w+(z) < x.

(4.1)

We set F̂+(z, x) = ∫
x
0

̂f+(z, s) ds and consider the C1-functional φ̂+ : W1,p
0 (Ω) → ℝ defined by

φ̂+(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F̂+(z, u) dz for all u ∈ W1,p
0 (Ω).

Brought to you by | National & University Library Ljubljana
Authenticated

Download Date | 1/17/18 12:15 PM



120 | N. S. Papageorgiou et al., Existence and Multiplicity of Solutions for Resonant (p, 2)-Equations

From (4.1) it is clear that φ̂+ is coercive. Also, using the Sobolev embedding theorem, we see that φ̂+ is se-
quentially weakly lower semicontinuous. So, by theWeierstrass theorem, we can find u0 ∈ W1,p

0 (Ω) such that

φ̂+(u0) = inf{φ̂+(u) : u ∈ W1,p
0 (Ω)}. (4.2)

From (4.2) we have φ̂�
+(u0) = 0, and hence

⟨Ap(u0), h⟩ + ⟨A(u0), h⟩ = ∫
Ω

̂f+(z, u0)h dz for all h ∈ W1,p
0 (Ω). (4.3)

In (4.3) we first choose h = −u−0 ∈ W1,p
0 (Ω). Then ‖Du−0‖

p
p + ‖Du−0‖

2
2 = 0 (see (4.1)), and thus u0 ⩾ 0. Also, in

(4.3) we choose h = (u0 − w+)+ ∈ W1,p
0 (Ω). Then, by (4.1) and Hypothesis 4.1 (iv),

∫
Ω

|Du0|p−2(Du0, D(u0 − w+)+)ℝN dz + ∫
Ω

(Du0, D(u0 − w+)+)ℝN dz

= ∫
Ω

f(z, w+)(u0 − w+)+ dz

⩽ ∫
Ω

|Dw+|p−2(Dw+, D(u0 − w+)+)ℝN dz + ∫
Ω

(Dw+, D(u0 − w+)+)ℝN dz.

Thus,
∫
Ω

(|Du0|p−2Du0 − |Dw+|p−2Dw+, D(u0 − w+)+)ℝN dz + ‖D(u0 − w+)+‖22 ⩽ 0,

and hence u0 ⩽ w+.
So, we have proved that

u0 ∈ [0, w+] = {y ∈ W1,p
0 (Ω) : 0 ⩽ y(z) ⩽ w+(z) for almost all z ∈ Ω}.

Then, on account of (4.1), equation (4.3) becomes

⟨Ap(u0), h⟩ + ⟨A(u0), h⟩ = ∫
Ω

f(z, u0)h dz for all h ∈ W1,p
0 (Ω),

which implies
− ∆pu0(z) − ∆u0(z) = f(z, u0(z)) for almost all z ∈ Ω, u0|∂Ω = 0, (4.4)

and hence u0 ∈ C+ (by the nonlinear regularity theory, see [20]).
Since p > 2, given ϵ > 0, we can find δ0 ∈ (0,min{δ, C+}) (δ > 0 as in Hypothesis 4.1 (v)) such that

1
p
|y|p ⩽

ϵ
2 |y|

2 for all y ∈ ℝN with |y| ⩽ δ0. (4.5)

Recall that û1(2) ∈ int C+. So, we can find small t ∈ (0, 1) such that

‖tû1(2)‖C10(Ω) ⩽ δ0.

By (4.5), (4.1) and Hypothesis 4.1 (v), since δ0 ⩽ δ, we have

φ̂+(tû1(2)) ⩽
ϵ + 1
2 t2‖Dû1(2)‖22 −

1
2 t

2 ∫
Ω

η(z)û1(2)2 dz

= t2[ ϵ2 λ̂1(2)‖û1(2)‖
2
2 −

1
2 ∫
Ω

(η(z) − λ̂1(2))û1(2)2 dz)]

< 0,

by choosing ϵ > 0 small enough (see Lemma 2.2 (b)). Then φ̂+(u0) < 0 = φ̂+(0) (see (4.2)), and hence u0 ̸= 0.

Brought to you by | National & University Library Ljubljana
Authenticated

Download Date | 1/17/18 12:15 PM



N. S. Papageorgiou et al., Existence and Multiplicity of Solutions for Resonant (p, 2)-Equations | 121

Let ρ = ‖u0‖∞ and let ̂ξρ > 0 be as postulated by Hypothesis 4.1 (vi). Then, by (4.4), we have

∆pu0(z) + ∆u0(z) ⩽ ̂ξρu0(z)p−1 for almost all z ∈ Ω. (4.6)

Let V(y) = |y|p−2y + y for all y ∈ ℝN . Evidently,

div(V(Du)) = ∆pu + ∆u for all u ∈ W1,p
0 (Ω).

We have V ∈ C1(ℝN ,ℝN) and
∇V(y) = |y|p−2[I + (p − 2) y ⊕ y

|y|2
] + I,

which implies
(∇V(y)ξ, ξ)ℝN ⩾ |ξ|2 for all y ∈ ℝN and all ξ ∈ ℝN . (4.7)

Then (4.7), (4.6) and the tangency principle of Pucci and Serrin [33, Theorem 2.5.2] imply that

0 < u0(z) for all z ∈ Ω.

Next, using the boundary point lemma (see [33, Theorem 5.5.1]), we obtain

u0 ∈ int C+. (4.8)

Also, Hypothesis 4.1 (iv) implies

Ap(u0) + A(u0) − Nf (u0) = 0 ⩽ Ap(w+) + A(w+) − Nf (w+) inW−1,p� (Ω). (4.9)

So, once more (4.7), (4.9) and the tangency principle of Pucci and Serrin [33, Theorem 2.5.2], imply that

u0(z) < w+(z) for all z ∈ Ω,

and, by Hypothesis 4.1 (iv), we have

u0(z) < w+(z) for all z ∈ Ω.

Similarly, to produce the negative solution, we introduce the Carathéodory function

̂f−(z, x) =
{{{
{{{
{

f(z, w−(z)) if x < w−(z),
f(z, x) if w−(z) ⩽ x ⩽, 0
0 if 0 < x.

We set F̂−(z, x) = ∫
x
0

̂f−(z, s) ds and consider the C1-functional φ̂− : W1,p
0 (Ω) → ℝ defined by

φ̂−(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F̂−(z, u) dz for all u ∈ W1,p
0 (Ω).

Working with φ̂− and using (4.8), we produce a solution of (1.1), v0 ∈ W1,p
0 (Ω), such that

v0 ∈ − int C+, w−(z) < v0(z) for all z ∈ Ω.

This completes the proof.

In fact, we can show that we have extremal constant sign solutions in the order intervals [0, w+] and [w−, 0],
that is, we can show that there is a smallest positive solution u∗ ∈ int C+ in [0, w+] and a biggest negative
solution v∗ ∈ − int C+ in [w−, 0].

Proposition 4.4. If Hypotheses 4.1 (i), (iv), (v), (vi) hold, then problem (1.1) admits a smallest positive solution
u∗ ∈ int C+ in [0, w+] and a biggest negative solution v∗ ∈ − int C+ in [w−, 0].

Brought to you by | National & University Library Ljubljana
Authenticated

Download Date | 1/17/18 12:15 PM



122 | N. S. Papageorgiou et al., Existence and Multiplicity of Solutions for Resonant (p, 2)-Equations

Proof. First we produce the smallest positive solution in [0, w+]. Let Ŝ+ be the set of positive solutions of
problem (1.1) in the order interval [0, w+]. From Proposition 4.3 and its proof, we have

Ŝ+ ̸= 0 and Ŝ+ ⊆ [0, w+] ∩ int C+.

Invoking [17, Lemma 3.10, p. 178], we infer that we can find {un}n⩾1 ⊆ Ŝ+ such that inf Ŝ+ = infn⩾1 un .
We have

Ap(un) + A(un) = Nf (un), 0 ⩽ un ⩽ w+ for all n ∈ ℕ, (4.10)

which implies that {un}n⩾1 ⊆ W1,p
0 (Ω) is bounded. So, we may assume that

un
w
ÚÚ→ u∗ inW1,p

0 (Ω) and un → u∗ in Lp(Ω) as n → ∞. (4.11)

On (4.10) we act with un − u∗ ∈ W1,p
0 (Ω), pass to the limit as n → ∞ and use (4.11). Then

lim
n→∞

[⟨Ap(un), un − u∗⟩ + ⟨A(un), un − u∗⟩] = 0,

and since A is monotone, we have

lim sup
n→∞

[⟨Ap(un), un − u∗⟩ + ⟨A(u∗), un − u∗⟩] ⩽ 0.

Thus, by (4.11), lim supn→∞⟨Ap(un), un − u∗⟩ ⩽ 0, which implies (see Proposition 2.3)

un → u∗ inW1,p
0 (Ω). (4.12)

Passing to the limit as n → ∞ in (4.10) and using (4.12), we obtain

Ap(u∗) + A(u∗) = Nf (u∗), 0 ⩽ u∗ ⩽ w+.

Hence,

−∆pu∗(z) − ∆u∗(z) = f(z, u∗(z)) for almost all z ∈ Ω, u∗|∂Ω = 0, 0 ⩽ u∗ ⩽ w+.

Then u∗ ∈ C+ (by the nonlinear regularity theory, see [20]) is a nonnegative solution of (1.1). If we can show
that u∗ ̸= 0, then u∗ ∈ Ŝ+ and u∗ = inf Ŝ+.

To this end, we proceed as follows. Hypotheses 4.1 (i), (v) imply that we can find c13 > 0 such that

f(z, x) ⩾ η(z)x − c13xp−1 for almost all z ∈ Ω and all 0 ⩽ x ⩽ w+(z). (4.13)

Let g : Ω ×ℝ→ ℝ be the Carathéodory function defined by

g(z, x) =
{{{
{{{
{

0 if x < 0,
η(z)x − c13xp−1 if 0 ⩽ x ⩽ w+(z),
η(z)w+(z) − c13w+(z)p−1 if w+(z) < x.

(4.14)

We consider the auxiliary Dirichlet problem

−∆pu(z) − ∆u(z) = g(z, u(z)) in Ω, u|∂Ω = 0. (4.15)

We claim that this problem has a unique solution ū ∈ int C+. First, we show the existence of a nontrivial
solution. So, let ψ+ : W1,p

0 (Ω) → ℝ be the energy (Euler) functional for problem (4.15) defined by

ψ+(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

G(z, u) dz for all u ∈ W1,p
0 (Ω),

where G(z, x) = ∫
x
0 g(z, s) ds. Evidently, ψ+ is coercive (see (4.14)) and sequentially weakly lower semicon-

tinuous. So, we can find ū ∈ W1,p
0 (Ω) such that

ψ+(ū) = inf{ψ+(u) : u ∈ W1,p
0 (Ω)}.
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As in the proof of Proposition 4.3, using Hypothesis 4.1 (v), we have (see (4.14))

ψ+(ū) < 0 = ψ+(0) and ū ∈ [0, w+],

hence ū ∈ Kψ+ ⊆ [0, w+] ∩ int C+.
Next, we show that this solution is unique. For this purpose, we consider the integral functional

j : L1(Ω) → ℝ = ℝ ∪ {+∞} defined by

j(u) =
{
{
{

1
p ‖Du

1/2‖pp + 1
2 ‖Du

1/2‖22 if u ⩾ 0, u1/2 ∈ W1,p
0 (Ω),

+∞ otherwise.

By [7, Lemma 4] and [13, Lemma 1], we have that j( ⋅ ) is convex. Suppose that ȳ ∈ W1,p
0 (Ω) is another non-

trivial solution of (4.15). Then again we have ȳ ∈ [0, w+] ∩ int C+. Let dom j = {u ∈ L1(Ω) : j(u) < +∞} (the
effective domain of j). For every h ∈ C10(Ω), we have

ū2 + th ∈ dom j and ȳ2 + th ∈ dom j for |t| ⩽ 1 small.

Then we can easily see that j( ⋅ ) is Gâteaux differentiable at ū2 and at ȳ2 in the direction h. Moreover, using
the nonlinear Green’s identity (see, for example, [16, p. 211]), we have

j�(ū2)(h) = 1
2 ∫
Ω

−∆p ū − ∆ū
ū

h dz = 1
2 ∫
Ω

[η(z) − c13ūp−2]h dz,

j�(ȳ2)(h) = 1
2 ∫
Ω

−∆p ȳ − ∆ȳ
ȳ

h dz = 1
2 ∫
Ω

[η(z) − c13 ȳp−2]h dz,

see (4.15) and (4.14). The convexity of j( ⋅ ) implies the monotonicity of j�( ⋅ ). Hence,

0 ⩽ ∫
Ω

[ȳp−2 − ūp−2](ū2 − ȳ2) dz â⇒ ū = ȳ.

This proves the uniqueness of the nontrivial solution ū ∈ [0, w+] ∩ int C+ of the auxiliary problem (4.15).

Claim 4. ū ⩽ u for all u ∈ Ŝ+.

Let u ∈ Ŝ+ and consider the Carathéodory function k : Ω ×ℝ→ ℝ defined by

k(z, x) =
{{{
{{{
{

0 if x < 0,
η(z)x − c13xp−1 if 0 ⩽ x ⩽ u(z),
η(z)u(z) − c13u(z)p−1 if u(z) < x.

(4.16)

We set K(z, x) = ∫
x
0 k(z, s) ds and consider the C

1-functional ψ̂+ : W1,p
0 (Ω) → ℝ defined by

ψ̂+(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

K(z, u) dz for all u ∈ W1,p
0 (Ω).

Again, ψ̂+ is coercive (see (4.16)) and sequentiallyweakly lower semicontinuous. So,we can find ũ ∈ W1,p
0 (Ω)

such that
ψ̂+(ũ) = inf{ψ̂+(u) : u ∈ W1,p

0 (Ω)}. (4.17)

Let t ∈ (0, 1) be small such that tû1(2) ⩽ u (see [22, Proposition 2.1] and recall that u ∈ int C+). Then,
by taking t ∈ (0, 1) even smaller if necessary and using Hypothesis 4.1 (v), we have ψ̂+(tû1(2)) < 0, which
implies ψ̂+(ũ) < ψ̂+(0) = 0, hence ũ ̸= 0. Using (4.13) and the fact that u ∈ Ŝ+, we can show that Kψ̂+

⊆ [0, u].
From (4.17) we have ũ ∈ Kψ̂+

\ {0} ⊆ [0, u] \ {0}, which implies (see (4.16) and recall that ū is the unique
solution of (4.15)) ũ = ū. Thus,

ū ⩽ u for all u ∈ Ŝ+.

This proves the claim.
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On account of Claim 4, we have ū ⩽ u∗, and so

u∗ ∈ Ŝ+, u∗ = inf Ŝ+.

Similarly, if Ŝ− is the set of negative solutions of (1.1) in [w−, 0], then

Ŝ− ̸= 0 and Ŝ− ⊆ [w−, 0] ∩ (− int C+)

(see Proposition 4.3 and its proof). Reasoning as above,we can show that there exists v∗ ∈ [w−, 0] ∩ (− int C+)
which is the biggest negative solution of (1.1) in [w−, 0].

Using these extremal constant sign solutions of (1.1), we can generate a nodal (that is, sign changing) solu-
tion. To do this, we need a slightly stronger condition on f(z, ⋅ ) near zero (see Hypothesis 4.1 (v)). The new
hypotheses on the reaction f(z, x) are the following.

Hypotheses 4.5. The conditions on the Carathéodory function f : Ω ×ℝ→ ℝ are the same as in Hypothe-
ses 4.1, the only difference being that here we have l ⩾ 2.

Proposition 4.6. If Hypotheses 4.5 (i), (iv), (v), (vi) hold, then problem (1.1) admits a nodal solution y0 in
[v∗, u∗] ∩ C10(Ω̄).

Proof. Let u∗ ∈ int C+ and v∗ ∈ − int C+ be the two extremal constant sign solutions of (1.1) produced in
Proposition 4.4. Let e : Ω ×ℝ→ ℝ be the Carathéodory function defined by

e(z, x) =
{{{
{{{
{

f(z, v∗(z)) if x < v∗(z),
f(z, x) if v∗(z) ⩽ x ⩽ u∗(z),
f(z, u∗(z)) if u∗(z) < x.

(4.18)

We set E(z, x) = ∫
x
0 e(z, s) ds, and consider the C

1-functional τ : W1,p
0 (Ω) → ℝ defined by

τ(u) = 1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

E(z, u) dz for all u ∈ W1,p
0 (Ω).

Also, we consider the positive and negative truncations of e(z, ⋅ ), namely the Carathéodory functions

e±(z, x) = e(z, ±x±).

We set E±(z, x) = ∫
x
0 e±(z, s) ds and consider the C

1-functionals τ± : W1,p
0 (Ω) → ℝ defined by

τ±(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

E±(z, u) dz for all u ∈ W1,p
0 (Ω).

As before (see the proof of Proposition 4.3), using (4.18), we can show that

Kτ ⊆ [v∗, u∗], Kτ+ ⊆ [0, u∗], Kτ− ⊆ [v∗, 0].

The extremality of u∗ ∈ int C+ and v∗ ∈ − int C+ implies that

Kτ ⊆ [v∗, u∗], Kτ+ = {0, u∗}, Kτ− = {0, v∗}. (4.19)

Claim 5. u∗ ∈ int C+ and v∗ ∈ − int C+ are local minimizers of τ.

The functional τ+ is coercive (see (4.18)) and sequentially weakly lower semicontinuous. So, we can find
û∗ ∈ W1,p

0 (Ω) such that
τ+(û∗) = inf{τ+(u) : u ∈ W1,p

0 (Ω)}.

As in the proof of Proposition 4.4 (see the part of the proof after (4.17)), we have τ+(û∗) < 0 = τ+(0), hence
û∗ ̸= 0. Since û∗ ∈ Kτ+ = {0, u∗}, it follows that û∗ = u∗ ∈ int C+ (see (4.19)). Note that τ|C+ = τ+|C+ , which
implies that u∗ ∈ int C+ is a local C10(Ω)-minimizer of τ. Hence, by Proposition 2.4, u∗ ∈ int C+ is a local
W1,p

0 (Ω)-minimizer of τ. Similar arguments apply for v∗ ∈ − int C+, using this time the functional τ−. This
proves Claim 5.

Brought to you by | National & University Library Ljubljana
Authenticated

Download Date | 1/17/18 12:15 PM



N. S. Papageorgiou et al., Existence and Multiplicity of Solutions for Resonant (p, 2)-Equations | 125

Wemay assume that
τ(v∗) ⩽ τ(u∗).

The reasoning is similar if the opposite inequality holds. Also, we may assume that Kτ is finite. Indeed, if Kτ
is infinite, then on account of (4.19), we see that we already have an infinity of nodal solutions, which belong
to C10(Ω) (nonlinear regularity theory). Then Claim 5 implies that we can find ρ ∈ (0, 1) small such that

τ(v∗) ⩽ τ(u∗) < inf{τ(u) : ‖u − u∗‖ = ρ} = mρ , ‖v∗ − u∗‖ > ρ (4.20)

(see the proof of [1, Proposition 29]). The functional τ( ⋅ ) is coercive (see (4.18)) and so τ( ⋅ ) satisfies the
C-condition (see [31]). Therefore, from (4.20), we see that we can apply Theorem 2.1 (the mountain pass
theorem). So, we can find y0 ∈ W1,p

0 (Ω) such that

y0 ∈ Kτ and mρ ⩽ τ(y0). (4.21)

From (4.19), (4.20), (4.21) and the nonlinear regularity theory (see [20]), we infer that

y0 ∈ [v∗, u∗] ∩ C10(Ω), y0 ∉ {v∗, u∗}.

Also, from [23, Corollary 6.81], we have
C1(τ, y0) ̸= 0. (4.22)

Let ̂f : Ω ×ℝ→ ℝ be the Carathéodory function defined by

̂f (z, x) =
{{{
{{{
{

f(z, w−(z)) if x < w−(z),
f(z, x) if w−(z) ⩽ x ⩽ w+(z),
f(z, w+(z)) if w+(z) < x.

We set F̂(t, x) = ∫
x
0

̂f (z, s) ds and consider the C1-functional φ̂ : W1,p
0 (Ω) → ℝ defined by

φ̂(u) = 1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

F̂(z, u) dz for all u ∈ W1,p
0 (Ω).

From Proposition 3.7, we know that (recall that dl = dim H̄l)

Ck(φ̂, 0) = δk,dlℤ for all k ∈ ℕ0. (4.23)

Claim 6. Ck(τ, 0) = δk,dlℤ for all k ∈ ℕ0.

We consider the homotopy h(t, u) defined by

h(t, u) = (1 − t)φ̂(u) + tτ(u) for all (t, u) ∈ [0, 1] ×W1,p
0 (Ω).

Suppose we can find {tn}n⩾1 ⊆ [0, 1] and {un}n⩾1 ⊆ W1,p
0 (Ω) such that

tn → t, un → 0 inW1,p
0 (Ω), h�u(tn , un) = 0 for all n ∈ ℕ. (4.24)

From the equality in (4.24) we have

Ap(un) + A(un) = (1 − tn)N ̂f (un) + tnNτ(un) for all n ∈ ℕ,

which implies

−∆pun(z) − ∆un(z) = (1 − tn) ̂f (z, un(z)) + tne(z, un(z)) for almost all z ∈ Ω, un|∂Ω = 0. (4.25)

By (4.24), (4.25) and [18, Theorem 7.1] (see also [23, Corollary 8.7]), we can find c14 > 0 such that

‖un‖∞ ⩽ c14 for all n ∈ ℕ. (4.26)
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Then, from (4.26) and [20, Theorem 1], we infer that there exist α ∈ (0, 1) and c15 > 0 such that

un ∈ C1,α0 (Ω), ‖un‖C1,α0 (Ω) ⩽ c15 for all n ∈ ℕ.

Since C1,α0 (Ω) is embedding compactly in C10(Ω), it follows that (see (4.24))

un → 0 in C10(Ω),

which implies
un ∈ [v∗, u∗] for all n ⩾ n0,

and thus (see (4.19)) {un}n⩾n0 ⊆ Kτ, a contradiction to our hypothesis that Kτ is finite.
So, (4.24) cannot happen and this shows that 0 ∈ Kh(t,⋅ ) is isolated uniformly in t ∈ [0, 1]. Hence, the

homotopy invariance of critical groups, [12, Theorem 5.2], implies that

Ck(h(0, ⋅ ), 0) = Ck(h(1, ⋅ ), 0) for all k ∈ ℕ0,

and thus
Ck(φ̂, 0) = Ck(τ, 0) for all k ∈ ℕ0.

Therefore, by (4.23),
Ck(τ, 0) = δk,dlℤ for all k ∈ ℕ0.

This proves Claim 6.
Since l ⩾ 2 (see Hypotheses 4.5), we have dl ⩾ 2. So, from Claim 6 and (4.22), it follows that y0 ̸= 0.

Therefore, y0 ∈ [v∗, u∗] ∩ C10(Ω) \ {0} is nodal.

So far we have not used the asymptotic conditions at ±∞ (that is, Hypotheses 4.5 (ii), (iii)). Next, by using
them, we will generate two more nontrivial smooth solutions of constant sign, for a total of five nontrivial
smooth solutions all with sign information and ordered.

Theorem 4.7. If Hypotheses 4.5 hold, then problem (1.1) admits the following five nontrivial smooth solutions:

u0, û ∈ int C+, û − u0 ∈ C+ \ {0},
v0, v̂ ∈ − int C+, v0 − v̂ ∈ C+ \ {0},

y0 ∈ [v0, u0] ∩ C10(Ω) (nodal).

Proof. Propositions 4.3 and 4.6 provide the following three nontrivial smooth solutions:

u0 ∈ [0, w+] ∩ int C+, with (w+ − u0)(z) > 0 for all z ∈ Ω,

v0 ∈ [w−, 0] ∩ (− int C+), with (u0 − w−)(z) > 0 for all z ∈ Ω,

y0 ∈ [v0, u0] ∩ C10(Ω) (nodal).

On account of Proposition 4.4, we may assume that u0 and v0 are extremal constant sign solutions (that is,
u0 = u∗ and v0 = v∗).

We consider the Carathéodory function γ+ : Ω ×ℝ→ ℝ defined by

γ+(z, x) =
{
{
{

f(z, u0(z)) if x ⩽ u0(z),
f(z, x) if u0(z) < x,

(4.27)

and set Γ+(z, x) = ∫
x
0 γ+(z, s) ds. We consider the C1-functional σ+ : W1,p

0 (Ω) → ℝ defined by

σ+(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

Γ+(z, u) dz for all u ∈ W1,p
0 (Ω).

Using (4.27), we can easily show that

Kσ+ ⊆ [u0] = {u ∈ W1,p
0 (Ω) : u0(z) ⩽ u(z) for almost all z ∈ Ω}. (4.28)
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Note that u0 ∈ Kσ+ . We may assume that

Kσ+ ∩ [u0, w+] = {u0}. (4.29)

Otherwise, we already have a second positive solution û ⩾ u0, û ̸= u0, û ∈ C10(Ω). Consider the following
Carathéodory function:

γ̂+(z, x) =
{
{
{

γ+(z, x) if x ⩽ w+(z),
γ+(z, w+(z)) if w+(z) < x.

(4.30)

We set Γ̂+(z, x) = ∫
x
0 γ̂+(z, s) ds and consider the C

1-functional σ̂+ : W1,p
0 (Ω) → ℝ defined by

σ̂+(u) =
1
p
‖Du‖pp +

1
2 ‖Du‖

2
2 − ∫

Ω

Γ̂+(z, u) dz for all u ∈ W1,p
0 (Ω).

From (4.30) it is clear that σ̂+ is coercive. Also, it is sequentially weakly lower semicontinuous. So, we
can find ũ0 ∈ W1,p

0 (Ω) such that

σ̂+(ũ0) = inf{σ̂+(u) : u ∈ W1,p
0 (Ω)}. (4.31)

Using (4.30), we can show that (see also (4.28))

Kσ̂+ ⊆ [u0, w+]. (4.32)

Then (4.29), (4.31) and (4.32) imply that

ũ0 = u0 ∈ [0, w+], (w+ − u0)(z) > 0 for all z ∈ Ω. (4.33)

From (4.30) we see that σ+|[0,w+] = σ̂+|[0,w+], which, in view of (4.33), implies that u0 is a local C10(Ω)-
minimizer of σ+. Hence, u0 is a localW1,p

0 (Ω)-minimizer of σ+ (see Proposition 2.4).
Because of (4.28), we see that we may assume that Kσ+ is finite or otherwise we already have infinite

positive and smooth (by the nonlinear regularity theory) solutions of (1.1), all bigger than u0. Hence, we can
find small ρ ∈ (0, 1) such that

σ+(u0) < inf{σ+(u) : ‖u − u0‖ = ρ} = m+
ρ . (4.34)

Reasoning as in the proof of Proposition 3.3, we can establish that

σ+ satisfies the C-condition. (4.35)

Note that in this case, due to (4.27), for any Cerami sequence {un}n⩾1 ⊆ W1,p
0 (Ω), we have automatically that

{u−n}n⩾1 ⊆ W1,p
0 (Ω) is bounded.

Hypotheses 4.5 (i), (ii) imply that we can find ϑ > λ̂m(p) and c16 > 0 such that

F(z, x) ⩽ ϑ
p
xp + c16 for almost all z ∈ Ω and all x ⩾ 0. (4.36)

Since û1(p) ∈ int C+, we can find t ⩾ 1 big such that tû1(p) ⩾ u0 (see [22, Proposition 2.1]). Then (see (4.36)
and recall that ‖û1(p)‖p = 1)

σ(tû1(p)) ⩽
tp

p
λ̂1(p) +

t2

2 ‖Dû1(p)‖22 −
tp

p
ϑ + c17 =

tp

p
[λ̂1(p) − ϑ] +

t2

2 ‖Dû1(p)‖22 + c17, (4.37)

for some c17 > 0. Since ϑ > λ̂1(p) and p > 2, from (4.37), it follows that

σ(tû1(p)) → −∞ as t → +∞. (4.38)

Then (4.34), (4.35) and (4.38) permit the use of Theorem 2.1 (the mountain pass theorem). So, we can find
û ∈ W1,p

0 (Ω) such that
û ∈ Kσ+ and m+

ρ ⩽ σ+(û). (4.39)

From (4.27), (4.28), (4.34) and (4.39), it follows that u0 ⩽ û, û ̸= u0, and û ∈ int C+ is a solution of (1.1).
Similarly, by working with v0 ∈ [w−, 0] ∩ (− int C+) on the negative semiaxis as above, we produce

v̂ ∈ − int C+, v̂ ⩽ v0, v̂ ̸= v0, a second negative solution for problem (1.1).
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