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Abstract. We consider a parametric semilinear Robin problem driven by the

Laplacian plus an indefinite potential. The reaction term involves competing
nonlinearities. More precisely, it is the sum of a parametric sublinear (concave)

term and a superlinear (convex) term. The superlinearity is not expressed

via the Ambrosetti-Rabinowitz condition. Instead, a more general hypothesis
is used. We prove a bifurcation-type theorem describing the set of positive

solutions as the parameter λ > 0 varies. We also show the existence of a

minimal positive solution ũλ and determine the monotonicity and continuity
properties of the map λ 7→ ũλ.

1. Introduction. Let Ω ⊆ RN (N ≥ 2) be a bounded domain with a C2-boundary
∂Ω. In this paper we study the following parametric Robin problem{ −∆u(z) + ξ(z)u(z) = λg(z, u(z)) + f(z, u(z)) in Ω

∂u

∂n
+ β(z)u = 0 on ∂Ω.

}
(Pλ)

In this problem, λ > 0 is a parameter, ξ ∈ Ls(Ω) (s > N) is a potential function
which is indefinite (that is, sign changing) and in the reaction, g(z, x) and f(z, x)
are Carathéodory functions (that is, for all x ∈ R, z 7→ g(z, x), f(z, x) are measura-
ble and for almost all z ∈ Ω, x 7→ g(z, x), f(z, x) are continuous). We assume that
for almost all z ∈ Ω, g(z, ·) is strictly sublinear near +∞ (concave nonlinearity),
while for almost all z ∈ Ω, f(z, ·) is strictly superlinear near +∞ (convex nonli-
nearity). Therefore the reaction in problem (Pλ) exhibits the combined effects of
competing nonlinearities (“concave-convex problem”). The study of such problems
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was initiated with the well-known work of Ambrosetti, Brezis and Cerami [2], who
dealt with a Dirichlet problem with zero potential (that is, ξ ≡ 0) and the reaction
had the form

λxq−1 + xr−1 for all x ≥ 0 with 1 < q < 2 < r < 2∗.

They proved a bifurcation-type result for small values of the parameter λ > 0.
The work of Ambrosetti, Brezis and Cerami [2] was extended to more general classes
of Dirichlet problems with zero potential by Bartsch and Willem [4], Li, Wu and
Zhou [9], and Rădulescu and Repovš [19].

Our aim in this paper is to extend all the aforementioned results to the more
general problem (Pλ). Note that when β ≡ 0, we recover the Neumann problem
with an indefinite potential. Robin and Neumann problems are in principle more
difficult to deal with, due to the failure of the Poincaré inequality. Therefore in our
problem, the differential operator (left-hand side of the equation) is not coercive
(unless ξ ≥ 0, ξ 6≡ 0). Recently we have examined Robin and Neumann problems
with indefinite linear part. We mention the works of Papageorgiou and Rădulescu
[13, 14, 16]. In [13] the problem is parametric with competing nonlinearities. The
concave term is −λ|x|q−2x, 1 < q < 2, x ∈ R (so it enters into the equation with
a negative sign) while the perturbation f(z, x) is Carathéodory, asymptotically
linear near ±∞ and resonant with respect to the principal eigenvalue. We proved
a multiplicity result for all small values of the parameter λ > 0, producing five
nontrivial smooth solutions, four of which have constant sign (two positive and two
negative).

In this paper, using variational tools together with truncation, perturbation and
comparison techniques, we prove a bifurcation-type theorem, describing the exis-
tence and multiplicity of positive solutions as the parameter λ > 0 varies. We
also establish the existence of a minimal positive solution ũλ and determine the
monotonicity and continuity properties of the map λ 7→ ũλ.

2. Preliminaries. Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉
we denote the duality brackets for the dual pair (X∗, X). Given ϕ ∈ C1(X,R),
we say that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if the
following property is satisfied:

“Every sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ||un||)ϕ′(un)→ 0 in X∗ as n→∞,
admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ϕ(·). It leads to a de-
formation theorem from which one can derive the minimax theory for the critical
values of ϕ (see, for example, Gasinski and Papageorgiou [6]). The following notion
is central to this theory.

Definition 2.1. Let Y be a Hausdorff topological space and E0, E,D ⊆ Y no-
nempty, closed sets such that E0 ⊆ E. We say that the pair {E0, E} is linking with
D in Y if:

(a) E0 ∩D = ∅;
(b) For any γ ∈ C(E, Y ) such that γ |E0

= id|E0
, we have γ(E) ∩D 6= ∅.

Using this topological notion, one can prove the following general minimax prin-
ciple, known in the literature as the “linking theorem” (see, for example, Gasinski
and Papageorgiou [6, p. 644]).
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Theorem 2.2. Assume that X is a Banach space, E0, E,D ⊆ X are nonempty,
closed subsets such that {E0, E} is linking with D in X, ϕ ∈ C1(X,R) satisfies the
C-condition

sup
E0

ϕ < inf
D
ϕ

and c = inf
γ∈Γ

sup
u∈E

ϕ(γ(u)), where Γ =
{
γ ∈ C(E,X) : γ |E0 = id|E0

}
. Then c ≥ inf

D
ϕ

and c is a critical value of ϕ (that is, there exists u ∈ X such that ϕ′(u) = 0, ϕ(u) =
c).

With a suitable choice of the linking sets, we can produce as corollaries of The-
orem 2.2, the main minimax theorems of the critical point theory. For future use,
we recall the so-called “mountain pass theorem”.

Theorem 2.3. Assume that X is a Banach space, ϕ ∈ C1(X,R) satisfies the C-
condition, u0, u1 ∈ X, ||u1 − u0|| > r > 0,

max {ϕ(u0), ϕ(u1)} < inf [ϕ(u) : ||u− u0|| = ρ] = mρ

and c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) with Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1}. Then

c ≥ mρ and c is a critical value of ϕ.

Remark 1. Theorem 2.3 can be deduced from Theorem 2.2 if we have E0 =
{u0, u1}, E = {u = (1− t)u0 + tu1, 0 ≤ t ≤ 1}, D = ∂Bρ(u0) = {u ∈ X : ||u− u0||
= ρ}.

In the analysis of problem (Pλ), we will use the following spaces: the Sobolev
space H1(Ω), the Banach space C1(Ω) and the boundary Lebesgue spaces Lr(∂Ω),
1 ≤ r ≤ ∞.

By || · || we denote the norm of the Sobolev space H1(Ω). So

||u|| =
[
||u||22 + ||Du||22

] 1
2 for all u ∈ H1(Ω).

The space C1(Ω) is an ordered Banach space with positive cone

C+ =
{
u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω

}
.

We will use the open set D+ ⊆ C+ defined by

D+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

On ∂Ω we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure, we can define the Lebesgue spaces Lr(∂Ω) (1 ≤ r ≤ ∞) in

the usual way. Recall that the theory of Sobolev spaces says that there exists a
unique continuous linear map γ0 : H1(Ω) → L2(∂Ω), known as the “trace map”,
such that

γ0(u) = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω).

This map is not surjective and it is compact into Lq(∂Ω) if 1 ≤ q < 2(N−1)
N−2 if N ≥

3 and into Lq(∂Ω) for all q ≥ 1 if N = 1, 2.
In what follows, for the sake of notational simplicity, we drop the use of the map

γ0. All restrictions of Sobolev functions on ∂Ω are understood in the sense of traces.
Let f0 : Ω× R→ R be a Carathéodory function such that

|f0(z, x)| ≤ a0(z)(1 + |x|r−1) for almost all z ∈ Ω and all x ∈ R,

with a0 ∈ L∞(Ω), 1 < r < 2∗ =

{
2N
N−2 if N ≥ 3

+∞ if N = 1, 2.
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We set F0(z, x) =
∫ x

0
f0(z, s)ds. Also, let ξ ∈ Ls(Ω) (s > N) and β ∈W 1,∞(∂Ω)

with β(z) ≥ 0 on ∂Ω. We consider the C ′-functional ϕ0 : H1(Ω)→ R defined by

ϕ0(u) =
1

2
ϑ(u)−

∫
Ω

F0(z, u)dz,

where

ϑ(u) = ||Du||22 +

∫
Ω

ξ(z)u2dz +

∫
∂Ω

β(z)u2dσ for all u ∈ H1(Ω).

The next result follows from Papageorgiou and Rădulescu [12, Proposition 3]
using the regularity theory of Wang [20].

Proposition 1. Let u0 ∈ H1(Ω) be a local C1(Ω)-minimizer of ϕ0, that is, there
exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ||h||C1(Ω) ≤ ρ0.

Then u0 ∈ C1,α(Ω) with α ∈ (0, 1) and u0 is also a local H1(Ω)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ H1(Ω) with ||h|| ≤ ρ1.

We will need some facts concerning the spectrum of −∆ with Robin boundary
condition. Details can be found in Papageorgiou and Rădulescu [12, 16].

So, we consider the following linear eigenvalue problem

−∆u(z) + ξ(z)u(z) = λ̂u(z) in Ω,
∂u

∂n
+ β(z)u = 0 on ∂Ω. (1)

We know that there exists µ > 0 such that

ϑ(u) + µ||u||22 ≥ c0||u||2 for all u ∈ H1(Ω) and for some c0 > 0. (2)

Using (2) and the spectral theorem for compact self-adjoint operators, we gene-

rate the spectrum of (1), which consists of a strictly increasing sequence {λ̂k}k≥1 ⊆
R such that λ̂k → +∞. Also, there is a corresponding sequence {ûn}n≥1 ⊆ H1(Ω)

of eigenfunctions which form an orthonormal basis of H1(Ω) and an orthogonal basis
of L2(Ω). In fact, the regularity theory of Wang [20] implies that {ûn}n≥1 ⊆ C1(Ω).

By E(λ̂k) (for every k ∈ N) we denote the eigenspace corresponding to the eigen-

value λ̂k, k ∈ N. We have the following orthogonal direct sum decomposition

H1(Ω) = ⊕
k≥1

E(λ̂k).

Each eigenspace E(λ̂k) has the so-called “unique continuation property” (UCP

for short) which says that if u ∈ E(λ̂k) vanishes on a set of positive Lebesgue

measure, then u = 0. The eigenvalues {λ̂k}k≥1 have the following properties:

• λ̂1 is simple (that is, dimE(λ̂1) = 1);

• λ̂1 = inf

[
ϑ(u)

||u||22
: u ∈ H1(Ω), u 6= 0

]
; (3)

• for m ≥ 2 we have

λ̂m = sup

[
ϑ(u)

||u||22
: u ∈

m
⊕
k=1

E(λ̂k), u 6= 0

]
= inf

[
ϑ(u)

||u||22
: u ∈ ⊕

k≥m
E(λ̂k), u 6= 0

]
(4)
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In (3) the infimum is realized on E(λ̂1).

In (4) both the supremum and the infimum are realized on E(λ̂m).

From these properties, it is clear that the elements of E(λ̂1) have constant sign

while for m ≥ 2 the elements of E(λ̂m) are nodal (that is, sign changing). Let û1

denote the L2-normalized (that is, ||û1||2 = 1) positive eigenfunction corresponding

to λ̂1. As we have already mentioned, û1 ∈ C+\ {0}. Using Harnack’s inequality
(see, for example Motreanu, Motreanu and Papageorgiou [11, p. 212]), we have that
û1(z) > 0 for all z ∈ Ω. Moreover, if ξ+ ∈ L∞(Ω), then using the strong maximum
principle, we have û1 ∈ D+.

The following useful inequalities are also easy consequences of the above proper-
ties.

Proposition 2. (a) If m ∈ N, η ∈ L∞(Ω), η(z) ≤ λ̂m for almost all z ∈ Ω, η 6≡
λ̂m, then ϑ(u)−

∫
Ω
η(z)u2dz ≥ c1||u||2 for all u ∈ ⊕

k≥m
E(λ̂k) and for some c1 >

0.
(b) If m ∈ N, η ∈ L∞(Ω), η(z) ≥ λ̂m for almost all z ∈ Ω, η 6≡ λ̂m, then

ϑ(u)−
∫

Ω
η(z)u2dz ≤ −c2||u||2 for all u ∈⊕mk=1 E(λ̂k) and for some c2 > 0.

Finally, let us fix some basic notations and terminology. So, by
A ∈ L(H1(Ω), H1(Ω)∗) we denote the linear operator defined by

〈A(u), h〉 =

∫
Ω

(Du,Dh)RNdz for all u, h ∈ H1(Ω).

A Banach space X is said to have the “Kadec-Klee property” if the following
holds

“un
w→ u in X and ||un|| → ||u|| ⇒ un → u in X”.

Locally uniformly convex Banach spaces, in particular Hilbert spaces, have the
Kadec-Klee property.

Let x ∈ R. We set x± = max {±x, 0} and for u ∈ H1(Ω) we define

u±(·) = u(·)±.

We know that

u± ∈ H1(Ω), |u| = u+ + u−, u = u+ − u−.

By | · |N we denote the Lebesgue measure on RN . Also, if ϕ ∈ C1(X,R) then

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ).

If p ∈ [1,∞), then p′ ∈ (1,+∞] and 1
p + 1

p′ = 1. Finally, we set

n0 = max
{
k ∈ N : λ̂k ≤ 0

}
.

If λ̂k > 0 for all k ∈ N (this is the case if ξ ≥ 0 and ξ 6≡ 0 or β 6≡ 0), then we set
n0 = 0.

3. Positive solutions. The hypotheses on the data of problem (Pλ) are the follo-
wing:

H(ξ) : ξ ∈ Ls(Ω) with s > N and ξ+ ∈ L∞(Ω).

H(β) : β ∈W 1,∞(∂Ω) and β(z) ≥ 0 for all z ∈ ∂Ω.

H(g) : g : Ω× R→ R is a Carathéodory function such that
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(i) for every ρ > 0, there exists aρ ∈ L∞(Ω)+ such that

g(z, x) ≤ aρ(z) for almost all z ∈ Ω and all x ∈ [0, ρ];

(ii) lim
x→+∞

g(z,x)
x = 0 uniformly for almost all z ∈ Ω;

(iii) there exist constants 0 < c3 < c4 and q ∈ (1, 2) such that

c3x
q−1 ≤ g(z, x) for almost all z ∈ Ω and all x ≥ 0,

lim sup
x→0+

g(z, x)

xq−1
≤ c4 uniformly for almost all z ∈ Ω;

(iv) if G(z, x) =
∫ x

0
g(z, s)ds, then g(z, x)x−2G(z, x) ≤ 0 for almost all z ∈ Ω and

all x ≥ 0;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω the function

x 7→ g(z, x) + ξ̂ρx

is nondecreasing on [0, ρ].

H(f) : f : Ω× R→ R is a Carathéodory function such that

(i) |f(z, x)| ≤ a(z)(1 + xr−1) for almost all z ∈ Ω and all x ≥ 0 with a ∈
L∞(Ω), 2 < r < 2∗;

(ii) lim
x→+∞

f(z,x)
x = +∞ uniformly for almost all z ∈ Ω;

(iii) lim
x→0

f(z,x)
x = 0 uniformly for almost all z ∈ Ω and there exists δ0 > 0 such

that
f(z, x) ≥ 0 for almost all z ∈ Ω and all x ∈ [0, δ0];

(iv) for every ρ > 0, there exists ξ̃ρ > 0 such that for almost all z ∈ Ω the function

x→ f(z, x) + ξ̃ρx

is nondecreasing on [0, ρ]

We set F (z, x) =
∫ x

0
f(z, s)ds and define

γλ(z, x) = λg(z, x) + f(z, x)− 2[λG(z, x) + F (z, x)] for all (z, x) ∈ Ω× R+.

H0 : For every λ > 0, there exists eλ ∈ L1(Ω) such that

γλ(z, x) ≤ γλ(z, y) + eλ(z) for almost all z ∈ Ω and all 0 ≤ x ≤ y.

Remark 2. Since we are looking for positive solutions and all of the above hypot-
heses concern the positive semi-axis R+ = [0,+∞), we may assume without any
loss of generality that

g(z, x) = f(z, x) = 0 for almost all z ∈ Ω all x ≤ 0

(note that hypotheses H(g)(iii) and H(f)(iii) imply that g(z, 0) = f(z, 0) = 0 for
almost all z ∈ Ω). Hypothesis H(g)(ii) implies that for almost all z ∈ Ω, g(z, ·)
is strictly sublinear near +∞. This, together with hypothesis H(g)(iii), implies
that g(z, ·) is globally the “concave” contribution to the reaction of problem (Pλ).
On the other hand, hypothesis H(f)(ii) implies that for almost all z ∈ Ω, f(z, ·) is
strictly superlinear near +∞. Hence f(z, x) is globally the “convex” contribution to
the reaction of (Pλ). Therefore on the right-hand side (reaction) of problem (Pλ),
we have the competition of concave and convex nonlinearities (“concave-convex
problem”). We stress that the superlinearity of f(z, ·) is not expressed using the
well-known Ambrosetti-Rabinowitz condition (see Ambrosetti and Rabinowitz [3]).
Instead, we use hypothesis H0, which is a slightly more general version of a condition
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used by Li and Yang [10]. Hypothesis H0 is less restrictive than the Ambrosetti-
Rabinowitz superlinearity condition and permits the consideration of superlinear
terms with “slower” growth near +∞, which fail to satisfy the AR-condition (see
the examples below). Hypothesis H0 is a quasimonotonicity condition on γλ(z, ·)
and it is satisfied if there exists M = M(λ) > 0 such that for almost all z ∈ R,

x 7→ λg(z, x) + f(z, x)

x

is nondecreasing on [M,+∞) (see [10]).

Examples. The following pair satisfies hypotheses H(g) and H(f):

g(z, x) = a(z)xq−1, f(z, x) = b(z)xr−1 for all x ≥ 0

with a, b ∈ L∞(Ω), a(z), b(z) > 0 for almost all z ∈ Ω and 1 < q < 2 < r < 2∗. If
a ≡ b ≡ 1, this is the reaction pair used by Ambrosetti, Brezis and Cerami [2] in
the context of Dirichlet problems with zero potential (that is, ξ ≡ 0). The above
reaction pair was used by Rădulescu and Repovš [19], again for Dirichlet problems
with ξ ≡ 0.

Another possibility of a reaction pair which satisfies hypotheses H(g) and H(f)
are the following functions (for the sake of simplicity, we drop the z-dependence):

g(x) =

{
2xq−1 − xτ−1 if 0 ≤ x ≤ 1
xη−1 if 1 < x

with 1 < q, η < 2 < τ

and f(x) = x ln(1 + x) for all x ≥ 0.

In this pair, the superlinear term f(x) fails to satisfy the Ambrosetti-Rabinowitz
condition.

Let µ > 0 be as in (2) and λ > 0. Let kλ : Ω × R → R be the Carathéodory
function defined by

kλ(z, x) = λg(z, x) + f(z, x) + µx+ . (5)

We set Kλ(z, x) =
∫ x

0
kλ(z, s)ds and consider the C1-functional ϕ̂λ : H1(Ω)→ R

defined by

ϕ̂λ(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

Kλ(z, u)dz for all u ∈ H1(Ω).

Proposition 3. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then for
every λ > 0 the functional ϕ̂λ satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ H1(Ω) be a sequence such that

|ϕ̂λ(un)| ≤M1 for some M1 > 0 and all n ∈ N, (6)

(1 + ||un||)ϕ̂′λ(un)→ 0 in H1(Ω)∗ as n→∞. (7)

By (7) we have∣∣∣∣〈A(un), h〉+
∫

Ω

(ξ(z)+µ)unhdz+

∫
∂Ω

β(z)unhdσ−
∫

Ω

kλ(z, un)hdz

∣∣∣∣ ≤ εn||h||
1 + ||un||

,

(8)
for all h ∈ H1(Ω) with εn → 0+.

In (8) we choose h = −u−n ∈ H1(Ω). Then

ϑ(u−n ) + µ||u−n ||22 ≤ εn for all n ∈ N (see (5)),

⇒ c0||u−n ||2 ≤ εn for all n ∈ N (see (2)),
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⇒ u−n → 0 in H1(Ω). (9)

It follows from (6) and (9) that

ϑ(u+
n )−

∫
Ω

2
[
λG(z, u+

n ) + F (z, u+
n )
]
dz ≤M2 for some M2 > 0 and all n ∈ N. (10)

If in (8) we choose h = u+
n ∈ H1(Ω), then

− ϑ(u+
n ) +

∫
Ω

[
λg(z, u+

n ) + f(z, u+
n )
]
u+
n dz ≤ εn for all n ∈ N. (11)

Adding (10) and (11), we obtain∫
Ω

γλ(z, u+
n )dz ≤M3 for some M3 > 0 and all n ∈ N. (12)

Claim. {u+
n }n≥1 ⊆ H1(Ω) is bounded.

We argue by contradiction. So, suppose that the claim is not true. By passing

to a subsequence if necessary, we may assume that ||u+
n || → ∞. Let yn =

u+
n

||u+
n ||

,

n ∈ N. Then

||yn|| = 1, yn ≥ 0 for all n ∈ N
and so we may assume that

yn
w→ y in H1(Ω) and yn → y in L2s′(Ω) and in L2(∂Ω), y ≥ 0. (13)

Suppose that y 6= 0 and let Ω∗ = {z ∈ Ω : y(z) > 0}. Then |Ω∗|N > 0 and

u+
n (z)→ +∞ for almost all z ∈ Ω∗.

We have

G(z, u+
n )

||u+
n ||2

=
G(z, u+

n )

(u+
n )2

y2
n → 0 for a.a. z ∈ Ω∗ (see hypothesis H(g)(ii)), (14)

F (z, u+
n )

||u+
n ||2

=
F (z, u+

n )

(u+
n )2

y2
n →+∞ for a.a. z ∈ Ω∗ (see hypothesis H(f)(ii)).(15)

It follows from (14), (15) and Fatou’s lemma that

lim
n→∞

[
λ

∫
Ω

G(z, u+
n )

||u+
n ||2

dz +

∫
Ω

F (z, u+
n )

||u+
n ||2

dz

]
= +∞ . (16)

On the other hand, (6) and (9) imply that

λ

∫
Ω

G(z, u+
n )

||u+
n ||2

dz +

∫
Ω

F (z, u+
n )

||u+
n ||2

dz ≤ M1

||u+
n ||2

+
1

2
ϑ(yn) +

µ

2
||yn||22 ≤M4 (17)

for some M4, all n ∈ N.
Comparing (16) and (17) we obtain a contradiction.

Next, suppose that y ≡ 0. For η > 0 we set ŷn = (2η)
1
2 yn, n ∈ N. Then ŷn → 0

in H1(Ω) and so we have∫
Ω

G(z, ŷn)dz → 0 and

∫
Ω

F (z, ŷn)dz → 0. (18)

Since ||u+
n || → ∞, we can find n1 ∈ N such that

(2η)
1
2

||u+
n ||
∈ (0, 1] for all n ≥ n1. (19)
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We choose tn ∈ [0, 1] such that

ϕ̂λ(tnu
+
n ) = max

[
ϕ̂λ(tu+

n ) : 0 ≤ t ≤ 1
]
. (20)

From (19), (20) we have

ϕ̂λ(tnu
+
n ) ≥ϕ̂λ(ŷn) (see (19))

=
1

2
ϑ(ŷn)− λ

∫
Ω

G(z, ŷn)dz −
∫

Ω

F (z, ŷn)dz (see (5))

≥η − λ
∫

Ω

G(z, ŷn)dz −
∫

Ω

F (z, ŷn)dz

≥1

2
η for all n ≥ n2 ≥ n1 (see (18)). (21)

Since η > 0 is arbitrary, we infer from (21) that

ϕ̂λ(tnu
+
n )→ +∞ as n→∞ . (22)

We know that

ϕ̂λ(0) = 0 and ϕ̂λ(u+
n ) ≤M5 for some M5 > 0 and all n ∈ N (see (6) and (9)),

⇒tn ∈ (0, 1) for all n ≥ n3 (see (22)).

So, (20) implies that

tn
d

dt
ϕ̂λ(tu+

n )|t=tn = 0,

⇒
〈
ϕ̂′λ(tnu

+
n ), tnu

+
n

〉
= 0 (by the chain rule),

⇒ ϑ(tnu
+
n ) =

∫
Ω

[
λg(z, tnu

+
n ) + f(z, tnu

+
n )
]

(tnu
+
n )dz for all n ≥ n3. (23)

We have 0 ≤ tnu+
n ≤ u+

n . Then hypothesis H0 implies that

γλ(z, tnu
+
n ) ≤ γλ(z, u+

n ) + eλ(z) for almost all z ∈ Ω and all n ≥ n3, ,

⇒
∫

Ω

γλ(z, tnu
+
n )dz ≤

∫
Ω

γλ(z, u+
n )dz + ||eλ||1 ≤M6 for some M6 > 0, all n ≥ n3

(24)

(see (12)).

We return to (23), add to both sides −2
∫

Ω
[λG(z, tnu

+
n ) +F (z, tnu

+
n )]dz and use

(24).
Then

2ϕ̂λ(tnu
+
n ) ≤M6 for all n ≥ n3. (25)

Comparing (22) and (25) again, we get a contradiction.
This proves the claim.
Then (9) and the claim imply that {un}n≥1 ⊆ H1(Ω) is bounded. So, we may

assume that

un
w→ u in H1(Ω) and un → u in L2s′(Ω) and in L2(∂Ω). (26)

In (8) we choose h = un − u ∈ H1(Ω), pass to the limit as n→∞ and use (26).
Then

lim
n→∞

〈A(un), un − u〉 = 0,

⇒ ||Dun||2 → ||Du||2,
⇒ un → u in H1(Ω) (by the Kadec-Klee property, see (26))
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⇒ ϕ̂λ satisfies the C-condition.

Let L = {λ > 0 : problem (Pλ) admits a positive solution}.

Sλ+ = set of positive solutions of (Pλ).

Proposition 4. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then L 6= ∅
and when λ ∈ L we have (0, λ] ⊆ L and for all λ > 0, Sλ+ ⊆ D+.

Proof. Hypotheses H(g)(i)→ (iii) imply that given ε > 0, we can find c5 = c5(ε) >
0 such that

G(z, x) ≤ ε

2
x2 + c5x

q for almost all z ∈ Ω and all x ≥ 0. (27)

Similarly, hypotheses H(f)(i), (iii) imply that given ε > 0, we can find c6 =
c6(ε) > 0 such that

F (z, x) ≤ ε

2
x2 + c6x

r for almost all z ∈ Ω and all x ≥ 0. (28)

We set

H̄n0 =
n0

⊕
k=1

E(λ̂k) and Ĥn0+1 = H̄⊥n0
= ⊕

k≥n0+1
E(λ̂k).

We have

H1(Ω) = H̄n0 ⊕ Ĥn0+1.

Recall that n0 = max{k ∈ N : λ̂k ≤ 0}. We set n0 = 0 if λ̂k > 0 for all k ∈ N and

this is the case if ξ ≥ 0 and ξ 6≡ 0 or β 6≡ 0. Then H̄n0 = {0} and Ĥn0+1 = H1(Ω).

Let u ∈ Ĥn0+1. Then

ϕ̂λ(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

Kλ(z, u)dz

≥1

2
ϑ(u)− λ

∫
Ω

G(z, u)dz −
∫

Ω

F (z, u)dz (see (5))

≥1

2
ϑ(u)− ε

2
(λ+ 1)||u||22 − c7(λ||u||q + ||u||r) for some c7 > 0, (29)

see (27) and (28).

Since u ∈ Ĥn0+1, from Proposition 2(a) and by choosing ε ∈ (0, 1) small enough,
we have

1

2
[ϑ(u)− ε(λ+ 1)||u||22] ≥ c8||u||2 for some c8 > 0. (30)

We use (30) in (29). Then

ϕ̂λ(u) ≥
[
c8 − c7(λ||u||q−2 + ||u||r−2)

]
||u||2. (31)

Let =λ(t) = λtq−2 + tr−2, t > 0. We have 1 < q < 2 < r. Hence

=λ(t)→ +∞ as t→ 0+ and as t→ +∞.
So, we can find t0 > 0 such that

=λ(t0) = min
R+

=, ⇒ =′λ(t0) = 0,

⇒ λ(2− q) = (r − 2)tr−q0 ,

⇒ t0 =

[
λ(2− q)
r − 2

] 1
r−q

. (32)
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Then we have

=λ(t0) = λ
(r − 2)

2−q
r−q

(λ(2− q))
2−q
r−q

+

(
λ(2− q)
r − 2

) r−2
r−q

,

⇒ =λ(t0)→ 0 as λ→ 0+ (since
2− q
r − q

< 1).

Therefore, we can find λ0 > 0 such that

=λ(t0) <
c8
c7

for all λ ∈ (0, λ0).

Returning to (31), we deduce that there exists a positive number mλ such that

ϕ̂λ(u) ≥ mλ > 0 = ϕ̂λ(0) for all u ∈ Ĥn0+1 with ||u|| = ρ̂λ = t0(λ). (33)

On the other hand, hypotheses H(f)(i), (ii) imply that if τ > µ + λ̂n0+1, then
we can find c9 = c9(τ) > 0 such that

F (z, x) ≥ τ

2
x2 − c9xr for almost all z ∈ Ω and all x ≥ 0. (34)

Let w0 ∈ E(λ̂n0+1) with ||w0|| = 1. We consider the space

Y = H̄n0
⊕ Rw0.

This is a finite dimensional subspace of H1(Ω) and if u ∈ Y , then we can write
u in a unique way as

u = ū+ αw0 with ū ∈ H̄n0 and α ∈ R.
Exploiting the orthogonality of the component spaces and since G ≥ 0 (see

hypothesis H(g)(iii)), we have

ϕ̂λ(u) ≤ 1

2
ϑ(ū) +

α2

2
ϑ(w0) +

µ

2
||ū||22 +

µ

2
α2||w0||22

−τ
2
||ū||22 −

τ

2
α2||w0||22 + c9||ū+ αw0||rr (see (34)). (35)

Note that

ϑ(ū) ≤ λ̂n0
||ū||22 ≤ 0 (see (4) and recall that λ̂n0

≤ 0), (36)

ϑ(w0) = λ̂n0+1||w0||22 (since w0 ∈ E(λ̂n0+1)). (37)

Returning to (35) and using (36), (37), we obtain

ϕ̂λ(u) ≤− τ − µ
2
||ū||22 −

α2

2

[
τ − µ− λ̂n0+1

]
||w0||22 + c9||ū+ αw0||rr

≤− c10[||ū||22 + α2||w0||22] + c9||ū+ αw0||rr with c8 = τ − µ− λ̂n0+1 > 0

=− c10||ū+ αw0||22 + c9||ū+ αw0||rr (38)

(by the orthogonality of the component spaces).

Since Y is finite dimensional, all norms are equivalent. So, by (38) we have

ϕ̂λ(u) ≤ c11||ū+ αw0||r − c12||ū+ αw0||2 for some c11, c12 > 0. (39)

But r > 2. So, it follows from (39) that we can find ρ ∈ (0, 1) small such that

ϕ̂λ(u) ≤ 0 for all u ∈ Y with ||u|| ≤ ρ. (40)

By (32) and (33) we see that

ρ̂λ → 0+ as λ→ 0+
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Therefore we can find λ1 ≤ λ0 such that

ρ̂λ ∈ (0, ρ) for all λ ∈ (0, λ1).

We consider the following sets:

E0 = {u = ū+ αw0 : ū ∈ H̄n0 , α ∈ [0, 1] and (||u|| = ρ, α ∈ [0, 1]) or

(||u|| ≤ ρ, α ∈ {0, 1})},
E = {u = ū+ αw0 : ū ∈ H̄n0 , ||u|| ≤ ρ, α ∈ [0, 1]},
D = Ĥn0+1 ∩ ∂Bρλ .

From Gasinski and Papageorgiou [6, p. 643] we know that

{E0, E} links with D in H1(Ω) (41)

(see Definition 2.1 and recall that 1 > ρ > ρ̂λ).
By Proposition 3 we know that for all λ > 0

ϕ̂λ satisfies the C-condition. (42)

On account of (33), (40), (41), (42), we can apply Definition 2.1 (the linking
theorem) and find u ∈ H1(Ω) such that

u0 ∈ Kϕ̂λ , ϕ̂λ(0) = 0 < mλ < ϕ̂λ(u0), (43)

where mλ is the same as in relation (33).
It follows from (43) that u0 6= 0 and

〈A(u0), h〉+
∫

Ω

(ξ(z)+µ)u0hdz+

∫
∂Ω

β(z)u0hdσ =

∫
Ω

kλ(z, u0)hdz for all h ∈ H1(Ω).

(44)
In (44) we choose h = −u−0 ∈ H1(Ω). Then

ϑ(u−0 ) + µ||u−0 ||22 = 0 (see (5)), ⇒ c0||u−0 ||2 ≤ 0 (see (2)),

⇒ u0 ≥ 0, u0 6= 0.

So, equation (44) becomes

〈A(u0), h〉+

∫
Ω

ξ(z)u0hdz +

∫
∂Ω

β(z)u0hdσ =

∫
Ω

[λg(z, u0) + f(z, u0)]hdz

for all h ∈ H1(Ω),

⇒ −∆u0(z) + ξ(z)u0(z) = λg(z, u0(z)) + f(z, u0(z)) for almost all z ∈ Ω,

∂u0

∂n
+ β(z)u = 0 on ∂Ω (45)

(see Papageorgiou and Rădulescu [12]).
We set

eλ(z, x) = λg(z, x) + f(z, x) and âλ(z) =
eλ(z, u0(z))

1 + u0(z)
.

Hypotheses H(g)(i), (ii) and H(f)(i) imply that

|eλ(z, x)| ≤ c13(1 + xr−1) for almost all z ∈ Ω, all x ≥ 0, some c13 = c13(λ) > 0.
(46)

Then we have

|âλ(z)| = |eλ(z, u0(z))|
1 + u0(z)

≤c13(1 + u0(z)r−1)

1 + u0(z)
(see (46))
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≤c14(1 + u0(z))r−1

1 + u0(z)
for some c14 = c14(λ) > 0

=c14(1 + u0(z))r−2 for almost all z ∈ Ω,

⇒ âλ ∈Lτ (Ω) with τ >
N

2

(note that (r − 2)N2 <
(

2N
N−2 − 2

)
N
2 = 2N

N−2 = 2∗ if N ≥ 3).

We rewrite (45) as

−∆u0(z) + ξ(z)u0(z) = âλ(z)(1 + u0(z)) for almost all z ∈ Ω,

∂u0

∂n
+ β(z)u0 = 0 on ∂Ω .

Using Lemma 5.1 of Wang [20] we have

u0 ∈ L∞(Ω) (see hypothesis H(ξ)).

Then the Calderon-Zygmund estimates (see Wang [20, Lemma 5.2]) imply that

u0 ∈ C+\{0}.

Let ρ = ||u0||∞. On account of hypotheses H(g)(v) and H(f)(iv), we can find
ξ̄ρ > 0 such that for almost all z ∈ Ω, x 7→ λg(z, x) + f(z, x) + ξ̄ρx is nondecreasing
on [0, ρ]. Then from (45) we have

∆u0(z) ≤ (ξ̄ρ + ξ(z))u0(z) for almost all z ∈ Ω,

⇒ ∆u0(z) ≤ (ξ̄ρ + ||ξ+||∞)u0(z) for almost all z ∈ Ω (see hypothesis H(ξ)),

⇒ u0 ∈ D+ (by the strong maximum principle).

Therefore we have proved that for λ > 0 small enough, we have

λ ∈ L and for every λ ∈ L, Sλ+ ⊆ D+ . (47)

Next, let λ ∈ L and pick τ ∈ (0, λ). Since λ ∈ L, we can find uλ ∈ Sλ+ ⊆ D+ (see
(47)). We have

−∆uλ(z) + ξ(z)uλ(z) =λg(z, uλ(z)) + f(z, uλ(z))

≥τg(z, uλ(z)) + f(z, uλ(z)) for almost all z ∈ Ω (48)

(since g ≥ 0, see hypothesis H(g)(iii)).

We consider the following truncation of the Carathéodory map kτ (z, ·) (see (5))

k̂τ (z, x) =

{
kτ (z, x) if x ≤ uλ(z)
kτ (z, uλ(z)) if uλ(z) < x.

(49)

We set K̂τ (z, x) =
∫ x

0
kτ (z, s)ds and consider the C1-functional ψ̂τ : H1(Ω)→ R

defined by

ψ̂τ (u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

K̂τ (z, u)dz for all u ∈ H1(Ω).

By (49) and (2) it is clear that ψ̂τ (·) is coercive. In addition, the Sobolev em-

bedding theorem and the compactness of the trace map, imply that ψ̂τ (·) is sequen-
tially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find
uτ ∈ H1(Ω) such that

ψ̂τ (uτ ) = inf[ψ̂τ (u) : u ∈ H1(Ω)] = m̂τ . (50)
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With δ0 > 0 as in hypothesis H(f)(iii), we define

δ̂0 = min

{
min

Ω
uλ, δ0

}
> 0 (recall that uλ ∈ D+).

For u ∈ D+, choose t ∈ (0, 1) so small that

tu(z) ∈ (0, δ̂0] for all z ∈ Ω.

Then using hypothesis H(f)(iii), we have

ψ̂τ (tu) ≤ t
2

2
ϑ(u)− τ

∫
Ω

G(z, tu)dz (see (49) and (5))

≤ t
2

2
ϑ(u)− τ c3

q
tq||u||qq (see hypothesis H(g)(iii)). (51)

Recall that q < 2. Then from (51) and by choosing t ∈ (0, 1) even smaller if
necessary, we infer that

ψ̂τ (tu) < 0, ⇒ ψ̂τ (uτ ) < 0 = ψ̂τ (0) (see (50)),

⇒ uτ 6= 0.

By (50) we have

ψ̂′τ (uτ ) = 0,

⇒〈A(uτ ), h〉+

∫
Ω

(ξ(z) + µ)uτhdz +

∫
∂Ω

β(z)uτhdσ =

∫
Ω

k̂τ (z, uτ )hdz (52)

for all h ∈ H1(Ω).

In (52) we choose h = −u−τ ∈ H1(Ω). Then

ϑ(u−τ ) + µ||u−τ ||22 = 0 (see (49) and (5)), ⇒ c0||u−τ ||2 ≤ 0 (see (2)),

⇒ uτ ≥ 0, uτ 6= 0.

Next in (52) we choose h = (uτ − uλ)+ ∈ H1(Ω). Then〈
A(uτ ), (uτ − uλ)+

〉
+

∫
Ω

(ξ(z) + µ)uτ (uτ − uλ)+dz +

∫
∂Ω

β(z)uτ (uτ − uλ)+dσ

=

∫
Ω

[τg(z, uλ) + f(z, uλ) + µuλ](uτ − uλ)+dz (see (49) and (5)),

≤
〈
A(uλ), (uτ − uλ)+

〉
+

∫
Ω

(ξ(z) + µ)uλ(uτ − uλ)+dz +

∫
∂Ω

β(z)uλ(uτ − uλ)+dσ

(see (48) and use Green’s identity, see Gasinski and Papageorgiou [6, p. 210]),

⇒ ϑ((uτ − uλ)+) + µ||(uτ − uλ)+||22 ≤ 0,

⇒ c0||(uτ − uλ)+||2 ≤ 0,

⇒ uτ ≤ uλ.
So, we have proved that

uτ ∈ [0, uλ] = {u ∈ H1(Ω) : 0 ≤ u(z) ≤ uλ(z) for almost all z ∈ Ω},
⇒ uτ ∈ Sτ+ (see (49)),

⇒ τ ∈ L and so (0, λ] ⊆ L.

An interesting byproduct of the above proof is the following corollary.
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Corollary 1. If hypotheses H(ξ), H(β), H(g), H(f), H0 hold, τ, λ ∈ L with 0 <
τ < λ and uλ ∈ Sλ+, then we can find uτ ∈ Sτ+ such that uλ − uτ ∈ D+.

Proof. An inspection of the last part of the proof of Proposition 4 reveals that we
can find uτ ∈ Sτ+ such that

uλ − uτ ∈ C+\{0}. (53)

Let ρ = ||uλ||∞ and let ξ̄ρ > 0 be such that for almost all z ∈ Ω the function

x 7→ λg(z, x) + f(z, x) + ξ̄ρx

is nondecreasing (see hypotheses H(g)(v), H(f)(iv)). We have

−∆uλ(z) + (ξ(z) + ξ̄ρ)uλ(z)

=λg(z, uλ(z)) + f(z, uλ(z)) + ξ̄ρuλ(z)

≥λg(z, uτ (z)) + f(z, uτ (z)) + ξ̄ρuτ (z) (see (53))

≥τg(z, uτ (z)) + f(z, uτ (z)) + ξ̄ρuτ (z) (since g ≥ 0, τ < λ)

=−∆uτ (z) + (ξ(z) + ξ̄ρ)uτ (z) for almost all z ∈ Ω (recall that uτ ∈ Sτ+)

⇒∆(uλ − uτ ) ≤ (||ξ+||∞ + ξ̄ρ)(uλ − uτ )(z) for almost all z ∈ Ω (see H(ξ))

⇒uλ − uτ ∈ D+ (by the strong maximum principle).

Let λ∗ = supL.

Proposition 5. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then λ∗ <∞.

Proof. Hypotheses H(g)(iii) and H(f)(ii), (iii) imply that we can find λ̂ > 0 so big
that

λ̂g(z, x) + f(z, x) ≥ λ̂1x for almost all z ∈ Ω and all x ≥ 0. (54)

Let λ > λ̂ and assume that λ ∈ L. Then according to Proposition 4 we can find
u ∈ Sλ+ ⊆ D+. Then there exists η > 0 such that ηû1 ≤ u. We choose the biggest
such η > 0. We have

−∆u(z) + ξ(z)u(z) =λg(z, u(z)) + f(z, u(z))

≥λ̂g(z, u(z)) + f(z, u(z)) (since g ≥ 0, λ > λ̂)

≥λ̂1u(z) (see (54))

≥λ̂1(ηû1)(z)

=−∆(ηû1)(z) + ξ(z)(ηû1)(z) for almost all z ∈ Ω,

⇒ ∆(u− ηû1)(z) ≤||ξ+||∞(u− ηû1)(z) for almost all z ∈ Ω (see H(ξ))

⇒ u− ηû1 ∈ D+(by the strong maximum principle).

But this contradicts the maximality of η > 0. So λ 6∈ L and we have

λ∗ ≤ λ̂ <∞ .

Proposition 6. If hypotheses H(ξ), H(β), H(g), H(f), H0 hold and λ ∈ (0, λ∗),
then problem (Pλ) admits at least two positive solutions

uλ, ûλ ∈ D+ and ûλ − uλ ∈ D+.
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Proof. Let ν ∈ (λ, λ∗) and let uν ∈ Sν+ ⊆ D+ (see Proposition 4). Then

−∆uν(z) + ξ(z)uν(z) =νg(z, uν(z)) + f(z, uν(z))

≥λg(z, uν(z)) + f(z, uν(z)) for almost all z ∈ Ω (55)

(since g ≥ 0 and ν > λ).

Let k̂λ(z, x) be the Carathéodory function defined in (49), with τ replaced by

λ and uλ replaced by uν . We set K̂λ(z, x) =
∫ x

0
k̂λ(z, x)ds and consider the C1-

functional ψ̂λ : H1(Ω)→ R defined by

ψ̂λ(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

K̂λ(z, u)dz for all u ∈ H1(Ω).

As in the proof of Proposition 4, via the Weierstrass theorem, we can find uλ ∈
H1(Ω) such that

uλ ∈ Kψ̂λ
\{0} ⊆ [0, uν ] ∩D+, ⇒ uλ ∈ Sλ+ ⊆ D+.

Using this positive solution, we introduce the following truncation of kλ(z, ·) (see
(5))

k∗λ(z, x) =

{
kλ(z, uλ(z)) if x < uλ(z)
kλ(z, x) if uλ(z) ≤ x. (56)

This is a Carathéodory function. We set K∗λ(z, x) =
∫ x

0
k∗λ(z, s)ds and consider

the C1-functional ψ∗λ : H1(Ω)→ R defined by

ψ∗λ(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

K∗λ(z, u)dz for all u ∈ H1(Ω).

As before, using (56) we can verify that

Kψ∗λ
⊆ [uλ) ∩D+ = {u ∈ D+ : uλ(z) ≤ u(z) for all z ∈ Ω}. (57)

On account of (57) we see that we may assume that

Kψ∗λ
∩ [0, uν ] = {uλ}. (58)

Indeed, if (58) is not true, then we have ûλ ∈ Kψ∗λ
∩ [0, uν ], ûλ − uλ ∈ C+\{0},

which is a second positive solution of (Pλ) (see (56), (57)). Moreover, as before,
using hypotheses H(g)(v), H(f)(iv) and the strong maximum principle, we have
ûλ − uλ ∈ D+ and so we are done.

We introduce the following truncation of k∗λ(z, ·):

k̂∗λ(z, x) =

{
k∗λ(z, x) if x < uν(z)
k∗λ(z, uν(z)) if uν(z) ≤ x. (59)

This is a Carathéodory function. We set K̂∗λ(z, x) =
∫ x

0
k̂∗λ(z, s)ds and consider

the C1-functional ψ̂∗λ : H1(Ω)→ R defined by

ψ̂∗λ(u) =
1

2
ϑ(u) +

µ

2
||u||22 −

∫
Ω

k̂∗λ(z, u)dz for all u ∈ H1(Ω).

As in the proof of Proposition 4 we see that

Kψ̂∗λ
⊆ [uλ, uν ] ∩D+ (see (57)). (60)

By (2) and (59) it is clear that ψ̂∗λ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find u∗λ ∈ H1(Ω) such that

ψ̂∗λ(u∗λ) = inf[ψ̂∗λ(u) : u ∈ H1(Ω)], ⇒ u∗λ ∈ [uλ, uν ] ∩D+ (see (60)).
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Note that (ψ̂∗λ)′
∣∣∣
[0,uν ]

= (ψ∗λ)′|[0,uν ] (see (56), (59)). Therefore

u∗λ ∈ Kψ∗λ
, ⇒ u∗λ = uλ (see (58)).

Moreover, reasoning as in the proof of Corollary 1, we show that

uν − uλ ∈ D+, uλ ∈ D+,

⇒ uλ is a local C1(Ω)−minimizer of ψ∗λ,

⇒ uλ is a local H1(Ω)−minimizer of ψ∗λ (see Proposition 1).

We can assume that Kψ∗λ
is finite (otherwise on account of (57) we see that we

already have an infinity of positive smooth solutions strictly bigger than uλ).
Since Kψ∗λ

is finite, we can find ρ ∈ (0, 1) small such that

ψ∗λ(uλ) < inf[ψ∗λ(u) : ||u− uλ|| = ρ] = mλ
ρ (61)

(see Aizicovici, Papageorgiou and Staicu [1], proof of Proposition 29).
Due to hypothesis H(f)(ii) and since G ≥ 0, we have

ψ∗λ(tû1)→ −∞ as t→ +∞ . (62)

Since k∗λ(z, ·) and kλ(z, ·) coincide on [uλ(z)) = {x ∈ R+ : uλ(z) ≤ x}, we infer
that

ψ∗λ satisfies the C-condition (63)

(see the proof of Proposition 3).
Then (61), (62), (63) permit the use of Theorem 2.3 (the mountain pass theorem).

So, there is ûλ ∈ H1(Ω) such that

ûλ ∈ Kψ∗λ
and mλ

ρ ≤ ψ∗λ(ûλ),

⇒ uλ ≤ ûλ and ûλ 6= uλ (see (57) and (61)).

Moreover, as in the proof of Corollary 1, using hypotheses H(g)(v) and H(f)(iv)
and the strong maximum principle, we obtain

ûλ − uλ ∈ D+.

Proposition 7. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then λ∗ ∈ L.

Proof. Let {λn}n≥1 ⊆ (0, λ∗) such that λn ↑ λ∗. As in the second half of the proof
of Proposition 4 (see the part of that proof after (47)), we can find {un}n≥1 ⊆ D+

such that

〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ =

∫
Ω

[λng(z, un) + f(z, un)]hdz (64)

for all h ∈ H1(Ω) and all n ∈ N,
ϕ̂λn(un) < 0 for all n ∈ N . (65)

In (64) we choose h = un ∈ H1(Ω). Then

ϑ(un) =

∫
Ω

[λng(z, un) + f(z, un)]undz for all n ∈ N . (66)

By (65) we have

ϑ(un)− 2

∫
Ω

[λnG(z, un) + F (z, un)]dz < 0 for all n ∈ N (see (5)). (67)
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It follows from (66) and (67) that∫
Ω

γλn(z, un)dz < 0 for all n ∈ N,

⇒
∫

Ω

γλ∗(z, un)dz < 0 for all n ∈ N (see hypothesis H(g)(iv)). (68)

Then reasoning as in the proof of Proposition 3 (see the claim) and applying
(68), we show that {un}n≥1 ⊆ H1(Ω) is bounded. So, we may assume that

un
w→ u∗ in H1(Ω) and un → u∗ in L2s′(Ω) and in L2(∂Ω). (69)

In (64) we choose h = un − u∗ ∈ H1(Ω), pass to the limit as n → ∞ and use
(69). Then

lim
n→∞

〈A(un), un − u∗〉 = 0,

⇒ un → u∗ in H1(Ω) (by the Kadec-Klee property, see (69)). (70)

So, if in (64) we pass to the limit as n→∞ and use (70), we infer that

u∗ ∈ C+ is a nonnegative solution of (Pλ∗).

If we show that u∗ 6= 0, then we are finished. To this end, note that we can find
c15 > 0 such that

λg(z, x) + f(z, x) > λc3x
q−1 − c15x for almost all z ∈ Ω and all x ≥ 0 (71)

(see hypothesis H(g)(iii) and hypotheses H(f)(i), (ii), (iii)). Let λ = λ1 ≤ λn for
all n ∈ N and consider the following auxiliary Robin problem{ −∆u(z) + ξ(z)u(z) = λ1c3u(z)q−1 − c12u(z) in Ω,

∂u

∂n
+ β(z)u = 0 on ∂Ω, u > 0.

}
(72)

Let d : H1(Ω)→ R be the C1-functional defined by

d(u) =
1

2
ϑ(u) +

µ

2
||u−||22 +

c15

2
||u+||22 −

λ1c3
q
||u+||qq for all u ∈ H1(Ω).

Using (2) and the fact that q < 2, we infer that d(·) is coercive. Also, it is
sequentially weakly lower semicontinuous. So, we can find ū ∈ H1(Ω) such that

d(ū) = inf[d(u) : u ∈ H1(Ω)]. (73)

Since q < 2, for t ∈ (0, 1) small enough, we have

d(tû1) < 0, ⇒ d(ū) < 0 = d(0) (see (73)),

⇒ ū 6= 0.

By (73) we have

d′(ū) = 0,

⇒ 〈A(ū), h〉+

∫
Ω

ξ(z)ūhdz +

∫
∂Ω

β(z)ūhdσ −
∫

Ω

µū−hdz

=

∫
Ω

[λ1c3(ū+)q−1 − c15(ū+)]hdz for all h ∈ H1(Ω). (74)

In (74) we choose h = −ū− ∈ H1(Ω). Then

ϑ(ū−) + µ||ū−||22 = 0, ⇒ c0||ū−||2 ≤ 0 (see (2)),

⇒ ū ≥ 0, ū 6= 0.
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Then (74) becomes

〈A(ū), h〉+

∫
Ω

ξ(z)ūhdz +

∫
∂Ω

β(z)ūhdσ =

∫
Ω

[λ1c3ū
q−1 − c15ū]hdz

for all h ∈ H1(Ω),

⇒ −∆ū(z) + ξ(z)ū(z) = λ1c3ū(z)q−1 − c15ū(z) for almost all z ∈ Ω,

∂ū

∂n
+ β(z)ū = 0 on ∂Ω (see Papageorgiou and Rădulescu [12])

⇒ ū is a positive solution of (72).

Moreover, using the regularity results of Wang [20] and the strong maximum
principle, we have

ū ∈ D+.

Recall that un ∈ D+ for all n ∈ N. So, we can find ηn > 0 such that ηnū ≤ un.
We choose ηn to be the biggest such positive real and suppose that ηn ∈ (0, 1).
Also, let ξ∗n > c15 > 0. Then

−∆(ηnū) + (ξ(z) + ξ∗n)(ηnū)

=ηn[−∆ū+ (ξ(z) + ξ∗n)ū]

=ηn[λ1c3ū
q−1 + (ξ∗n − c15)ū] (see (72))

≤λ1c3(ηnū)q−1 + (ξ∗n − c15)(ηnū) (recall that ηn ∈ (0, 1) while q < 2)

≤λ1c3u
q−1
n + (ξ∗n − c15)un (recall that ηnū ≤ un and ξ∗n − c15 > 0)

<λng(z, un) + f(z, un) + ξ∗nun (see (71) and recall that λ1 ≤ λn for all n ∈ N)

=−∆un + (ξ(z) + ξ∗n)un (since un ∈ Sλn+ ),

⇒∆(un − ηnū) ≤ (||ξ+||∞ + ξ∗n)(un − ηnū) (see hypothesis H(ξ)). (75)

Evidently, un 6= ηnū. So, from (75) and the strong maximum principle, we infer
that

un − ηnū ∈ D+,

which contradicts the maximality of ηn. Hence ηn ≥ 1 and so

ū ≤ un for all n ∈ N,
⇒ ū ≤ u∗ (see (70)),

⇒ u∗ 6= 0 and so u∗ ∈ Sλ
∗

+ ⊆ D+, thus λ∗ ∈ L.

This proposition implies that

L = (0, λ∗] .

4. Extremal positive solutions - bifurcation theorem. In this section, we
first show that for every λ ∈ (0, λ∗) problem (Pλ) has a smallest positive solution
ũλ ∈ D+ and determine the monotonicity and continuity properties of the map
λ 7→ ũλ.

Proposition 8. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then for every
λ ∈ (0, λ∗), problem (Pλ) has a smallest positive solution ũλ ∈ D+ and the map
λ 7→ ũλ is strictly increasing in the sense that

τ < λ⇒ ũλ − ũτ ∈ D+
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and it is left continuous from (0, λ∗) into C1(Ω).

Proof. As in Filippakis and Papageorgiou [5, Lemma 4.1], we have that Sλ+ is do-

wnward directed (that is, if u1, u2 ∈ Sλ+, then we can find u ∈ Sλ+ such that
u ≤ u1, u ≤ u2). Invoking Lemma 3.10 of Hu and Papageorgiou [7, p. 178], we can
find a decreasing sequence {un}n≥1 ⊆ Sλ+ such that

inf Sλ+ = inf
n≥1

un.

We may assume that

un
w→ ũλ in H1(Ω) and un → ũλ in L2s′(Ω) and in L2(∂Ω). (76)

We have

〈A(un), h〉+

∫
Ω

ξ(z)unhdz +

∫
∂Ω

β(z)unhdσ =

∫
Ω

[λg(z, un) + f(z, un)]hdz

for all h ∈ H1(Ω),

⇒〈A(ũλ), h〉+

∫
Ω

ξ(z)ũλhdz +

∫
∂Ω

β(z)ũλhdσ =

∫
Ω

[λg(z, ũλ) + f(z, ũλ)]hdz

(77)

for all h ∈ H1(Ω) (see (76)).

Also, by the proof of Proposition 7 and since λ1 < λ (see equation (72)), we have

ū ≤ un for all n ∈ N, ⇒ ū ≤ ũλ (see (76)),

⇒ ũλ 6= 0 and so ũλ ∈ Sλ+, ũλ = inf Sλ+.

If τ < λ, then by Corollary 1 we can find uτ ∈ Sτλ such that

ũλ − uτ ∈ D+, ⇒ ũλ − ũτ ∈ D+,

⇒ λ 7→ ũλ is strictly increasing. (78)

Finally, suppose that λn → λ− (λ ∈ (0, λ∗)). From the regularity theory (see
Wang [20]), we know that we can find α ∈ (0, 1) and c16 > 0 such that

ũλn ∈ C1,α(Ω), ||ũλn ||C1,α(Ω) ≤ c16 for all n ∈ N.

Exploiting the compact embedding of C1,α(Ω) into C1(Ω) and by passing to a
subsequence if necessary, we have that

un → ūλ in C1(Ω). (79)

Suppose that ūλ 6= ũλ. Then we can find z0 ∈ Ω such that

ũλ(z0) < ūλ(z0), ⇒ ũλ(z0) < ũλn(z0) for all n ≥ n0 (see (79)),

which contradicts (78) (recall that λn ≤ λ for all n ∈ N). Therefore by the Urysohn
criterion, we have for the original sequence

ũλn → ũλ in C1(Ω), ⇒ λ 7→ ũλ is left continuous from (0, λ∗) into C1(Ω).

Summarizing the results of Sections 3 and 4, we can formulate the following
bifurcation-type result, describing the behavior of the set of positive solutions of
(Pλ) with respect to the parameter λ > 0.

Theorem 4.1. If hypotheses H(ξ), H(β), H(g), H(f) and H0 hold, then there exists
λ∗ > 0 such that
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(a) for every λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions

uλ, ûλ ∈ D+ with ûλ − uλ ∈ D+,

it has a smallest positive solution ũλ ∈ D+ and the map λ 7→ ũλ from (0, λ∗)
into C1(Ω) is strictly increasing in the sense that

τ < λ⇒ ũλ − ũτ ∈ D+

and is left continuous;
(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ D+;
(c) for λ > λ∗ problem (Pλ) has no positive solutions.
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[19] V. D. Rădulescu and D. Repovš, Combined effects in nonlinear problems arising in the study
of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524–1530.

[20] X. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev expo-

nents, J. Differential Equations, 93 (1991), 283–310.

Received July 2016; revised February 2017.

E-mail address: npapg@math.ntua.gr

E-mail address: vicentiu.radulescu@imar.ro

E-mail address: dusan.repovs@guest.arnes.si

http://www.ams.org/mathscinet-getitem?mr=MR3619074&return=pdf
http://dx.doi.org/10.3934/dcds.2017111
http://dx.doi.org/10.3934/dcds.2017111
http://www.ams.org/mathscinet-getitem?mr=MR3538869&return=pdf
http://dx.doi.org/10.3934/cpaa.2016002
http://www.ams.org/mathscinet-getitem?mr=MR2861354&return=pdf
http://dx.doi.org/10.1016/j.na.2011.01.037
http://dx.doi.org/10.1016/j.na.2011.01.037
http://www.ams.org/mathscinet-getitem?mr=MR1125221&return=pdf
http://dx.doi.org/10.1016/0022-0396(91)90014-Z
http://dx.doi.org/10.1016/0022-0396(91)90014-Z
mailto:npapg@math.ntua.gr
mailto:vicentiu.radulescu@imar.ro
mailto:dusan.repovs@guest.arnes.si

	1. Introduction
	2. Preliminaries
	3. Positive solutions
	4. Extremal positive solutions - bifurcation theorem
	Acknowledgments
	REFERENCES

