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1 Introduction

Let Q@ € R be a bounded domain with a C2-boundary 9. In this paper, we study
the following parametric nonlinear nonhomogeneous Dirichlet problem

—Apu(z) — Au(z) = AMu@)|"?u(2) + f(z. u(2)) in Q, ulye =0, 2 < p < co.
(P)

Here A, denotes the p-Laplacian differential operator defined by
Apu = div (|DuP~2Du) for all u € W, ().

Also, A > 0 is a parameter and f : 2 x R — R is a Carathéodory perturbation
(that is, for all x € R, z — f(z, x) is measurable and for a.a. z € Q, x —> f(z, x)
is continuous).

Our aim in this paper is to study the existence and multiplicity of nontrivial solu-
tions when the parameter A > 0 is near the principal eigenvalue Ai(p) > 0 of
(A, WO1 "7 (Q)) either from the left or from the right. Such equations, which are
near resonance, were first investigated by Mawhin and Schmitt [21,22] (for semi-
linear Dirichlet and periodic problems, respectively). Subsequently, their work was
extended by Badiale and Lupo [4], Chiappinelli et al. [11] and Ramos and Sanchez
[33]. All these papers consider semilinear elliptic equations driven by the Laplacian.
Extensions to equations driven by the p-Laplacian were obtained by Ma et al. [20]
and Papageorgiou and Papalini [25].

In this work we extend the analysis to (p, 2)-equations (that is, equations driven
by the sum of a p-Laplacian (p > 2) and a Laplacian). We stress that the differential
operator in (P,) is nonhomogeneous and this is a source of difficulties in the analysis
of the problem (P, ). We note that (p, 2)-equations arise in many physical applications
(see Cherfils and Ilyasov [10]) and recently such equations were studied by Barile and
Figueiredo [5], Carvalho et al. [7], Chaves et al. [9], Mugnai and Papageorgiou [23],
Papageorgiou and Radulescu [26-28] and Papageorgiou and Winkert [30,31].

Our approach is variational, based on the critical point theory, together with suitable
truncation and comparison techniques, and Morse theory (critical groups). In the next
section, for the convenience of the reader, we recall the main mathematical tools which
we will use in the paper.

2 Mathematical Background

The topological notion of linking sets is central in the critical point theory.

Definition 1 Let Y be a Hausdorff topological space and Eq, E, D be closed sub-
spaces of Y such that Eg € E. We say that the pair {Eq, E} is linking with D
in Y, if

(a) Eo N D = ¥; and

(b) forevery y € C(E,Y) suchthat y|g, = id|g,, we have y(E) N D # 0.
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Now, let X be a Banach space and X* its topological dual. By (-, -) we denote the
duality brackets for the pair (X, X*). Given ¢ € C'(X), we say that ¢ satisfies the
Cerami condition (the C-condition for short), if the following is true:

“If {un}n>1 € X is a sequence such that {¢(u,)},>1 € R is bounded and

(1 + [JualDe'( 0in w1 @) = wir @ (L 4+ L =1
2@’ (uy) — Oin () = Wy () p+p’_ asn — 00,

then it admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ¢, which compensates for
the fact that the ambient space X need not be locally compact (since X is in general,
infinite dimensional). The C-condition is important in developing a minimax theory
for the critical values of ¢. A basic result in that theory is the following theorem which
involves the notion of linking sets (see, for example, Gasinski and Papageorgiou [16,
p. 644]).

Theorem 2 If X is a Banach space, Eo, E and D are nonempty closed subsets of X
such that the pair {Eo, E} is linking with D in X (see Definition 1), ¢ € C'(X) and
satisfies the C-condition, supg, ¢ < infp ¢ and

¢ = inf sup p(y () with T = {y € C(E, X) : yl5, = idlr, ),
vel yekE

then ¢ > inf p ¢ and c is a critical value of ¢.

With suitable choices of the linking sets, we obtain the well-known mountain pass
theorem, saddle point theorem and the generalized mountain pass theorem (see [16]).
For future use, we state the mountain pass theorem.

Theorem 3 If X is a Banach space, ¢ € C'(X) and satisfies the C-condition, ug, u| €
X

max{g(uo), p(u)} < inf [p(u) : |lu —uol| = pl =mp, |luy —uoll > p >0

and ¢ = inf max @(y@) withl = {y € C([0, 1], X) : y(0) = ugp, y(1) = uy},
yel 0<r<1
then ¢ = m, and c is a critical value of ¢.

Remark 1 Tt is easy to see that Theorem 3 can be deduced from Theorem 2, if we
consider Eqg = {ug,u1}, E ={u € X : u = tuy + (1 — tuo,t € [0,1]}, D =
9By (uo) = {u € X = |lu —uoll = p}.

In this analysis of problem (P ), we will use the Sobolev space W(; P () and the
Banach space C}(Q) = {u € C'(Q) : ulsp = 0}. The latter is an ordered Banach
space with positive cone C+ = {u € C(l) (Q); u(z) > 0 for all z € Q}. This cone has
nonempty interior given by

9
intCy = lueCy:uz)>0forallz € Q, 8—”
n

<O].
Q2
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Here n(-) denotes the outward unit normal on 0£2.
In what follows, by || - || we denote the norm of the Sobolev space Wol’p (2). By
virtue of the Poincaré inequality, we have

lul| = ||Dull, forallu € Wy"(%).

Next, we present some basic facts about the spectrum of (—Ag, WOl “9(Q)) with
1 < g < o00. So, we consider the following nonlinear eigenvalue problem

—Aqu(z) = Mu(@)|1u(z) in Q, ulyq = 0.

We say that A € Risan eigenvalue of (—A, Wé 4 (R2)), if the above equation admits
a nontrivial solution & € Wol’q (£2). We say that u is an eigenfunction corresponding

to the eigenvalue . We know that there exists a smallest eigenvalue A (g) with the
following properties:

() Ai(g) > 0; o
(i1) A1(q) isisolated, that is, there exists € > O such that (A1(g), A1(q) + €) contains
no eigenvalue of (—A,, Wol’q(Q)); and
(iii) A (¢) is simple, that is, if &, 0 are eigenfunctions corresponding to A (g), then
i = &0 for some & € R\{0}.

Moreover, ):1 (g) admits the following variational characterization

q
[[Dullg .

[lue] 1§

M(@g) = inf|: ueWyd(Q), u# 0} : 1

In (1) the infimum is realized on the corresponding one-dimensional eigenspace.
By (1) it is clear that the elements of this eigenspace do not change the sign. By
i11(q) we denote the positive, L7-normalized (that is, [|i21(¢g)||; = 1) eigenfunction
corresponding to A (¢) > 0. From the nonlinear regularity theory and the nonlinear
maximum principle (see, for example, Gasinski and Papageorgiou [16, pp. 737-738]),
it follows that i1 (¢) € int C.

Let o(q) denote the set of eigenvalues of (—A, WO1 “1(Q)). It is easy to check
that this set is closed. Since il(q) > 0 is isolated, the second eigenvalue i;(q) is
well-defined by

A3(q) = inf[h € o(q) : & > A1(q)].

If N = 1 (ordinary differential equations), then o(q) = {):k (@)}k>1 with each
() being a simple eigenvalue and Ai(q) 1 400 as k — oo and the correspond-
ing eigenfunctions {iix (¢)}x>1 have exactly k — 1 zeros. If N > 2 (partial differential
equations), then using the Ljusternik—Schnirelmann minimax scheme, we can produce
a strictly increasing sequence {):k (@)}k>1 S o(g) such that ik (g) > +ooask — oo.
However, we do not know if this is the complete list of all eigenvalues. We know that
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i; (@) = 5»2 (g), thatis, the second eigenvalue and the second Ljusternik—Schnirelmann
eigenvalue coincide. The Ljusternik—Schnirelmannn theory gives a minimax charac-
terization of ig(q). For our purposes, this characterization is not convenient. Instead,
we will us an alternative one due to Cuesta, de Figueiredo and Gossez [13].

Proposition 4 [fdBL = {(u e LI(Q) : |jull, =1}, M = W(}’q(sz) NoBLY, and
Lo ={yo € C(—1, 1], M) : yo(=1) = —it1(q), yo(1) = i11(q)}

then A2(q) = inf yyer, max_1< <1 1Dy ()[4

We mention that ):1 (g) > 0 is the only eigenvalue with eigenfunctions of constant
sign. Every other eigenvalue has nodal (that is, sign-changing) eigenfunctions.

When g = 2 (linear eigenvalue problem), then ¢ (2) = {ik (2)}x>1- In this case, the
eigenspaces are linear spaces. By E (A (2)), we denote the eigenspace corresponding to
the eigenvalue A (2). The regularity theory implies that £ ():k 2)) C C(l) (). Moreover,
E (ik (2)) has the so-called unique continuation property, thatis, ifu € E (ik(2)) and
vanishes on a set of positive Lebesgue measure, then # = 0. In this case all eigenvalues
admit variational characterization, namely

. | 11Dull3 1
A1(2) = inf 5- 1UE Hy(2),u #0 2)
[lue]l5
and for k > 2, we have
. |1Dull3 ko .
Ak (2) = sup - iueE D EMi(2),u #0
[luell5 i=1
. IIDullg ) .
= inf 7 UE D EM2),u#0]. 3)
[ull i>k

In (2) the infimum is realized on E (5»1 (2)), while in (3) both the supremum and the
infimum are realized on £ ()A»k 22)).

From the variational characterizations in (2) and (3) and the unique continuation
property, we have the following result (see Papageorgiou and Kyritsi [24]).

PropositionS (@ Ifk > VS L>®(Q), 9(z) < ik(Z) foraa z € Qand ¥ #
M (2), then there exists &y > 0 such that

|1 Dull3 — / ?@u@)dz > &ollull’ forall u € & EGi(2)).
Q 1z

(b) Ifk > 1,9 € Lo(RQ), 9(2) > i (2) for a.a. z € Qand O # A (2), then there
exists & > 0 such that

N k N
|| Dulll3 —/ 9 (Du(z)*dz < —&||ul|? for all u € & E(i(2).
Q i=
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For1 < g < oo, let A : Wé’q(Q) — W~14'(Q) be the nonlinear map defined
by

(Ag ), h) :/ |Dul92(Du, Dh)gvdz forall u, h € W, (R).
Q

Ifg =2, then Ay = A € L(H)(Q), H(Q)).
By Papageorgiou and Kyritsi [24, p. 314], we have the following result summarizing
the basic properties of the map A,.

Proposition 6 The map A, : Wol’q(Q) — W‘l“/(Q) is bounded (that is, it
maps bounded sets to bounded sets), demicontinuous, strictly monotone (hence
maximal monotone, too) and of type (S)4+, that is, if uy 5 uin Wé’q(Q) and

lim sup (Aq(un), Up — u) <0, thenu,, — u in Wé’q(Q) asn — oQ.
n—oo

Let fo : 2 x R — R be a Carathéodory function with subcritical growth in the
x € R variable, that is,

| fo(z, x)| < ao(z)(1 + |x|" "V foraa.z € Q, all x € R,

Np ifp<N
withag € L®(Q)yand |l <r < p*={ N-p |
+oo if N < p.

We set Fy(z, x) = fox fo(z, s)ds and consider the C'-functional ¢ : Wol’p(Q) —
R defined by

1 1
wo(u) = ;||Du||§ + §||DM||% —/ Fo(z,u(z))dz forall u € Wol’p(Q).
Q

The next result is a special case of a more general result of Aizicovici et al. [2].

Proposition 7 Let ug € WO1 "P(Q) be a local C'(Q)-minimizer of o, that is, there
exists pg > 0 such that

¢0(uo) < goluo +h) forall h € Cy(Q), 1Al < Po-

Then ugy € C(])’a(ﬁ) for some o € (0, 1) and it is also a local Wol’p(Q)—minimizer of
©o, that is, there exists p; > 0 such that

I,
9o (0) < @o(ug +h) forallh € Wy’ (Q), |1l < p1.

We also recall some basic definitions and facts from Morse theory. So, let ¢ €
c! (X) and ¢ € R. We introduce the following sets.

¢ ={ueX pu) <cl Ky={ueX:¢' (u)=0}and K(Z ={ueck,: o) =ch
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Let (Y1, Y2) be a topological pair with Y, C Y; C X. For every integer k >
0, by Hr (Y1, Y2) we denote the k-th relative singular homology group with integer
coefficients. The critical groups of ¢ at u € K, which is isolated among the critical
points, are defined by

Cr(p,u) = H (e NU, ¢ NU\{u}) forall k > 0.

Here U is aneighborhood of u such that K, N N U = {u}. The excision property
of the singular homology implies that this definition is independent of the particular
choice of the neighborhood U'.

Suppose that ¢ € C 1(X) satisfies the C-condition and inf @(Ky) > —oo. Let
¢ < inf ¢(Ky). Then the critical groups of ¢ at infinity are defined by

Cr(p, 00) = Hp(X, ¢¢) forallk > 0.

The second deformation theorem (see, for example, Gasinski and Papageorgiou
[16, p. 628]), implies that this definition is independent of the choice of the level
¢ < inf p(Ky).

We introduce

M(t,u) = Zranka(w, u)tk forallt e R, allu € K, and
k>0

P(t,00) = Zranka(gD, oo)tk for all r € R.
k=0

The Morse relation says that

> M(t,u) = P(t,00) + (1+ 1) Q1) 4)

uek,

where Q(1) = > Brt* is a formal series in r € R with nonnegative coefficients.
k>0
Finally, let us fix our notation in this paper. By |-| y we denote the Lebesgue measure

on RV. Given x € R, we let x* = max{+x, 0}. Then for u € Wol’p(Q) we define
u®(-) = u(-)*. We know that

ut e Wol’p(Q), u=ut—u", Jul=ut+u".

Given a measurable function g(z, x) (for example, a Carathéodory function), we
set

Ng)(-) = g(, u(-)) for all u € Wy P (Q)

(the Nemytski map corresponding to g). Evidently, z — N, (u)(z) is measurable.

@ Springer



Appl Math Optim

3 Near Resonance from the Left of il( p) >0

In this section we deal with problem (P, ) in which the parameter is close to )Aq (p) >0
from the left (near resonance from the left). We introduce the following conditions on
the perturbation f(z, x):

Hy : f : Q x R — R is a Carathéodory function such that f(z,0) = 0 for a.a.
z € Qand

(i) forevery p > 0, there exists a, € L°(£2)4 such that
[f(z,x)| <ay(z) foraa. z e Q, all [x] < p;

(i) lim L&Y = ouniformly fora.a.z € Qandif F(z, x) = [; f(z, 5)ds, then

x—doo [XIP72x

. F(z,x)
lim

x—Fo0 X

= 400 uniformly for a.a. z € 2; and

(iii) there exist an integer m > 2 and a function n € L*°(£2) such that

1) € [Am(2), Amp1(2)] foraa. z € Q, 1 % An(2), 1% imt1(2)
im L&

x—0 X

= 71(z) uniformly for a.a. z € Q.

Remark 2 Evidently, f(z, -) is differentiable at x = 0 and f/(z, 0) = n(z). Hypothe-
ses Hj imply that there exists ¢; > 0 such that F(z,x) > —cix2 foraa. z € Q,all
x € R.

For A > 0, let ¢, : WOl "7(Q) — R be the energy functional for problem (P;),
defined by

1 p 1 ) A P Lp
() = —||Dullp + z|1Dull5 — =|lull, — | F(z,u(z))dz forallu e Wy " (Q).
P 2 p Q

Evidently, ¢, € C' (W, " (Q)).

Proposition 8 If hypotheses Hy (i), (ii) hold and ) € (0, A (p)), then the functional
©,. Is coercive.

Proof By virtue of hypotheses H{ (i), (ii), given € > 0, we can find ¢; = c2(€) > 0
such that ¢
F(z,x) < —|x|P +cyforaa.z € Q, allx € R. 5)
p

Then for all u € Wg’p(Q), we have

1 po 1 A A
01 (w) = —||Dullp + =||1Dully — =llullp — | F(z,u(z))dz
p 2 p Q

> 1 [1 _ T“} lul]? — cal@lw (see (1) and (4)).
p r1(p)
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Choosing € € (0, ):1(19) — A) (recall that A < il(p)), we can conclude from the
last inequality that ¢, is coercive. O

LetV ={u e Wol’p(Q) : fQ u ity (p)P~'dz = 0} (recall il (p) € int C;). We have

WP (Q) =R (p) ® V.

We introduce the following quantity

p
| Dullp

[l I}

iv(p)zinf[ :ueV,u;zéO:|.

Lemma 9 1(p) < Av(p) < Aa(p).

Proof Clearly, il(p) < Xv(p) (see (1)). Suppose that ):l(p) = Xv(p). Then we can
find {u,,},>1 € V such that

llunllp = 1 and || Dul|h — Av(p) = A1 (p).
By passing to a suitable subsequence if necessary, we may assume that
Uy — uin Wol’p(Q) and u,, — uin LP(Q) asn — oo.
We have u € V and [|ul|, = 1. Also,
1(p) < ||Dul|y < liminf || Duy |l = Av(p) = A1 (p).
n—oo

= )A»l(p) = ||Du||§, hence u = i1 (p) (recall ||ul|, = 1).

But then u ¢ V, a contradiction. So, we have proved that

r(p) < iv(p).

Next, suppose that 5\2( p) < A v (p). By virtue of Proposition 4, we can find yp = I'¢g
such that
D70l < Av(p) forallz € [0, 1]. (6)

We have y9(—1) = —u1(p), yo(1) = 11 (p). Consider the function [—1, 1] 37 —
o(t) = fQ Po()ii1 (p)P~'dz. Evidently, this function is continuous and o (—1) =
—||ﬁ1(p)||g <0 < ||’21(P)||Z = o(1). So, by Bolzano’s theorem, we can find
to € (0, 1) such that

o(t) = /Q Po(to)i (p)P~'dz =0

= 7o(tp) € V, which contradicts (6).

Therefore we infer that iv (p) < Ao (p). O
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Proposition 10 If hypotheses H1 (i), (ii) hold and A = il(p), then @, |y is bounded
from below.

Proof Letv € V. We have

a(p)

1 p 1 2 p
@1 (v) = —[|Dvl[} + 5 [|Dvll; — vl = | F(z,v)dz
p 2 Q

- Av(p) —hi(p) — €

> > vl — 21w (see (4)). )

From Lemma 9 we know that Al(p) < )Lv(p) So we choose € € (0, )Lv(p)
)q (p)). Then from (7) we infer that ¢; |, with A = M (p), is bounded from below. O

Letm; = ir‘}f Py >~ (see Proposition 10). Note that, if A € (0, Xl(p)) then

¢il(p) < Py
=m < mfm for all € (0, A1(p)). (3)

Prop()sition 11 If hypothesis Hy holds, then we can find small € > 0 such that every
A€ (M1 (p) — €, A1(p)) we can find large ty > 0 such that

oy (Etoii1 (p)) < my.

Proof By virtue of hypothesis H;(ii), given £ > 0, we can find M| = M (§) > 0
such that
F(z,x) > &x*foraa.z € Q, all |x| > M;. 9)

Letr > 0. We have

/ Fz, i (p))dz
Q

=/ F(z, tﬁl(p))dz+/ F(z,ti1(p))dz
{tiiy (p)=M1} {0ty (p)<M1}

> &r? / i1 (p)2dz + / F(z, ta1(p))dz  (see (9))
{ti1(p)=M} {0ty (p)<My}

> £02||i (I3 — (€ + e {0 < tiig (p) < Mi)|n. (10)

Note that [{0 < rit1(p) < M}y — 0ast — oo (recall that i1 (p) € intCy).
Also, & > 0 is arbitrary. So, we see that for all large ¢ > 0, we have

2
EX7|la1(p)I13 — (& + D {0 <ty (p) < Mi}|y = —(mi — D) + %nDﬁl(p)H%.

(1)
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From (10) and (11) and for t(% > ( big, we have

2
. 2
/QF(z,tul(p))dz>—(m1—1)+EIIDu1(p)||% forall £ > 7. (12)

So, we have
¢l 2 AP
. (1301 () = )" ——||Dii 1(p)||p+u||D a3 — (g) a1 (p)I1p
—/ F(z, tyi1(p))dz
Q
NP[A(p) — A 2 2
S o lp(l’) ] (to) IDi(p)II3 +my — 1 — —2— (0) 2= ||Di1 ()13

(see (12) and recall that Nar(pllp, =1

(tH)Pe . .
< +my — 1 with e > 0 (recall A < A1(p))
p

. 1 p\l/p
< myp | by choosing € > 0 small such that 7, < (—) .
€

In a similar fashion, we can find large tg > ( such that
01 (—toii1(p)) < Oforall & € (i(p) — €. A1 (p)), allt > 1}
Letty = max{t0 1y 2}. Then

@ (ol (p)) < my forall A € (h1(p) — €, A1(p)) with small € > 0.

We introduce the following sets

Uy ={ue WP (Q):u=tiy(p)+v, 1 >0, ve V},
={ue W, (Q):u=—tiy(p)+v, 1 >0, veV}

Proposition 12 [f hypothesis Hy holds and )\ € (h1 (p) — e, A (p)) withe > 0 asin
Proposition 11, then problem (P,) has at least two nontrivial solutions

iy eUyandii- e U_

and both are local minimizers of the energy functional @;,.

Proof We introduce the functional

N K 2N () ifueUy,
(p’\(u)_{—f-oo ifu gl
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Evidently, gﬁf is lower semicontinuous and bounded from below (see Proposition
8). So, we can apply the Ekeland variational principle (see, for example, Gasinski and
Papageorgiou [16, p. 582]) and {u,},>1 € U4 such that

@ (un) = @ (uy) | inf ¢ asn — oo (13)
1
Up) = 0T (un) < GT (V) + ——— ||y —u 14
r(un) = @, (uy) < @, (y) n(1+||un||)||y nll (14)
forall y € WyP(Q), alln > 1,

Fixn > 1andleth € Wé’p(Q). Then for small # > 0 we have u,, + th € U4. Using
this as a test function in (14), we have

||h|| @A(Mn + th) - @)»(un) At
— < note that + = +
n(+ gl r ( g, =4 1)
o L ), ) (recall g € CM WP (@), (15)
(Lt [lunl])

Since h € WO1 "P(Q) is arbitrary, from (15) it follows that
(1 + [lun| )@, (un) — 0in WL (Q) as n — oco.
But ¢, being coercive, satisfies the C-condition (see [30]). So, it follows that
up —> Uy in W(;’p(SZ) asn — oo.
We have /iy € U and so from (13) we infer that

@a(ity) = inf @,
Uy

Suppose that iy € U4 = V. Then

my < iUnf 91 = @:.(iy) (see (8)),
+

which contradicts Proposition 11. Therefore i € U, and it is a local minimizer of
¢y, hence a nontrivial solution of (P, ). By Ladyzhenskaya and Uraltseva [18, p. 286]
we have i1y € L°°(2). Then we can apply Theorem 1 of Lieberman [19] and obtain
thatiiy € C}(Q).

Similarly, working with the functional

N o) ifueU_
“’k(")_hoo ifug¢U_,

we obtain a second nontrivial solutionz_ € U_ N Cé (2), which is a local minimizer
of ¢, and is distinct from z . O
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Next, using Morse theory, we will produce the third nontrivial solution. To this end,
we need to compute the critical groups of ¢, at the origin.

Proposition 13 If hypotheses Hy hold and . > 0, then Ci(py,0) = 6k 4, Z for all
k> 0withdy =dim & EG:(2) > 2.
i=1

1=

Proof Let i : WO1 "7(Q) — R be the C2-functional defined by

1 p 1 , 1 2 Lp
V(W) = —I||Dullp, + z1I1Dull; — = | n(2)u(z)"dz forall u € W' ().
p 2 2 J)q

We consider the homotopy
hy(t,u) =1 —t)ea(u) 4+t (u) forall (¢, u) € [0, 1] x Wol’p(Q).
Suppose that we can find {#,},>1 € [0, 1] and {u,},>1 C Wol’p(Q) such that

ty — 10 [0, 11, u, — 0in Wy’ () as n — oo and (1)), (1, us) =0 (16)
foralln > 1.

We have

Ap(un)+A(un) = (l_tn))\|un|p_2un+(1_tn)Nf(un)+tn77un foralln > 1. (17)

Up
[un]]

n > 1. Then ||y,|| = 1 forall n > 1 and so may assume that

Yu = yin Wy (Q) and y, — yin LP() as n — oo. (18)
From (17), we have

Nf(un)

||un||p72Ap(yn) +AQn) = (1 - tiz))‘|”n|p72yn + U —1) ||
n

foralln > 1.

+ tany, (19)

Note that hypothesis H; (i) and (16), imply that {M} - C L2() is bounded.
nz

[l
This fact, in conjunction with hypothesis Hj (iii), implies (at least for a subsequence)
that (see [1])

N
”f(“ﬁ) B pyin L2(Q) as n — oo. (20)
Un

Also, we have that {A ,(yn)}n>1 S W™ Ly (£2) is bounded (see (18) and Proposition
6). Therefore

nllP 24, (ya) = 0in WP (Q) as n — oo (see (16)). Q1)
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So, if in (19) we pass to the limit as n — oo and use (18), (20), (21), then

A(y) = ny,
= —Ay(z) = n(z)y(z) foraa. z € Q, y |3 = 0. (22)

From hypothesis H;(iii) and (22) it follows that y = 0. On the other hand, from
(19) we have

[l 72 (= A p 3 (2)) = Ay () = (1=t Alyn @172y (2) + (1= ) LoD
+t,n(2)yn(2) fora.a. z € Q,
Unlpg =0
(23)
Then by (23) and Ladyzhenskaya and Uraltseva [18, p. 286], we know that we can
find M, > O such that
Hun|loo < My foralln > 1. (24)

Since ||u,,||1’_2 — 0 asn — oo (see (16)), from (23), (24) and Theorem 1 of
Lieberman [19], we know that there exist @ € (0, 1) and M3 > 0 such that

yn € Cy* () and ||y, < Mjforalln > 1.

||Cé~” (ﬁ)
Exploiting the compact embedding of C é’“ (Q)into C (1) (Q) and using (18), we have
yo— y=0in C}(Q) as n — oo,

=y — y=0in W, " (Q) as n — oo,

which contradicts the fact that ||y,|| = 1 for all » > 1. Hence (16) cannot occur and
so by the homotopy invariance of critical groups we have

Cr(;.,0) = Cr(y, 0) for all k > 0. (25)
From Cingolani and Vannella [12, Theorem 1.1] we know that

Cr(Y,0) = 6k,q,Z forallk > 0,

=
= Ci(pn, 0) = 8,4, Z for all k > 0 (see (25)).

Now we can generate the third nontrivial solution.

Proposition 14 If hypotheses Hy hold and ) € (A1(p) — €, 1(p)) with € > 0 as in
Proposition 11, then problem (P;) admits a third nontrivial solution y € Cé(SZ).

Proof Without any loss of generality, we may assume that ¢, (i—) < ¢; (i) (the
analysis is similar if the opposite inequality holds). Also, we assume that K, is
finite (otherwise we already have infinitely many solutions for problem (/P )). From
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Proposition 12, we know that i1, € Cé (Q) is a local minimizer of .- So, we can find
small p € (0, 1) such that

@.(i-) < @aiig) < infloa(u) : [lu —iip|] = pl = m), |la- — iyl > p (26)

(see Aizicovici et al. [1], proof of Proposition 29). Recall that ¢; satisfies the C-
condition. This fact and (26) permit the use of Theorem 2 (the mountain pass theorem).

So, we can find § € Wé’p(Q) such that
Y € Ky, and my; < ¢(9). @7

From (27) it follows that y is a solution of (Py) and y ¢ {#i_, i+ }. Since y is a
critical point of ¢, of mountain pass type, we have

Ci(pr, ) #0. (28)

On the other hand, from Proposition 13, we have
Ci(pn,0) = 8k,q,Z forallk > 0 withd,, > 2. (29)

Comparing (ZE) and (29), we see that y # 0. Nonlinear regularity theory (see [19])
implies y € Cé (€2). This is the third nontrivial solution of (P,). O

So, we can state our first multiplicity theorem for problem (P ).

Theorem 15 If hypotheses H\ hold, then there exists € > 0 such that for all % €
(A (p) — €, A1 (p)) problem (P;) admits at least three nontrivial solutions

iy, i, § € CoR),
with iy and t_ being local minimizers of the energy functional ;..

By strengthening the regularity conditions on f(z, -), we can improve Theorem
15 and produce the fourth nontrivial solution. The new hypotheses on f(z, x) are the
following:

H; : f: 2 x R — R is ameasurable function such that for a.a. z € Q, f(z,0) =
0, f(z,-) € C'(R) and

(i) forevery p > 0, there exists a, € L°(£2) such that
| f(z,x)| <a,(z)foraa .z e Q, all [x]| < p;

Gi) lim L&Y — ouniformly foraa. z € Qandif F(z, x) = [J f(z, s)ds, then

x—>too XIP72x

. F(z,x)
lim
x—>+00 x2

= 400 uniformly for a.a. z € Q; and
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(iii) there exists an integer m > 2 such that
fL(z,0) € [ (2), Amp1 ()] foraa. z € 2, fL(-,0) # An(2),
FLG,0) # A1 (2)

£1(z,0) = lim fzx)
x—0 X

uniformly for a.a. z € Q.

Theorem 16 If hypotheses Hy hold, then there exists € > 0 such that for every
A€ (M (p) — €, A (p)) problem (P,) has at least four nontrivial solutions

iy, i, 9,5 € Cy(Q)
with iy and i being local minimizers of the energy functional ;.
Proof From Theorem 15, we already have three nontrivial solutions
g, h-,9 e Cl®Q),
with 74 and #— being local minimizers of ¢, . Hence
Ci(@, i) = Cr(@a,u_) = 8 0Z forallk > 0. (30)

Recall that
C1(a, 9) # 0 (see (28)). 3D

Since @) € C 2(W(} "7 (Q)), from (31) and Papageorgiou and Smyrlis [29] (see also
Papageorgiou and Radulescu [26]) it follows that

Ci(¢:,y) = é1Z forallk > 0. (32)
From Theorem 15, we know that

Ci(@x,0) = 0¢.q,2 forallk > 0. (33)
From Proposition 8, we know that ¢ is coercive. Therefore

Ci (3., 00) = 8 0Z forall k > 0. (34)

Suppose that K, = {0, it4, i, $}. Then from (30), (32), (33), (34) and the Morse
relation (see (4)) with r = —1, we have

(=D +2(=D + (=D' = (-1D°,
= (—l)d’" = 0, a contradiction.

So,wecanfindy € K,y ¢ {0, i1, ii_, y}. It follows that y is theE)urth nontrivial
solution of (P,) and the nonlinear regularity theory implies y € Cé (). O
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4 Near Resonance from the Right of )Aq( p) >0

In this section we examine problem (P, ) as the parameter A approaches A ( p) >0
from the above (from the right). In contrast to the previous case (Sect. 3), now the
energy functional is indefinite.

We start with an existence result which is valid for all A in the open spectral interval
(A ( ), )12( p)). The hypotheses on the perturbation f(z, x) are the following:

H; : f: Q xR — Ris a Carathéodory function such that f(z,0) = 0 for a.a.
z € Qand

(i) for every p > 0, there exists a, € L® ()4 such that

[f(z,x)| <ay(z)foraa. z € 2, all x| < p;

o @)
() lim e

(i) if F(z,x) = f(;c f(z, s)ds, then there exists T € (2, p) and By > 0 such that

= 0 uniformly for a.a. z € ;

F(z,x)— , .
Bo < liminf pF@E x) — [z x)x uniformly for a.a. z € ; and
x—+o0 |x|®

(iv) there exists a function ¢ € L°°(£2) such that

() < A(2) foraa. z € Q, ¥ £ i (2)
. 2F(z,x)

limsup ———
x—0 X

< 9 (z) uniformly for a.a. z € Q.

As before, forevery A > 0, ¢, : W(} "P(Q) — Ris the energy functional of problem
(P,) defined by

1 1 A
(1) = ;||Du||§ + §||Du||§ - ;||u||§ —/ F(z,u(z))dz forallu Wg”’(sz).
Q

We have ¢, € C' (W, ().
Proposition 17 If hypotheses Hz hold and A > 0, then @, satisfies the C-condition.

Proof Let {uy},>1 € Wé’p(Q) be a sequence such that

|@5. (up)| < M3 for some M3 > 0, alln > 1 (35)
(1 + Jun )@, (un) — 0in W17 (Q) as n — oo. (36)
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From (36) we have

h
g (un), )| < el gt e W,y " (Q) with €, — 07,
L4 {lun]|
h
= |(Ap(n), h)+(AGun), h) =2 / |l P21y hdz— / £ unhdz| < <ML
@ Q L+ [l
foralln > 1. (37)

In (37) we choose h = u,, € W(}‘p(Q) and obtain
|| Dun | + [1Du|13 — Allunllh — /Q fz uupdz < €, foralln > 1. (38)
On the other hand from (35), we have
— ||Dun||§ — §||Dun||% +)»||u,,||§ +/QpF(z, uy)dz < pMs foralln > 1. (39)
We add (38) and (39). Then
/Q [PF(oun) = fGouuddz < My + (5 = 1) IDwal 3 40)
for some My > 0, alln > 1.
By virtue of hypotheses H3 (i), (iii), we can find B € (0, Bo) and c3 > 0 such that
Bilx|" —c3 < pF(z,x) — f(z,x)x foraa. z € 2, all x € R, 41)
We use (41) in (40) and obtain

BillunllT < Ms + (g - 1) |Duy|? for some Ms > Oandalln > 1. (42)

Suppose that {u,},>1 € Wol’p(Q) is unbounded. Then ||u,|| — o0 as n — 0.
Set y, = HZ—"H, n > 1. By passing to a suitable subsequence if necessary, we may
assume that

Yu = yin WyP(Q) and y, — yin LP() as n — oo. (43)

From (42) we have

Ms p 1 5
r<—+(——1)—D foralln > 1,
pribnl < e+ (5 1) e 1Pl

=y, — 0in L7 () as n — oo (recall 2 < T < p), hence y = 0 (see (43)).
(44)
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On the other hand, from (37) we have

1 _ f(z, uy)
A,(yn), b)Y+ ———— (A(yn), h) — A n”znhd,—/—
‘< plm) >+||un||1>—2< () 1) /Q'y' S NPT

<e¢, forall n>1. (45)

hdz‘

Hypotheses H3(i), (ii), imply that

|f(z, )] <ca(l+|x|P~ ") foraa. z € Q, allx € R, somecy > 0,
{ Nf(un)

— ] C Lp/(Q) is bounded.
G

If in (45) we choose h =y, — y € W(;’p(Q), pass to the limit as n — oo and use
(44), we obtain

tim (A, (). 3 — ¥) = 0 (recall p > 2),
n— oo

= y, — yin W(}’p(Q) (see Proposition 6), hence ||y|| = 1. (46)

Comparing (44) and (46), we reach a contradiction. This proves that {u,},>1 C
W(} "P(Q) is bounded. So, we may assume that

Un = win Wy () and u, — uin LP(R) as n — oo. A7)

In (37) we choose h = u,, —u € Wol’p(Q), pass to the limit as n — 0o and use
(47). Then

nlingo [(Ap(un)v Up — Lt) + (A(up), up — Lt)] =0,
= lim sup [(Ap (un), un — u) + (A(u), up, — u)] < 0 (since A is monotone),
n—oo
= limsup (A, (up), un — u) < 0 (see (47)),

n—oo

ol
= u, — uin Wy’ (Q) asn — oc.

This proves that the functional ¢, satisfies the C-condition for all A > 0. O

Proposition 18 If hypotheses H3 hold and A > A (p), then @, (tii1(p)) — —o0 as
t — 00 (that is, ¢y, (p) is anticoercive).

Proof Hypothesis Hz(ii) implies that

. F(z,x)
lim

= 0 uniformly for a.a. z € Q. (48)
x—+oo |x|1’
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From (48) and hypothesis H3 (i), we see that given € > 0, we can find c5s = c5(¢) >
0 such that
F(z,x) > —€|x|? —csforaa. z € Q, allx € R. (49)

Then for ¢ # 0, we have

2
@t (p)) = LM(p) + —||DM1(P)||2 _ AP —/ F(z,ti1(p))dz
P P Q

(recall [|i1 (p)Il, = 1)

/2
%[M(p) Al+ —IIDul(p)Ilz + % + ¢5182 N (see (49))

2
:%[M(P)—i-e—k]+—IIDM1(P)||2+C3|Q|N 0)

Choose € € (0, » — )A»l(p)) (recall A > )A»l(p)). Then from (50) and since p > 2,
we have

o) (ti1(p)) — —oo ast — Fo0.
This completes the proof. O
1, A~
Let D = [u e WP (@) : ||Dullf = Az(p)||u||£}.

Proposition 19 If hypotheses H3 hold and A € (5»1 (p), 5»2 (p)), then @, | p is coercive.

Proof From (48) and hypothesis H3(i), we see that given € > 0, we can find ¢g =
c6(€) > 0 such that

F(z,x)<£|x|p+c6f0ra.a.z€Q, all x € R. (5D
p

Letu € D. We have

W) = ~1Dull’+ S1Dul3 = 2 jull? /F( i
o (u —||Du —||Dull5 — =|lullt — z,u)dz
p 4 2 2 p P o

1 A
>;||Du||§— e | Dul|}, — )||Du||§—c6|sz|N(see(51))

pra(p) pra(p
1 A+e
=—[1— = ]llullp—06|Q|N~ (52)
P r(p)

Choosing € € (0, A2(p) — A) (recall & € (A1(p), A2(p))), from (52) we infer that
@ | p s coercive. O

By virtue of Proposition 19, we have

mp = inf @; > —oo0.
D
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Then, invoking Proposition 18, we can find t* > 0 such that
@ (Et*01(p)) < mp. (53)
We introduce the following sets
Eg = {£t"i1(p)}, E=conv{xt*il;(p)}={—st"il1(p)+(1—s5)t"i(p) : s€[0, 1]}.
For this pair { Eg, E'} and the set D introduced above, we have the following property.
Proposition 20 The pair {Eo, E} is linking with D in Wy " ().

Proof Let G = {u € Wy'P(Q) : ||Dullh < ia(p)llulh}. We claim that —*i; (p)
and t*1(p) belong to different path components of the set G. To this end, let y €
C ([0, 17, Wol’p(Q)) be a path such that

y(0) = —r*i1(p) and y (1) = t*i1 (p).

By virtue of Proposition 4, we have

p
5»2([7) < max [M 1t €0, 1]i|

Iy 11

and so we can find 7y € (0, 1) such that y (t) ¢ G, which §hows that —¢*i; (p) and
t*u1(p) cannot be in the same path component of the set G. This means that, given

any y € C([0, 1], W,'¥ () with
y(0) = —t*i1(p) and y (1) = t*it1 (p),
we have
y([0,11) N3G # ¢.
Note that §G C D. Therefore

y({0,1DND # ¢
= {Eo, E} links with D in W(}’p(Q) (see Definition 1).

]

Proposition 21 If hypothesis H3z holds and ». > 0, then u = 0 is a local minimizer of
the functional ;.

Proof By virtue of hypotheses H3(i), (iv) we see that given € > 0, we can find
¢7 = c¢7(€) > 0 such that
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1
F(z,x) < E(z?(z) +e)x? + ¢7]x|? foraa. z € Q, allx € R. (54)

Then for every u € W(}’p (€2), we have

1 €
AOEE [nDun% —/ 0<z>u2dz} — ———lull® — csllul|P — ———|lul|?
Q 20(2) pri(p)
for some cg > 0 (see (1), (2) and (54))
1[4 €
> — & — = :| ||u||2 — c9l||ul|? for some cg > O (see Proposition 5).
2 [ ) ’

We choose € € (0, 5»1 (2)50) and have
o) (u) = 610||u||2 — col|ul|? for some cjg > 0, allu € W(;’p(SZ). (55)
Since 2 < p, from (55) it follows that we can find small p € (0, 1) such that

9.(u) > 0 = ¢,.(0) for all u € Wy () with 0 < |[u]| < p,

= u = 0 is a (strict) local minimizer of ¢j.

We can state the following existence result.

Theorem 22 [f hypothesis Hj holds_ and ) € ()A»l(p), ):z(p)), then problem (P)
admits a nontrivial solution ui € Cé(Q).

Proof Propositions 17,20, and (53), permit the use of Theorem 1 (the linking theorem).
So, we can find & € W(;’p(SZ) such that (see Chang [8])

i€ Ky, and Ci(gy, i) # 0. (56)
By Proposition 21, we know that # = 0 is a local minimizer of ¢,. Hence
Ci(¢5,0) = 6 0Z forall k > 0. 67

From (56) and (57) it follows that & # 0 and ﬂ_is a solution of (P,). Moreover, the
nonlinear regularity theory implies that iz € C& (). O

We can have multiple solutions when we restrict A to be near A 1(p) from above
(near resonance from the right). To do this, we introduce the following hypotheses on
the perturbation f(z, x).

Hy: f : Q@ xR — Ris a Carathéodory function such that f(z,0) = 0 for a.a.
z € Qand

Q) 1f(zx)| <a@ +|x]""!) foraa z € Q allx € Rwitha € L¥(Q)4;
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(ii) there exists a function ¢ € L*°(R2), 9 (z) < 0 fora.a. z € Q, ¥ # 0 such that

lim sup M < ¥(z) uniformly for a.a. z € Q;
x—+o0 |x|?

(iii) there exist an integer m > 2 and a function n € L°°(2)4 such that

1) € m(2), Amp1(2)] foraa. z € 2, 1 % An(2), 1% dmt1(2)
lim f(z X)

x—0

= 71(z) uniformly for a.a. z € ; and

(iv) for every p > O there exists &£, > 0 such that for a.a. z € 2 the function
x+— f(z,x)+ §p|x|p72x

is nondecreasing on [—p, p].

Remark 3 Evidently, for a.a. z € Q, f(z,-) is differentiable at x = 0 and n(-) =
£, 0).

We will produce solutions of constant sign. For this purpose, we introduce the
positive and negative truncations of f(z, -), namely the Carathéodory functions

fe(z, %) = f(z, £x5).

Let Fi(z,x) = fox fi(z, s)ds and consider the C!-functionals go)jf : Wol’p(Q) —
R defined by

1 1 A
@) = —||Dullh + = ||1Dull3 — =[|u*||5 —/ Fi(z,u(2))dz
P 2 )2 Q
forall u € Wy'" ().

Next, we produce a pair of nontrivial constant sign solutions.

Proposmon 23 If hypothesis Hy holds, then we can find € > 0 such that for all
S ()»1 (p), M (p) + €) problem (Py) has at least two nontrivial solutions of constant
sign

u, €int Cy and vy € —int C4,

both being local minimizers of the energy functional @,.

Proof By virtue of hypotheses H4 (i), (ii), given § > 0, we can find c11 = ¢11(8) > 0
such that

1
F(z,x) < =) +8)|x|” + ¢y foraa. z € 2, all x € R. (58)
p
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Since A > i1(p), wehave A = A1 (p)+p with y > 0. Then for every u € WS’P(Q)
we have (see Papageorgiou and Kyritsi [24, p. 356])

1 1 r(p) n
o) = ;HDMHS + —||DM||§ - T||M+||§ - ;||M+||§ — | Fy(z,u)dz
Q

+4
)||“||p_cll|Q|N (see (58))

1
> —||Dullp— /(kl(p)+15‘(1))(u+)pdz—
p P 1p

1
P

5
[g w_Bt ]||u||P—c11|Q|Nforsomeé*>O.
r(p)

Since § > 0, is arbitrary, for u € (0, £* ):] (p)), we have that (pi|r is coercive. Also,
using the Sobolev embedding theorem, we see that (,0):Ir is sequentially weakly lower

semicontinuous. So, by the Weierstrass theorem, we can find ug € WO1 P (€2) such that
O (o) = inf [¢ () : u € Wy " (Q)]. (59)
Hypothesis H4(iii) implies that for small # € (0, 1)

@} (t01(2)) < O (recall that p > 2),
= ¢ (up) < 0= ¢ (0) (see (59)), hence ug # 0.

From (59) we have

(@) () =0,
= A,(uo) + A(uo) = Aud)? ™1 + Ny, (uo). (60)

On (60) we act with —u, € Wol’p(Q) and obtain ug > 0, ug # 0. So, (60)
becomes

Ap (o) + Alug) = rub ™" + Ny (uo),
= ug is a solution of (Py), ug € C+\{0}
(by the nonlinear regularity theory).

Let p = ||un|loo and let &, > O be as postulated by hypothesis H>(iv). Then

—Apuo(z) — Aug(z) + Epuo(z)” !
= (A +EDuo@)” " + flz,uo(z)) > 0foraa. z € Q,
= Apuo(z) + Aug(z) < &pup(z) foraa. z € Q.

From the nonlinear maximum principle of Pucci and Serrin [32, p. 111 and 120],
we obtain that ug € intCy. Since ¢;|c, = <p1'|c+, we infer that ug € intCy is
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a local Cé () minimizer of ¢.. Invoking Proposition 7, we infer that u is a local
Wé’p(Q)-minimizer of ;.

Similarly, working with ¢, we produce vy € —int C a second nontrivial constant
sign solution of (P, ), which is a local minimizers of ¢;. O

Let € > 0 be as in the above proposition. Hypotheses H4(i), (iii) imply that given
8 > 0, we can find ¢12 = ¢12(8) > A1(p) + € such that

fz,0)x = (n(2) — 8)x> — cpa|x|P foraa. z € Q, all x € R. 61)
This estimate leads to the following auxiliary Dirichlet problem
— Apu(z) — Au(z) = (1(z) — Hu2) — c13lu@)|Pu(z) in Q, ulpe =0 (62)

where ¢13 = ¢13(8, 1) =c1p — A, with A € ()A\l(p), il(p) +€).

Proposition 24 For small 5 > 0, problem (62) has a unique nontrivial positive solu-
tionu, € int C4 and because (62)is odd v, = —u, € —int C4 isthe unique nontrivial
negative solution of (62).

Proof First we establish the existence of a nontrivial positive solution. To this end, let
Yy WOl "P(£) — R be the C!-functional defined by

1 1 1 C13
Y (u) = —||Dullh + ~||Dull3 — —/(n(Z) + &) dz + =t
P 2 2 Ja P
forall u € Wy"(Q).

Since p > 2, it is clear that v is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u, € Wol"" (£2) such that

Vs (uy) = inf [y () - u € Wyl ()], (63)

Letr > 0. We have

R L 12 N CI3 .
Yyt (2)) = —IIDM1(2)IIp+—/\1(2)——/(n(Z)—S)u1(2) dz+—tP|[i, 2)|[p
p 2 2 Ja P

(recall [|i1(2)[|2 = 1)

tP C13 n 12 N n 2
< — [1 + = } NN — = [/ (@) — 1 @2)u1(2)"dz —3} .
p r1(p) 2 Le

Evidently, & = [,(n(z) — #1(2))it1(2)%dz > 0. So, if § € (0, &), then

R P 12
Yy (tu1(2)) < ;614 — 7 €15 SOME C14, €15 > 0.
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Since p > 2, by choosing small ¢ € (0, 1), we have

V(i1 (2)) <0,
= Y4 (uy) < 0= 1Y4(0) (see (63)), hence u, # 0.

From (63) we have

w;(“*) =0,
= Ap(u) + A(us) = (n — 8uf — cizHP . (64)

On (64) we act with —u € W(}’p(Q) and obtain u* > 0, u, # 0. Then

Ap(us) + Aus) = (7 — Sux — crzul ",
= u, € C\{0} (nonlinear regularity solves (62)).

In fact, we have (see Pucci and Serrin [32, p. 111 and 120])

Apuy(2) + Auy(z) < ci3us(z)? " foraa. z € Q
= Uy €intCy.

Next, we show the uniqueness of this positive solutions. To this end, let

P2
Go(t) = — + —forallt >0
p 2

Then Go(-) is increasing and ¢ — Go(t'/?) is convex. We set
G(y) = Go(|y|]) forall y € RV,
Evidently, G € C'(RV) (recall p > 2) and we have

VG(y) =a(y) = |yl’?y+yforally e RV
diva(Du) = Apu + Au forallu € Wy'” ().

Let 4 : L'(2) — R be the integral functional defined by

//L—‘,-(u) |/ G(Dul/Z)dZ lfu O I/t EW&’p(Q)

otherwise.
Let uy,us € dompuy = {u € LY(Q) : py(u) < oo} (the effective domain of yt4.)

andlet y = (tu; + (1 — Hu)'/? € WO”’(Q) with ¢ € [0, 1]. From Benguria et al. [6,
Lemma 4], we have
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|[Dy(z)| < (tIDu1(z)1/2|2 + (11— t)|Duz(z)l/2|2)1/2 fora.a.z € Q,
= Go(|Dy(@)]) < Go (t|Du1(Z)l/2|2 + (1 —t)|Du2(z)l/2|2) (since G is increasing)
< tGo(|Duy(2)' )+ (1=)Go(|Dua(2)'/?|) (since t — Go(t'/?)
is convex),
= G(Dy(z)) < 1G(Du1(z)'"?) + (1 — )G (Du»(z)"/?) fora.a. z € Q,

= [L41S convex.

Also, by the Fatou lemma we see that w4 is lower semicontinuous.

Let y, € WO1 "7 (Q) be another positive solution of (62). From the first part of the
proof, we have y, € intC4. Leth € C}(Q) and t € (—1, 1) with |¢| small. Then we
will have

u? +th eintCy and y> +th € intC
= ui, yf € dom pi 4.

So, p4 is Gateaux differentiable at u, and at y, in the direction /. Using the chain
rule, we obtain

1
e =5 [

1 [ —Apye—A _
W, (D) (h) = -/ “oeP T M gz forall h € CL(S).
2 Ja Y

—Ajuy — Au
— L *hdz
U

The convexity of 4 implies that 11/, is monotone. Hence

1 —Ajuy — Au —A - A
0< —/( ple — 2 e y*)(ui—yi)dz
2 Ja Us Vi

1 _ _
= —/ c13(y,i7 2 ul 2)(1/& — yz)dz < 0 (recall p > 2),
Q

2
= Uy = Yy

This proves the uniqueness of the positive solution u, € int C..
Since (62) is odd, vy = —u, € —int C is the unique nontrivial negative solution
of (62). O

Using the proposition, we can establish the existence of extremal nontrivial constant
sign solutions, that is, a smallest positive solution and a biggest nontrivial negative
solution.

Proposition 25 If hypothesis Hy holds and )\ € ()A»l(p), il(p) +€) withe > 0 as
in Proposition 23, then problem (Py) admits a smallest positive solution u} € int C
and a biggest negative solution vi € —int C..

Proof Let S4 (L) be the set of positive of problem (P, ). From Proposition 23 and its
proof, we have
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S+()L) ;ﬁ ¢ and S+()\.) - int C+.

Asin Gasinski and Papageorgiou [17], exploiting the monotonicity of u — A (u)+
A(u) we have that the solution set S (1) is downward directed, that is, if uy, ur €
S+ (1), then we can find u € S;(A) such that u < uy, u < up. Since we are looking
for the smallest positive solution, without any loss of generality we may assume that
there exists Mg > 0 such that

0<u(zx) <Mg forallz e Q, allu e Sy(A). (65)

From Dunford and Schwartz [14, p. 336], we know that we can find {u,},>1 C
S+ (A) such that inf S (1) = 11;1“l Upy.
nz

We have

Apn) + Aly) = 2l ™" + Ny(uy) foralln > 1, (66)
= {un}n>1 C W(}’p(Q) is bounded (see (65)).

So, we may assume that
uy = ul in Wy’ (Q) and u, — uf in LP () as n — oo. (67)

On (66) we act with u, —uj € Wol"’(Q), pass to the limit as n — oo and use (67).
Then

im (A, (). un — u3) + (AGn), un — uj)] =0,
= u, —> u: in Wol’p(Q) as n — oo (see the proof of Proposition 17). (68)

Claim 1 u, < uforallu € Sy (1).
Let u € S4(A) and consider the following function

0 if x <0
Bi(z,x) = | (n(2) = &)x — c3x?™! if 0<x <u(z) (see (61) (69)
((z) — Ou(z) — ci3u)P~" ifu(z) < x

(see (61)). This is a Carathéodory function. We set B4 (z, x) = f(;c B+(z,8)ds and
consider the C'-functional £ : W(;’p (2) — R defined by

1 1 1
Er(u) = ;||Du||§ + EllDuH% - /Q B (z,u(z))dz forallu € WO"’(Q).

From (69) it is clear that &4 is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find i1, € W(;’p (€2) such that

£ (i) = inf [£4.0) 1 € Wy P(Q)]. (70)
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As before (see the proof of Proposition 24), for y € int C4, and for small ¢ > 0 (at
least such that ry < u, recall that u € int C4, and see Filippakis et al. [15, Lemma
3.3]), we have

§+(ty) <0=£.(0),
= & (lly) < 0=£,(0) (see (70)), hence 1, # 0.

From (70) we have

5./;_('2*) = 0,
= Ap(is) + A(lly) = Np, (i) (71)

On (71) we act with —i1_ € Wol’p(Q) and obtain i1, > 0, i1, # 0 (see (69)). Also,

*
on (71) we act with (i1, —u)* € Wol‘p(SZ) we have

(Ap (). (e — ™) + (A, (s —u)*)
=/ B+(z, ) (s — u)+dZ
Q
= / [(7(2) — 8)u — c13u? (i, — u)Tdz (see (71))
Q

< / uP~' + f(z, u)) (i — u)tdz (see (61) and recall ¢13 = c12 — A > 0)
Q

=(Ap(u) + A(u), (lis — uw)™) (since u € S1.(1)
= (Ap(d) — Ap), (s — ') + [ D@ — u) T3 <0,
= Uy < U.

Therefore we have proved that
iy € [0, u] = {y e WP (@)1 0< y(2) <ule) foraa. z e Q} iy £ 0.
So, (71) becomes

N A A Ap—1
Ap(ite) + A(l) = (n(2) = 8)its — c13ty
= U, is a positive solution of problem (62),

= 4y = uy € int Cy (see Proposition 24).

Thus we have proved the claim.
Passing to the limit as n — oo in (66) and using (68), we obtain

Ayl 4+ AWl = APV Np(ud), uy < uf,
= uj € Sy (1) and u} = inf SL(}).
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For the biggest negative solution we use the set S_(A) which is upward directed
(that is, if v{, v € S_()), then we can find v € S_(X) such that v < v, v» < v).
Reasoning as above, we produce vy € S_(A) € —intC a biggest negative solution
of (Py). O

Using these extremal constant sign solutions, we can produce a nodal solution of
problem (Py).

Proposition 26 If hypothesis Hy holds and ) € ()A»l(p), ):1(19) +€) withe > 0 as in
Proposition 23, then problem (Py) admits a nodal solution yy € [v}, u3]N Cé(Q).

Proof Letuj € intCy and vj € —int C be the extremal constant sign solutions of
(P;) produced in Proposition 26. We introduce the following truncation of the reaction
in problem (P;,)
A|v;‘(z)|”*2v;‘(z) + f(z,v5(2)) if x < v} (2)
8.z, x) = { Alx|P2x + f(z,x) if vi(2) <x<ufx) (72
(PN + (2wl (2) if W3 (2) < x.
This is a Carathéodory function. We set G, (z, x) = f(;c g,.(z, s)ds and consider the
C!-functional ¢ : W(;’p (2) — R defined by
N 1 p 1 2 Lp
o= ;”Dqu + §I|DMI|2 — | Ga(z,u(z))dz forallu € Wy (2).
Q

Also, we introduce git(z,x) = g(z, +x¥), Gf(z, x) = f(f g)jf(z, s)ds and the
C'-functional ¢iF : WO1 "7(Q) — R defined by

G (u) = %HDuIIﬁ + %||Du||% —/QGAi(z,u(z))dz forall u € Wy"(Q).
Reasoning as in the proof of Proposition 25 and using (72), we obtain
Ky, S i uzl, Ko € 10,471 Ky C 07, 0]
The extremality of u} € int Cy and of v} € —int C., implies that

K(ﬁ)» g [viv u;]3 K"

Claim 2 u} and v} are local minimizers of the functional ¢;,.
Clearly @‘f is coercive (see (72)). Also, it is sequentially weakly lower semicontin-
uous. So, by the Weierstrass theorem we can find iz € W(} "7 () such that

GF () = inf [¢F () - u € Wy P(Q)]. (74)
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As before hypothesis Hy(iii) and the fact that u} € int C and 2 < p, imply that

¢ (£i1(2)) <0,
= @, (@) < 0= ¢, (0) (see (73)), hence it # 0.

From (74) we have

= ae{0,uf}, i #0,
=u= MI S intC+.

Since @; | c. = o | c.o it follows that u} is a local Cé (2)-minimizer of @, hence

it is a local WOl P (Q)-minimizer of ¢, (see Proposition 7).
Similarly for v, using this time the functional ;. This proves the claim.
Without any loss of generality, we may assume that

O (v)) < O (u3).

The analysis is similar if the opposite inequality holds. We may assume that K,
is finite (otherwise we already have infinity many nodal solutions, see (73)). From the
claim we know that 7 is a local minimizer of ¢;. So, we can find small p € (0, 1)
such that

$1.(vx) < @ (us) < inf[@a(w) : |lu —ufl| = pl =mj, |lvf —uill > p  (75)

(see Aizicovici, Papageorgiou and Staicu [1, proof of Proposition 22]).
The functional ¢; is coercive, hence it satisfies the C-condition (see [30]). This fact
and (75) permit the use of Theorem 2 (the mountain pass theorem). So, we can find

Yo € Wol’p(Q) such that
Yo € K, € [v}, u}] (see (73)) and m’ < @1(y0). (76)

From (75) and (76) we have that yo ¢ {v}, u}} and yo is a solution of (P;) (see
(72)) with yy € Cé () (nonlinear regularity). We need to show that yp # 0 in order
to conclude that yy is nodal.

Let p = max{||u}||co, [[V]]loc} and let £, > O be as postulated by hypothesis
Hy(iv). Then

—Apy0(2) = Ayo(2) + £, (30(2))P 2 y0(2)
= A+ &) yo@1P?y0() + (2, y0(2))
<+ E)ui )P + f(z, ul(2)) (since yo < u}, see hypothesisHy(iv))
= —A,ut(2) — Aui(2) +Epui(z)? " ae. in Q. (77)
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As before (see the proof of Proposition 24), we consider the map a : RY — RV
defined by

a(y) = |y|1’_2y + yforall y e RV,

_ ®
= Va(y) = [y|"? (1 +(p —2>y|y|2y) +1,

= (Va(y)&, &)y = |£|* forall y, & € RV,

So, we can apply the tangency principle of Pucci and Serrin [32, p. 35], and obtain
y0(2) < uj(z) forall z € Q.
Then from (77) and Arcoya and Ruiz [3, Proposition 2.6], we have
uy —yo € intCy.
In a similar fashion, we show that
Yo — v €intCy.

So, we have proved that
Yo € intcé(ﬁ)[vf, uyl. (78)

We consider the deformation
h(t,u) = h,(m) = (1 — 1)@ (u) + te,(u) forall (¢, u) € [0, 1] x Wol’p(Q)
Suppose we can find {#,},>1 € [0, 1] and {u,},>1 € Wol’p(Q) such that

t, — tin [0, 1], u, — ypin Wol’p(Q) asn — oo and (h,n)'u(tn, uy) =0 (79)
foralln > 1.

We have

Ap(”n) +A(uy) =1 - tn)NgA (un) + tnklun|p_2un + tan(un) n=l1
= —Apun(2) = Aup(2) = (1—1,) 812, n (2)) Ftu k|t ()P 210 (2) +10 f (2, U (2))
fora.a. z € Q.

From Ladyzhenskaya and Uraltseva [18, p. 286], we know that there exists M7 > 0
such that

[tnlloo < M7 foralln > 1.

Hence by virtue of Lieberman [19, Theorem 1], there exists & € (0, 1) and Mg > 0
such that
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un € Cy* () and ltnll crn ) < M foralln > 1.

Exploiting the compact embedding of Cé‘“ () into Cé () and using (79), we have

Uy = Yo in C§(Q) as n — oo,
= uy, € [v],ui] foralln > ng (see (78)).

But from (72) we see that {u,},>1 C K, , a contradiction to our hypotheses that
K, is finite. So, (78) cannot happen and hence the homotopy invariance of singular
homology implies that

Ci(@x, y0) = Ci (@3, yo) forall k > 0. (80)

Recall that yy is a critical point of mountain pass type the functional ¢, . Therefore

C1(@2: yo) # 0,
= C1(@x, yo) # 0 (see (80)). 81)

From Proposition 13, we know that

Cr(pn,0) = 6k,q,Z forall k > 0, withd,, > 2

= yo # 0 (see (81)),
= yo € C}(R) is nodal.

So, we can state the following multiplicity theorem for problem (Py).

Theorem 27 If hypothesis Ha holds, then there exists € > 0 such that for all A €
()q (p), A] (p) + €) problem (P) has at least three nontrivial solutions

up €intCy, vg € —int Cy and yg € intc(;@)[vo, ug] is nodal.

Remark 4 We stress that the above theorem provides sign information for all solutions
and localizes them. None of the other papers mentioned in the introduction, contains
such a multiplicity result for equations near resonance from above.

In fact we can improve Theorem 27 and generate a second nodal solution pro-
vided we strengthen the regularity of f(z, -). The new hypotheses on f(z, x) are the
following:

Hs: f : 2 x R — R is a measurable function such that for a.a. z € Q, f(z,0) =
0, f(z,) € C'(R) and

() 1fl(z,x)| < az)(1+ |x|P7?) foraa. z € Q, all x € R witha € L®(Q)4;
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(i) there exists ¥ € L°°(L2) such that #(z) < 0 fora.a.z € Q, ¥ # 0 and

F(z, .
lim sup M < ¥ (z) uniformly for a.a. z € ©; and

x— o0 [x|P

(iii) there exists integer m > 2 such that

f1(z,0) € [in (2), Ams1(D)] foraa. e, £, 0)Eaw(2), £1(,0) EAms1(2)
f(z,

fi(z,0) = lin}) f@x uniformly for a.a. z € Q.
xX— X

Remark 5 The differentiability of f(z, -) and hypothesis Hs(i) imply that for every
o > 0, thereexists §, > Ofora.a.z € Q,x — f(z,x)+ $p|x|”_2x is nondecreasing
on [—p, p].

We can now state the following multiplicity theorem.

Theorem 28 If hypothesis Hs holds, then there exists € > 0 such that for all A €
(k] (p), M (p) + €) problem (P) admits at least four nontrivial solutions

up € int C+, Vo € —int C+
d yo,y € int 1,5 [vo, dal.
and yg,y C&(Q)[ 0, Ug] are noda

Proof From Theorem 27 we already know that there exists € > 0 such that for all
A€ (M1(p), A1(p) + €) has at least three nontrivial solutions

ug € intCy4, vo € —intC4 and yg € intcé@)[vo, ug] is nodal.
By virtue of Proposition 25, we may assume that uy and vg are extremal (that is,
up = uj € intCy and vp = vj € —int C). From the proof of Proposition 26 (see the
claim), we know that ¢ and vy are local minimizers of the functional ¢; . Therefore

Ci(@5., u0) = Cr(@y, vo) = 8,0Z forall k > 0. (82)

Since (ZJ)L| [vouo] = = Oal[vg.uo) (s€€ (72)) and since v € —int C4, ug € int C4 from
Proposition 13 we have

Cr (@1, 0) = 8t.q, Z forall k >0, with d,, > 2. (83)

From the proof of Proposition 26, we have (see Papageorgiou and Smyrlis [29] and
Papageorgiou and Réidulescu [26])

Cr (@3, yo) # 0,
= Cr(P1, yo) = 8k 1Z forallk > 0 (84)
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Finally, since ¢, is coercive (see (72)), we have
Ci(@p, 00) = 8k 0Z for all k > 0. (85)

Suppose K, = {uo, vo, 0, yo}. From (82), (83), (84), (85) and the Morse relation
with t = —1 (see (4)), we have

2=+ (=D 4 (=)' = (-1)°,
= (=1)% =0, a contradiction.

So, we have § € Kj C [vo, uo] (see (73)), ¥ ¢ {uo, vo, 0}, thus § is nodal.
Moreover, from the nonlinear regularity theory and reasoning as before (see the proof
of Proposition 26), we have

y € intc(l)@)[vo, upl.
O
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