Geometric properties of a spectral sequence in surgery theory

Yu.V. Muranov and D. Repovš

Let X be a closed topological manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(X)$ having a subgroup $\pi \subset G$ of index 2. We consider a map $\chi \colon X \to \mathbb{R}P^m$ of the manifold X to an *m*-dimensional real projective space of high dimension. Suppose that χ induces a fundamental group epimorphism $\chi_* \colon G \to \mathbb{Z}/2$ with kernel π . We denote by Y the one-sided submanifold of X that is the transversal inverse image $\chi^{-1}(\mathbb{R}P^{m-1})$ of the one-sided submanifold $\mathbb{R}P^{m-1} \subset \mathbb{R}P^m$. The pair (X, Y) is a Browder–Livesay pair if the embedding $Y \to X$ induces an isomorphism of fundamental groups (see [1], [2]).

For a Browder–Livesay pair we have a commutative diagram of exact sequences (see [3], [4]):

The diagram (1) includes the groups $L_*(\pi)$ and $L_*(G)$ of obstructions to surgery, the groups $LN_*(\pi \to G)$ of obstructions to splitting along the one-sided submanifold $Y \subset X$, and the groups $LP_*(F)$ of obstructions to surgery with respect to the pair (X, Y) of manifolds (see [5], [6]).

In [7] a spectral sequence is constructed in surgery theory. The construction uses a realization of the commutative diagram (1) at the spectral level. The basic filtration

$$\cdots \to X_{3,0} \to X_{2,0} \to X_{1,0} \to X_{0,0} \to X_{-1,0} \to \cdots$$

$$\tag{2}$$

of spectra in [7] contains the L-spectrum $X_{0,0} = \mathbb{L}(G^+)$ and the spectrum $X_{1,0} = \Sigma \mathbb{L}P(F)$ (see [8], [9]).

The set $S_n(X, Y, \xi)$ of s-triangulations of the pair (X, Y) of manifolds appears in the exact sequence

$$\dots \to \mathbb{S}_n(X, Y, \xi) \to [X, G/TOP] \xrightarrow{v_{\xi}} LP_{n-1}(F) \to \dots,$$
(3)

which can be constructed at the spectral level [5].

Let \mathbf{L}_{\bullet} denote a simply connected covering of the Ω -spectrum $\mathbf{L}_{\bullet}(\mathbb{Z})$ ([5], [6]). For a closed topological manifold X we have the isomorphism $[X, G/TOP] \cong H_n(X, \mathbf{L}_{\bullet})$. There also exists an Ω -spectrum $\mathbb{S}(X)$ whose *n*-dimensional homotopy groups give the set $\mathbb{S}_n(X)$ of topological triangulations of X.

Let $(Z \subset Y \subset X)$ be a triple of manifolds such that each of the pairs $(Z \subset Y)$ and $(Y \subset X)$ of manifolds is a Browder–Livesay pair. We assume that the dimension of the submanifold Z is at least five.

We say that a normal map f can be made by surgery into a simple homotopy equivalence of triples of manifolds if the normal cobordism class of f contains a map g with the following properties:

- 1) the map $g|_X$ is a simple homotopy equivalence;
- 2) the map g is transversal to the submanifolds Y and Z;
- 3) the restrictions of g to the transversal inverse images Y, $X \setminus Y$, Z, and $Y \setminus Z$ are simple homotopy equivalences.

The work of the first author was carried out with the support of the Russian Foundation for Basic Research (grant no. 99-01-00009). The work of the second author was carried out with the support of the Ministry of Science and Technology of the Republic of Slovenia (grant no. J1-0885-0101-98).

AMS 2000 Mathematics Subject Classification. Primary 57R67; Secondary 19J25. DOI 10.1070/RM2002v057n06ABEH000587

We denote by α the composition of maps (see [5])

$$S_n(X, Y, \xi) \to S_{n-1}(Y) \to LN_{n-2}(\pi \to G^-).$$

Composition of the map α with the map $LP_n(F) \to S_n(X, Y, \xi)$ in the exact sequence (3) now gives a map $\beta: LP_n(F) \to LN_{n-2}(\pi \to G^-)$.

Lemma 1. There exists a map of spectra $b: \Omega^2 \mathbb{L}P(F) \to \mathbb{L}N(\pi \to G^-)$ such that the induced map b_* of homotopy groups coincides with the map β .

We denote by $\mathbb{L}T(X, Y, Z)$ the Ω -spectrum that is the homotopy co-fibre of the map b, and by $LT_n(X, Y, Z)$ the homotopy groups $\pi_n(\mathbb{L}T(X, Y, Z))$.

Theorem 1. There is a map of spectra $\psi: \Omega^2(X_+ \wedge \mathbf{L}_{\bullet}) \to \mathbb{L}T(X,Y,Z)$ that induces a homomorphism $\psi_*: H_n(X, L_{\bullet}) \to LT_{n-2}(X, Y, Z)$. The normal map $[f: M \to X] \in [X, G/TOP] \cong H_n(X, L_{\bullet})$ can be made by surgery into a simple homotopy equivalence of triples of manifolds if and only if $\psi_*(f) = 0$.

Theorem 2. There is a homotopy equivalence of spectra

$$\Sigma^2 \mathbb{L}T(X, Y, Z) \cong X_{2,0},$$

where the spectrum $X_{2,0}$ appears in the filtration (2) of the spectral sequence in surgery theory.

Corollary. Let F^- denote a square of fundamental groups in the splitting problem for a Browder-Livesay pair $Z \subset Y$. There is a commutative diagram of exact sequences:

Bibliography

- [1] W. Browder and G. R. Livesay, Bull. Amer. Math. Soc. 73 (1967), 242–245.
- [2] S.E. Cappell and J.L. Shaneson, Lecture Notes in Math. 763 (1979), 395–447.
- [3] A.F. Kharshiladze, Trudy Moskov. Mat. Obshch. 41 (1980), 3–36; English transl., Trans. Moscow Math. Soc. 1982, no. 1, 1–37.
- [4] A.A. Ranicki, Canad. J. Math. 39 (1987), 345-364.
- [5] A.A. Ranicki, *Exact sequences in the algebraic theory of surgery*, Princeton Univ. Press, Princeton, NJ 1981.
- [6] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London 1970; 2nd ed., Amer. Math. Soc., Providence, RI 1999.
- [7] I. Hambleton and A. F. Kharshiladze, Ross. Akad. Nauk Mat. Sb. 183:9 (1992), 3–14; English transl., Russian Acad. Sci. Sb. Math. 77 (1994), 1–9.
- Yu. V. Muranov and D. Repovš, Mat. Sb. 188:3 (1997), 127–142; English transl., Sbornik: Math. 188 (1997), 449–463.
 - [9] A. Cavicchioli, Yu. V. Muranov, and D. Repovš, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8). 4 (2001), 647–675.

Institute of Contemporary Knowledge Vitebsk, Belarus; University of Ljubljana Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia *E-mail*: ymuranov@mail.ru; dusan.repovs@fmf.uni-lj.si

Received 23/SEP/02

1239