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Abstract—For a morphism of quadratic extensions of antistructures, groups similar to the
groups of obstructions to splitting along one-sided submanifolds are defined. These groups
are a natural generalization of the splitting obstruction groups. The results obtained open
additional possibilities for constructing groups and natural maps in L-theory.
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The groups LSn−q(F ) were geometrically defined by Wall [1] (see also [2]) as the groups of
obstructions to splitting a simple homotopy equivalence f : M → Y of n-dimensional manifolds
along a submanifold X ⊂ Y of codimension q .

Let U be a tubular neighborhood of the submanifold X in Y . The groups LSn−q(F ) depend
functorially on the universal push-out square

F =




π1(∂U) −−−−→ π1(Y \X)�i �
π1(X) −−−−→ π1(Y )


 (1)

of fundamental groups with orientation and on the dimension n− q mod 4.
For the square F , the surgery obstruction groups LPn−q(F ) for the pair of manifolds are also

defined, and they also depend on F and n− q mod 4 (see [1, 2]).
In the case of a one-sided submanifold (q = 1), squares of fundamental groups in which the

horizontal maps are epimorphisms and the vertical ones are embeddings of index 2 (see [3–7])
naturally arise. Such squares of groups are called geometric diagrams [5]. The author of [5] alge-
braically defines splitting obstruction groups LSA∗(F ) under some constraints on the homotopy
groups of the manifolds. The groups LSA∗(F ) coincide with the geometrically defined groups
LS∗(F ) for the case in which the square F is a geometric diagram of groups [7] (see also [8]).

If the horizontal maps in the square F are isomorphisms, then the groups LS∗(F ) coincide
with the Browder–Livesay groups LN∗(π1(Y \ X) → π1(Y )) , and the groups LPn(F ) coincide
with the relative groups Ln+1(i

!) of the transfer map.
A natural algebraic generalization of a geometric diagram (1) is a geometric diagram of antistruc-

tures, where the horizontal maps are epimorphisms and the vertical ones are quadratic extensions
of antistructures (see [8–10]). In this case, the groups LS∗ and LP∗ are also defined (see [8, 10]).
These groups coincide with the traditional ones if the square of antistructures is obtained from a
geometric diagram of groups by passing to group rings over the ring Z with standard involution
(see [7, 8, 10]). The groups LS∗ and LP∗ are closely related to the Wall groups and serve as an
effective tool for constructing L-groups and natural maps (see [11–15]).
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In this paper, we define the groups LSA∗(F ) and LPA∗(F ) for a square F of antistructures in
which the pair of horizontal maps determines a morphism of quadratic extensions of the antistruc-
tures. If the square F determines a geometric diagram (i.e., the horizontal map are epimorphisms),
then the formal definition of the groups LSA∗(F ) and LPA∗(F ) coincides with the definitions of
the groups LS∗(F ) and LP∗(F ) given in [8] and [10], respectively. The groups introduced in this
paper have the same algebraic properties as the geometrically defined groups LS∗(F ) and LP∗(F )
for the case in which F is a geometric diagram of groups. Our definition of the groups LSA∗(F )
and LPA∗(F ) imposes no additional constraints on the antistructures and the morphism of qua-
dratic extensions determining the square F . Thus the groups introduced here differ significantly
from the geometric groups LS∗(F ) for the case in which the horizontal maps are not epimorphisms
(see [16; 1, Sec. 12A]). We obtain new relations between the L-groups and natural maps for the

group rings Z[π] and Ẑ2[π] (see [11, 13, 15, 17, 18]).
Let us recall the necessary definitions (see [8, 9, 13, 19–21]).
An antistructure [19, 20] is a triple (R, α, u) , where R is a ring with identity, α : R→ R is an

antiautomorphism, and u ∈ R∗ is an invertible element such that α(u) = u−1 and α2(x) = uxu−1

for all x ∈ R . For any subgroup X of Ki(R) (or of K̃i(R)) with i = 0, 1 invariant with respect
to the involution induced by α , the Wall groups LXn (R, α, u) are defined (see [17, 20, 21]). Let us
choose one of the decorations

K̃1(R), K̃0(R), K1(R), K0(R), Y = SK1(Ẑ2[π]) + {±π}, etc.

(see [11, 17, 21]) for all rings R . In what follows, all L-groups are considered only with this
decoration.

A morphism of antistructures f : (R, α, u)→ (P , β, v) is a homomorphism of rings f : R→ P
such that f(u) = v and βf = fα . Let X and Z be decorations of one of the types under
consideration for the rings R and P , respectively. Then, for any morphism of antistructures
f : R → P , we automatically have f∗(X) ⊂ Z (see [2; 8, Sec. 3; 13]), and the relative groups

LX,Z∗ (R→ P ) = L∗(f) are defined.
A quadratic extension of an antistructure (R, α, u) with respect to a structure (ρ, a) (see [9])

is the antisructure (S, α, u) , where

S = R[t]/{t2 − a}, tx = ρ(x)t, α(t)t ∈ R, α2(t) = utu−1.

In this case, a morphism of antistructures i : R → S arises. Let X and Y be decorations of
one of the types under consideration for the rings R and S , respectively. Then the transfer map
i! : Kn(S) → Kn(R) (n = 0, 1) satisfying the condition i!(Y ) ⊂ X is defined (see [9; 8, Sec. 3;

13]), as well as the relative transfer groups LY ,X∗ (S → R) = L∗(i!) .
Let (ρ′ , a′) be a structure on P . The morphism f preserves structure if f(a) = a′ and

ρ′f = fρ . In this case, f determines a morphism Φ of quadratic extensions of antistructures
(see [13]) as follows:

Φ =




(R, α, u)
f−−−−→ (P , β, v)�i �j

(S, α, u)
g−−−−→ (Q, β, v)


 . (2)

The formula γ(x+ yt) = (x− yt) (x, y ∈ R) defines an automorphism γ of the ring S over R .
For the similar automorphism of the ring Q over P , we use the same symbol γ . We have the
morphism of quadratic extensions of antistructures

Φγ =




(R, α, u)
f−−−−→ (P , β, v)

..
�iγ �jγ

(S, γα, u)
gγ−−−−→ (Q, γβ, v)


 =




R −−−−→ P� �
Sγ −−−−→ Qγ


 ; (3)
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here the maps coincide with the corresponding maps of the square (2).
The automorphism ρ can be extended over the ring S by

ρ(x + yt) = t(x + yt)t−1 (x, y ∈ R).

The quadratic extension i determines another quadratic extension of antistructures

ı̃ : (R, α̃, ũ)→ (S, α̃, ũ), where α̃ = ργα, ũ = −tα(t−1)

(see [9]). Similarly, we can define ̃ : (P , β̃ , ṽ)→ (Q, β̃ , ṽ) . We have the morphism (see [13])

Φ̃ =




(R, α̃, ũ)
f̃−−−−→ (P , β̃ , ṽ)�ı̃ �̃

(S, α̃, ũ)
g̃−−−−→ (Q, β̃ , ṽ)


 =




R̃ −−−−→ P̃� �
S̃ −−−−→ Q̃


 , (4)

where the maps coincide with the corresponding maps in (2) as maps of rings.
The commutative diagram (4) induces the infinite homotopy commutative diagram of Ω-spec-

tra [8] (see also [21])

↓ ↓ ↓
· · · → L(R̃) → L(P̃ ) → L(f̃∗) → · · ·

↓ ↓ ↓
· · · → L(S̃) → L(Q̃) → L(g̃∗) → · · ·

↓ ↓ ↓

, (5)

whose rows and columns are cofibrations. Recall that πi(L(R̃)) = Li(R, α̃, ũ) . A similar result is
valid for other spectra in diagram (5). Now, we can define the spectrum LSA(Φ) as the homotopy
cofiber of one of the following maps of diagram (5):

Ω2L(Φ̃)→ L(R̃), ΩL(S̃)→ ΩL(̃∗), ΩL(P̃ )→ ΩL(g̃∗). (6)

This definition formally coincides with the definition of the spectrum LS(F ) given in [8], but in [8],
the horizontal maps in the square Φ are assumed to be epimorphisms.

Theorem 1. The following universal squares of spectra arise:

ΩL(f̃∗) −−−−→ ΩL(g̃∗)� �
L(R̃) −−−−→ LSA(Φ)

,

ΩL(Q̃) −−−−→ Ω2L(̃∗)� �
ΩL(g̃∗) −−−−→ LSA(Φ)

,

Ω2L(̃ı∗) −−−−→ L(R̃)� �
Ω2L(̃∗) −−−−→ LSA(Φ)

.

(7)

Proof. This theorem is a generalization of Theorem 4 from [8]. The proof given in [8] works in
the case under consideration, because it only uses the homotopy properties of diagram (5). �

Recall (see [8, 10]) that each universal spectrum square generates a commutative diagram of
exact sequences. To show this, it suffices to write out the homotopy long exact sequences for all
maps of the square and apply the natural homotopy equivalence of the cofibers (fibers) of the
parallel maps.

Similarly to diagram (5), we can construct an infinite diagram of spectra whose rows are gen-
erated by the horizontal maps (3) and columns, by the transfer maps i!γ and j!γ for (3) at the
spectrum level [10].
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We define the spectrum LPA(Φ) (see [10]) as the homotopy fiber of one of the maps

ΩL(f∗)→ L(i!γ), L(Sγ)→ L(P ), ΩL(j!γ)→ L(gγ∗). (8)

Theorem 2. The following universal squares of spectra arise:

ΩL(R) −−−−→ ΩL(P )� �
L(i!γ) −−−−→ LPA(Φ)

,

ΩL(Qγ) −−−−→ ΩL(gγ∗)� �
ΩL(P ) −−−−→ LPA(Φ)

,

Ω2L(Φ!γ) −−−−→ ΩL(i!γ)� �
ΩL(gγ∗) −−−−→ LPA(Φ)

,

LPA(Φ) −−−−→ ΩL(Q)� �
L(Sγ) −−−−→ ΩL(j)

.

(9)

Proof. This theorem is a generalization of Theorems 3.3 and 4.2 from [10] to the case in which the
horizontal maps in Φ are not epimorphisms. The first three universal squares are constructed by
analogy with the squares mentioned in Theorem 1. According to [9], for the quadratic extensions
determined by the vertical maps of the square Φ, there exist commutative diagrams of exact
sequences realized at the spectrum level [13]. The existence of the universal square (9) follows if
we consider the map of these diagrams induced by the horizontal maps of the square Φ. �

Thus the groups

LSAi(Φ)
def
= πi(LSA(Φ))

are a natural algebraic generalization of the groups of obstructions to splitting along one-sided
submanifolds. Similarly, the groups

LPAi(Φ)
def
= πi(LPA(Φ))

are a natural generalization of the groups of obstructions to the surgeries determined by pairs of
manifolds to the case of geometric diagrams of groups. The results obtained in [7, 8, 10] imply
that the groups constructed and the maps in the diagrams given by Theorems 1 and 2 coincide
with the geometrically defined ones if the square Φ is obtained from the geometric diagram (1) by
passing to group rings over Z with standard involution.

Consider the application of the groups introduced in this paper to the study of the natural maps
in L-theory. The most complete results on constructing L-groups of finite groups and natural maps
were obtained by the methods of Wall (see [17, 11, 12, 18]), where an important role is played by
various localization maps. Thus, in constructing the Wall groups of finite groups, the key role is

played by the map Z[π]→ Ẑ2[π] , where π is a finite group (see [11, 12, 15, 17, 18]). Recall that all
group rings are assumed to be endowed with the standard involution Σag → w(g)g−1 for g ∈ π .

An arbitrary embedding of groups i : π → G of index 2 determines the morphism of quadratic
extensions

Ψ =



Z[π] −−−−→ Ẑ2[π]�i �ı̂
Z[G] −−−−→ Ẑ2[G]


 .

Thus the spectra LSA(Ψ) and LPA(Ψ) in the universal spectrum squares mentioned in Theorems 1
and 2 are defined.
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Each of these spectrum squares yields a commutative diagram of exact sequences of Wall groups
in which the upper and lower rows are chain complexes with isomorphic homology groups.

For the embedding i , the Browder–Livesay groups LNn(π → G) , where n = 0, 1, 2, 3 mod 4,
are defined. These groups have an algebraic analog for quadratic extensions of antistructures

Ẑ2[π] → Ẑ2[G] ; we denote it by LNn(π → G)2 (see [4, 9]). Let G− be the group G with the
orientation changed outside π . Theorem 1 implies the following result.

Corollary. The following two-row diagrams arise:

→ Ln+1(Z[G−]) → Ln+2(̂ı) → Ln+2(Ψ) →
| | |

→ Ln+3(Ψ) → LNn(π → G) → Ln(Z[G−]) →
,

→ Ln+1(Z[G−]) → Ln+2(̂ı) → LNn(π → G)2 →
| | |

→ LNn+1(π → G)2 → Ln+1(Z[G]→ Ẑ2[G]) → Ln(Z[G−]) →
,

→ LNn+1(π → g)2 → Ln+1(Z[G]→ Ẑ2[G]) → Ln+2(Ψ) →
| | |

→ Ln+3(Ψ) → LNn(π → G) → LNn(π → G)2 →
,

whose rows are chain complexes with isomorphic homology groups.

Theorem 2 has a similar corollary.
The results obtained in this paper give much information about the groups LY and Lp of finite

groups. The relative groups L∗(Z[π]→ Ẑ2[π]) , L∗(Ψ) , and L∗(Z[G±]→ Ẑ2[G±]) for finite groups
are rather effectively described in [11, 17, 18].
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