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ABSTRACT
In this paper, we examine the existence of multiple solutions of parametric
fractional equations involving the square root of the Laplacian A1/2 in a
smooth boundeddomain� ⊂ R

n (n ≥ 2) andwithDirichlet zero-boundary
conditions, i.e. {

A1/2u = λf (u) in �

u = 0 on ∂�.

The existence of at least three L∞-bounded weak solutions is established
for certain values of the parameter λ requiring that the nonlinear term f is
continuous andwith a suitablegrowth.Our approach is basedonvariational
arguments and a variant of Caffarelli–Silvestre’s extension method.
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1. Introduction

In this paper, we study under the variational viewpoint the existence of multiple (weak) solutions of
the following nonlocal problem

{
A1/2u = λβ(x)f (u) in �

u = 0 on ∂�, (Pλ)

where � is a bounded open subset of R
n (n ≥ 2) with Lipschitz boundary ∂�, λ is a positive real

parameter and β : � → R is a function belonging to L∞(�) and satisfying

β0 := essinf
x∈�

β(x) > 0. (1)

The fractional operator A1/2 that appears in (Pλ) is defined using the approach developed in the
pioneering works of Caffarelli and Silvestre [1], Caffarelli and Vasseur [2], Cabré and Tan [3], to
which we refer in Section 2 for the precise mathematical description and related properties. As it
was pointed out in [3], the fractions of the Laplacian, like the square root of the Laplacian A1/2,
are the infinitesimal generators of Lévy stable diffusion processes and they appear, among the other
things, in anomalous diffusions in plasmas, flames propagation, population dynamics, geophysical
fluid dynamics, and American options in finance.
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© 2016 Informa UK Limited, trading as Taylor & Francis Group
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Elliptic equations involving fractional powers of the Laplacian have recently been treated in
[4–9] (see also the references therein). In particular, Cabré and Tan [3] have studied the existence,
non-existence, and regularity of positive solutions of problem (Pλ) with power-type nonlinearities,
together with à priori estimates of Gidas–Spruck type and symmetry results of Gidas–Ni–Nirenberg
type. Along the same direction, we mention the paper by Tan [10].

In the current context, regarding the nonlinear term, we assume that f : R → R is continuous
and

there exist two non-negative constants a1, a2 and q ∈ (
1, 2n/(n − 1)

)
such that

|f (t)| ≤ a1 + a2|t|q−1 (2)

for every t ∈ R;

the potential F(t) :=
∫ t

0
f (ξ)dξ satisfies the sign-condition

inf
t∈[0,+∞)

F(t) ≥ 0, (3)

in addition to some technical, yet central algebraic assumptions that will be stated later on (see (31)).
A special case of our main result, which ensures the multiplicity of positive solutions when λ is

big enough, reads as follows:
Theorem 1.1: Let r > 0 and denote

�0
r := {(x, 0) ∈ ∂R

n+1+ : |x| < r},

where ∂R
n+1+ := R

n × (0,+∞) and n ≥ 2. Let f : [0,+∞) → R be a continuous function such that

f (t) ≤ a2tm

for all t ∈ [0,+∞) and for some m ∈ (
1, (n + 1)/(n − 1)

)
. Furthermore, assume that there is ζ > 0

such that f (t) > 0 for every t ∈ (0, ζ ) and f (ζ ) = 0.
Then, there exists λ	 > 0 such that, for every λ > λ	, the following nonlocal problem

⎧⎨
⎩
A1/2u = λβ(x)f (u) in �0

r
u > 0 on �0

r
u = 0 on ∂�0

r ,
(4)

admits at least two distinct weak solutions u1,λ, u2,λ ∈ L∞(�0
r ) ∩ H1/2

0 (�0
r ).

The above theorem is the fractional analogue, on the n-dimensional Euclidean ball, of a classical
multiplicity result due to Ambrosetti & Rabinowitz (see [11, Theorem 2.32]).

In themore general Theorem3.4, we determine a precise (bounded) interval of positive parameters
λ for which the nonlocal problem (Pλ) admits at least three L∞-bounded weak solutions in a
suitable fractional Sobolev space X1/2

0 (�) (see Section 2). Such a result is proved by exporting certain
variational techniques to the fractional framework. Indeed, following the paper [3] we first transform
problem (Pλ) to a local problem in a cylinder C�, using the notion of harmonic extension and
the Dirichlet-to-Neumann map on � (cf. Section 2). Successively, we study the existence of critical
points of the energy functional Jλ associated with the extended problem. A local minimum result
for differentiable functionals ([12]), the classical minimization technique and a critical point result
due to Pucci and Serrin ([13, Theorem 4]) are the abstract tools behind the existence of such critical
points.
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Indeed, the first weak solution turns out to be a local minimum w1,λ for the energy functional Jλ

(Proposition 3.1); the second one, say w2,λ, is obtained as a global minimum of Jλ as a byproduct
of the sequential weak lower semicontinuity and coercivity of Jλ. Finally, thanks to Propositions 3.2
and 3.3, we are able to distinguish them, that is w1,λ 	= w2,λ, and since Jλ fulfills the Palais–Smale
condition, Pucci–Serrin’s result guarantees the existence of a third critical point w3,λ /∈ {w1,λ,w2,λ}
(see Theorem 3.4). The traces of these solutions give back three weak solutions to (Pλ) that are
bounded in L∞(�) owing to [3, Theorem 5.2].

The paper is structured as follows. In Section 2, we introduce notation, preliminary notions, and
variational framework. In Section 3, we state and prove our main result with some applications.

2. Preliminaries

We start by recalling the functional space setting naturally associated with (Pλ), first introduced in
[3]; we also refer to the recent book [14], as well as [15], for detailed accounts on Sobolev spaces of
fractional order.

2.1. Fractional Sobolev spaces

The power A1/2 of the Laplace operator −
 in a bounded domain � with zero-boundary conditions
is defined via the spectral decomposition, using the powers of the eigenvalues of the original operator.
Hence, according to classical results on positive operators in�, if

{
(ϕj, λj)

}
j∈N

are the eigenfunctions
and eigenvalues of the usual linear Dirichlet problem{−
u = λu in �

u = 0 on ∂�, (5)

then
{(

ϕj, λ
1/2
j

)}
j∈N

are the eigenfunctions and eigenvalues of the corresponding fractional one:

{
A1/2u = λu in �

u = 0 on ∂�.
(6)

As usual, we consider each eigenvalue λj repeated according to its (finite) multiplicity,

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ λj+1 ≤ · · ·

It is well known that λj → +∞ as j → +∞. Moreover, we can suppose the eigenfunctions {ϕj}j∈N

are normalized as follows:∫
�

|∇ϕj(x)|2dx = λj

∫
�

|ϕj(x)|2dx = λj, ∀ j ∈ N,

and ∫
�

∇ϕi(x) · ∇ϕj(x)dx =
∫

�

ϕi(x)ϕj(x)dx = 0, ∀ i 	= j.

Finally, standard regularity arguments ensure that ϕj ∈ C2(�) for every j ∈ N.
The operator A1/2 turns out to be well defined on the Sobolev space

H1/2
0 (�) :=

⎧⎨
⎩u ∈ L2(�) : u =

∞∑
j=1

ajϕj and
∞∑
j=1

a2j λ
1/2
j < +∞

⎫⎬
⎭ ,

endowed with the norm
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‖u‖H1/2
0 (�)

:=
⎛
⎝ ∞∑

j=1

a2j λ
1/2
j

⎞
⎠

1/2

,

and it has the following form

A1/2u :=
∞∑
j=1

ajλ
1/2
j ϕj, ∀u ∈ H1/2

0 (�).

2.2. The extension problem

Associated with the bounded domain �, let us consider the cylinder

C� := {(x, y) : x ∈ �, y > 0} ⊂ R
n+1+ ,

and denote by ∂LC� := ∂� × [0,+∞) its lateral boundary.
For a function u ∈ H1/2

0 (�) define the harmonic extension E(u) to C� as the solution of the
problem ⎧⎨

⎩
div (∇E(u)) = 0 in C�

E(u) = 0 on ∂LC�

Tr(E(u)) = u on �,
(7)

where
Tr(E(u))(x) := E(u)(x, 0), ∀ x ∈ �.

The extension function E(u) belongs to the Hilbert space

X1/2
0 (C�) :=

{
w ∈ L2(C�) : w = 0 on ∂LC�,

∫
C�

|∇w(x, y)|2 dxdy < +∞
}
,

equipped with the standard norm

‖w‖X1/2
0 (C�)

:=
(∫

C�

|∇w(x, y)|2 dxdy
)1/2

,

which can also be characterized as follows:

X1/2
0 (C�) =

⎧⎨
⎩w ∈ L2(C�) : w =

∞∑
j=1

bjϕje
−λ

1/2
j y with

∞∑
j=1

b2j λ
1/2
j < +∞

⎫⎬
⎭ ,

see [3, Lemma 2.10].
In our framework, a crucial relationship between the spaces X1/2

0 (C�) and H1/2
0 (�) introduced

above is played by the trace operator Tr : X1/2
0 (C�) → H1/2

0 (�) defined by

Tr(w)(x) := w(x, 0), ∀ x ∈ �,

which turns out to be a continuous map (see [3, Lemma 2.6]). We also notice that

H1/2
0 (�) =

{
u ∈ L2(�) : u = Tr(w) for some w ∈ X1/2

0 (C�)
}

⊂ H1/2(�),

and that the extension operator E : H1/2
0 (�) → X1/2

0 (C�) is an isometry, i.e.

‖E(u)‖X1/2
0 (C�)

= ‖u‖H1/2
0 (�)

,
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for every u ∈ H1/2
0 (�). Here, H1/2(�) denotes the Sobolev space of order 1/2 defined by

H1/2(�) :=
{
u ∈ L2(�) :

∫
�×�

|u(x) − u(y)|2
|x − −y|n+1 dxdy < +∞

}
,

with the norm

‖u‖H1/2(�) :=
(∫

�×�

|u(x) − u(y)|2
|x − −y|n+1 dxdy +

∫
�

|u(x)|2dx
)1/2

.

Clearly, for every w ∈ X1/2
0 (C�) the following trace inequality holds

‖Tr(w)‖H1/2
0 (�)

≤ ‖w‖X1/2
0 (C�)

, (8)

while, due to [3, Lemmas 2.4 and 2.5], the embedding Tr(X1/2
0 (C�)) ↪→ Lp(�) is continuous for any

p ∈ [1, 2] and compact whenever p ∈ [1, 2), where 2 := 2n/(n − 1) denotes the fractional critical
Sobolev exponent. Thus, if p ∈ [1, 2], then there exists a positive constant cp (depending on p, n and
|�|) such that (∫

�

|Tr(w)(x)|pdx
)1/p

≤ cp
(∫

C�

|∇w(x, y)|2 dxdy
)1/2

, (9)

for every w ∈ X1/2
0 (C�).

As we have briefly outlined in the introduction, we will adopt the following equivalent definition
of the square root of the Laplacian (see, for instance, [3–5]). Using the extension E(u) ∈ X1/2

0 (C�) of
a function u ∈ H1/2

0 (�), i.e. the solution of (7), the fractional operator A1/2 in � acting on u agrees
with the map

A1/2u(x) := − lim
y→0+

∂E(u)(x, y)
∂y

∀ x ∈ �,

i.e.
A1/2u(x) = ∂E(u)(x, 0)

∂ν
∀ x ∈ �,

where ν is the unit outer normal to C� at � × {0}.
2.3. Weak solutions

Fix λ > 0 and assume that f : R → R is continuous and satisfies (2). We say that a function
u = Tr(w) ∈ H1/2

0 (�) is a weak solution of (Pλ) if w ∈ X1/2
0 (C�) weakly solves

⎧⎪⎨
⎪⎩

− div (∇w) = 0 in C�

w = 0 on ∂LC�

∂w
∂ν

= λβ(x)f (Tr(w)) on �,
(10)

i.e. ∫
C�

〈∇w,∇ϕ〉dxdy = λ

∫
�

β(x)f (Tr(w)(x))Tr(ϕ)(x)dx, (11)

for every ϕ ∈ X1/2
0 (C�).

As direct computations prove, Equation (11) represents the variational formulation of (10) and
the energy functional Jλ : X1/2

0 (C�) → R associated with (11) is defined by

Jλ(w) := 1
2

∫
C�

|∇w(x, y)|2 dxdy − λ

∫
�

β(x)F(Tr(w)(x))dx, (12)
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for every w ∈ X1/2
0 (C�). Indeed, under our assumptions on the nonlinear term, it is straightforward

to show that Jλ is well defined and of class C1 in X1/2
0 (C�) and that its critical points are exactly the

weak solutions of problem (10). The traces of such critical points being weak solutions of (Pλ), we
can employ methods from critical point theory to attack problem (Pλ).

To this end, the following abstract theorem due to Ricceri (see [12]), restated here in a more
convenient form, plays a key role in our study.
Theorem 2.1: Let X be a reflexive real Banach space, and let �,� : X → R be two Gâteaux
differentiable functionals such that� is strongly continuous, sequentially weakly lower semicontinuous,
and coercive. Furthermore, assume that � is sequentially weakly upper semicontinuous. For every
r > infX �, put

ϕ(r) := inf
w∈�−1((−∞,r))

(
sup

z∈�−1((−∞,r))
�(z)

)
− �(w)

r − �(w)
.

Then, for each r > infX � and each λ ∈ (
0, 1/ϕ(r)

)
, the restriction of Jλ := �−λ� to�−1((−∞, r))

admits a global minimum, which is a critical point (local minimum) of Jλ in X.
In addition to the above result, the following classical theorem by Pucci and Serrin (see [13,

Theorem 4] and [11, Theorem 3.10]) will allow us to deduce the existence of a further critical point.
Theorem 2.2: Let J : X → R be a C1-functional satisfying the (Palais− Smale/ condition. If J has a
pair of local minima or maxima, then J admits a third critical point.

For the sake of completeness we recall that, if X is a real Banach space, a C1-functional J : X → R

is said to satisfy the Palais–Smale condition at level μ ∈ R when

(PS)μ Every sequence {zj}j∈N ⊂ X such that

J(zj) → μ and ‖J ′(zj)‖X∗ → 0

as j → +∞, possesses a convergent subsequence in X.

Here, X∗ denotes the topological dual of X. We say that J satisfies the Palais–Smale condition
((PS/ for short) if (PS)μ holds for every μ ∈ R.

3. Themain result

Define the functionals �,� : X1/2
0 (C�) → R, naturally associated with (Pλ), by

�(w) := 1
2
‖w‖2

X1/2
0 (C�)

, �(w) :=
∫

�

β(x)F(Tr(w)(x))dx, ∀w ∈ X1/2
0 (C�).

Clearly, � is a coercive, continuously Gâteaux-differentiable and sequentially weakly lower semi-
continuous functional. On the other hand, � is well defined, continuously Gâteaux-differentiable
and, on account of (2) and the compactness of the embedding Tr(X1/2

0 (C�)) ↪→ Lp(�), p ∈ [1, 2),
also weakly continuous in X1/2

0 (C�).
It is easy to deduce that

�′(w)(ϕ) =
∫

C�

〈∇w,∇ϕ〉dxdy, and � ′(w)(ϕ) =
∫

�

β(x)f (Tr(w)(x))Tr(ϕ)(x)dx, (13)

for every ϕ ∈ X1/2
0 (C�).

The aim of this section is to establish a precise interval of values of the parameter λ for which the
functional Jλ admits at least three critical points.
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To this end, fix a point x0 ∈ � and choose τ > 0 so that

B(x0, τ) := {x ∈ R
n : |x − x0| < τ } ⊆ �. (14)

Define also
g (n)
� := 2n − 1

2n−1 τn−2ωn, h(n)
� := g (n)

� + |�|
8

,

and

K1 :=
√
2c1h

(n)
� ‖β‖∞

ωnβ0

(
2
τ

)n
, K2 := 2q/2cqqh

(n)
� ‖β‖∞

qωnβ0

(
2
τ

)n
,

where

ωn := πn/2

�
(
1 + n

2

)
denotes the Lebesgue measure of the unit ball in R

n and

�(t) :=
∫ +∞

0
zt−1e−zdz, ∀t > 0,

is the classical gamma function.
Theorem 3.1: Let f : R → R be a function satisfying (2). Then for every γ > 0 and every λ < μ2,
with

μ2 := 2n

τnωnβ0

(
h(n)

� γ

a1K1 + a2K2γ q−1

)
, (15)

there exists a local minimum w1,λ ∈ �−1(( − ∞, γ 2)) of Jλ in X1/2
0 (C�).

Proof: Owing to the growth condition (2), one has

F(t) ≤ a1|t| + a2
q

|t|q, (16)

for every t ∈ R. With the idea of using Theorem 2.1, let us consider the function

χ(r) :=
sup

z∈�−1((−∞,r])
�(z)

r
,

with r ∈ (0,+∞). It follows from (16) and (9) that, for each z ∈ X1/2
0 (C�),

�(z) =
∫

�

β(x)F(Tr(z)(x))dx

≤
(
a1‖Tr(z)‖L1(�) + a2

q
‖Tr(z)‖qLq(�)

)
‖β‖∞

≤
(
a1c1‖z‖X1/2

0 (C�)
+ a2

q
cqq‖z‖qX1/2

0 (C�)

)
‖β‖∞

and therefore

sup
z∈�−1((−∞,r])

�(z) ≤ √
2ra1c1‖β‖∞ + (2r)q/2a2c

q
q

q
‖β‖∞. (17)
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The above inequality yields

χ(r) ≤
√
2
r
a1c1‖β‖∞ + 2q/2a2c

q
q

q
rq/2−1‖β‖∞ (18)

for every r > 0 and therefore

χ(γ 2) =
sup

z∈�−1((−∞,γ 2])
�(z)

γ 2 ≤ √
2
a1c1
γ

‖β‖∞ + 2q/2a2c
q
q

q
γ q−2‖β‖∞

= β0
τn

2n
ωn

h(n)
�

(
a1

K1

γ
+ a2K2γ

q−2
)

= 1
μ2

.

Now, bearing in mind that 0 ∈ �−1(( − ∞, γ 2)) and �(0) = �(0) = 0, we observe that

ϕ(γ 2) := inf
w∈�−1((−∞,γ 2))

(
sup

z∈�−1((−∞,γ 2))

�(z)

)
− �(w)

γ 2 − �(w)
≤ χ(γ 2)

and thus

λ ∈ (0,μ2) ⊆ (0, 1/ϕ(γ 2)).

Then, in the light of Theorem 2.1, there exists a function w1,λ ∈ �−1(( − ∞, γ 2)) such that

J ′
λ(w1,λ) = �′(w1,λ) − λ� ′(w1,λ) = 0

and, in particular, w1,λ is a global minimum of the restriction of Jλ to �−1(( − ∞, γ 2)). This
completes the proof. �

For the sequel, we need to define suitable test functions in the space X1/2
0 (C�). Take two positive

constants γ and � such that
� >

γ√
g (n)
�

(19)

and define the truncated cones ω
�
τ : � → R as follows:

ω�
τ (x) :=

⎧⎪⎨
⎪⎩
0 if x ∈ � \ B(x0, τ)
2�
τ

(
τ − |x − x0|

)
if x ∈ B(x0, τ) \ B(x0, τ/2)

� if x ∈ B(x0, τ/2).

It is easily seen that

∫
�

|∇ω�
τ (x)|2 dx =

∫
B(x0,τ)\B(x0,τ/2)

4�2

τ 2
dx

= 4�2

τ 2
(|B(x0, τ)| − |B(x0, τ/2)|)

= 4�2ωnτ
n−2

(
1 − 1

2n

)
.

(20)
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Let

w�
τ (x, y) := e−

y
2 ω�

τ (x), ∀(x, y) ∈ C�.

Clearly, w�
τ ∈ X1/2

0 (C�) and, since

|∇w�
τ (x, y)|2 = e−y|∇ω�

τ (x)|2 + 1
4
e−y|ω�

τ (x)|2, ∀(x, y) ∈ C�

it follows that

‖w�
τ ‖2

X1/2
0 (C�)

:=
∫

C�

|∇w�
τ (x, y)|2 dxdy

=
∫

C�

e−y|∇ω�
τ (x)|2 dxdy + 1

4

∫
C�

e−y|ω�
τ (x)|2 dxdy

=
∫ +∞

0
e−ydy

(∫
�

|∇ω�
τ (x)|2 dx + 1

4

∫
�

|ω�
τ (x)|2 dx

)

=
∫

�

|∇ω�
τ (x)|2 dx + 1

4

∫
�

|ω�
τ (x)|2 dx.

(21)

Thus, (20) and (21) provide the estimate

4ωnτ
n−2

(
1 − 1

2n

)
�2 ≤ ‖w�

τ ‖2
X1/2
0 (C�)

≤
(
4ωnτ

n−2
(
1 − 1

2n

)
+ |�|

4

)
�2. (22)

Define

μ1 :=
(

2nh(n)
�

ωnτnβ0

)
�2

F(�)
.

Proposition 3.2: The following inequality holds

�(w�
τ ) > γ 2. (23)

In addition, assuming that μ1 < μ2 and λ ∈ (μ1,μ2), one has

�(w�
τ ) − λ�(w�

τ ) < γ 2 − λ sup
w∈�−1((−∞,γ 2])

�(w). (24)

Proof: The estimate (23) follows at once from (19) and (22).
From (3) we infer ∫

�

β(x)F(Tr(w�
τ )(x)) dx ≥ β0ωn

τn

2n
F(�), (25)

which, together with (22), gives

�(w�
τ )

�(w�
τ )

≥ β0
ωn

h(n)
�

τn

2n
F(�)

�2 . (26)

Since μ1 < λ < μ2, we obtain

χ(γ 2) ≤ 1
μ2

<
1
λ
<

1
μ1

≤ �(w�
τ )

�(w�
τ )
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and therefore
�(w�

τ ) − sup
w∈�−1((−∞,γ 2])

�(w)

�(w�
τ ) − γ 2

≥
�(w�

τ ) − γ 2�(w�
τ )

�(w�
τ )

�(w�
τ ) − γ 2

= �(w�
τ )

�(w�
τ )

≥ 1
μ1

>
1
λ

.

(27)

This implies inequality (24) and the proof is thus completed. �
Associated with γ let us consider, for every w ∈ X1/2

0 (C�), the following truncated functional

J (γ )
λ (w) :=

{
γ 2 − λ�(w) if w ∈ �−1(( − ∞, γ 2])
Jλ(w) if w /∈ �−1(( − ∞, γ 2]).

Fixing λ > 0, since J (γ )
λ is sequentially weakly lower semicontinuous and coercive on the Hilbert

space X1/2
0 (C�), it will attain a global minimum w2,λ, that is:

J (γ )
λ (w2,λ) ≤ J (γ )

λ (w), ∀w ∈ X1/2
0 (C�). (28)

The next result states the impossibility for w2,λ to lie in the ball B(0,
√
2γ ) when λ ∈ (μ1,μ2).

Theorem 3.3: Assume λ ∈ (μ1,μ2). Then,

w2,λ /∈ �−1(( − ∞, γ 2])

and J ′
λ(w2,λ) = 0, i.e. w2,λ ∈ X1/2

0 (C�) is a critical point of Jλ.
Proof: Pick λ ∈ (μ1,μ2) and, arguing by contradiction, assume that

w2,λ ∈ �−1(( − ∞, γ 2]).

In view of (28) it follows that
γ 2 − λ�(w2,λ) ≤ Jλ(w�

τ ), (29)

while due to Proposition 3.2, one has

Jλ(w�
τ ) < γ 2 − λ�(w2,λ). (30)

Collecting inequalities (29) and (30), we get the desired contradiction. �
We are now in position to prove our main result.

Theorem 3.4: Let� be an open bounded set of Rn (n ≥ 2) with Lipschitz boundary ∂�, β : � → R

an L∞-map satisfying (1) and f : R → R a continuous function satifying (2) and (3). Furthermore,
assume that the following algebraic inequality holds

F(�)

�2 > a1
K1

γ
+ a2K2γ

q−2 (31)

for some �, γ > 0 satifying (19), in addition to

F(t) ≤ b(1 + |t|l) (32)

for all t ∈ R and for some positive constants b and l < 2.
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Then for eachλ ∈ (μ1,μ2), problem (Pλ) has at least threeweak solutions u1,λ, u2,λ, u3,λ ∈ L∞(�)∩
H1/2
0 (�).

Proof: It is easy to verify that condition (31) forces μ1 < μ2. Then fixing λ ∈ (μ1,μ2) and
appealing to Theorems 3.1 and 3.3, we can deduce the existence of the first two solutions, recalling
that uj,λ = Tr(wj,λ), j = 1, 2. The nature of local minima of the functions w1,λ, w2,λ permits us to
apply Theorem 2.2. Let us show that Jλ satisfies (PS)μ for μ ∈ R. Let {wj}j∈N ⊂ X1/2

0 (C�) satisfy

Jλ(wj) → μ and ‖J ′
λ(wj)‖∗ → 0

as j → +∞, where

‖J ′
λ(wj)‖∗ := sup

{∣∣〈J ′
λ(wj),ϕ〉∣∣ : ϕ ∈ X1/2

0 (C�) and ‖ϕ‖X1/2
0 (C�)

= 1
}
.

Since l < 2, for every w ∈ X1/2
0 (C�) one has |Tr(w)|l ∈ L2/l(�) and combined with Hölder’s

inequality this gives
∫

�

|Tr(w)(x)|ldx ≤ |�| 2−l
2 ‖Tr(w)‖lL2(�)

∀w ∈ X1/2
0 (C�)

and, by (9), ∫
�

|Tr(w)(x)|ldx ≤ cl2|�| 2−l
2 ‖w‖l

X1/2
0 (C�)

∀w ∈ X1/2
0 (C�). (33)

In the light of inequalities (32) and (33), we get

Jλ(w) ≥ 1
2
‖w‖2

X1/2
0 (C�)

− λbcl2‖β‖∞|�| 2−l
2 ‖w‖l

X1/2
0 (C�)

− λb‖β‖∞|�| ∀w ∈ X1/2
0 (C�),

and therefore Jλ is bounded from below and Jλ(w) → +∞ as ‖w‖X1/2
0 (C�)

→ +∞. This allows

us to deduce that the sequence {wj}j∈N is bounded in X1/2
0 (C�). Since X1/2

0 (C�) is reflexive we can
extract a subsequence, for simplicity denoted again {wj}j∈N, such that wj⇀w∞ in X1/2

0 (C�), i.e.

∫
C�

〈∇wj,∇ϕ〉dxdy →
∫

C�

〈∇w∞,∇ϕ〉dxdy (34)

as j → +∞ for any ϕ ∈ X1/2
0 (C�).

We will prove that wj → w∞ as j → +∞. Keeping (13) in mind, one has

〈�′(wj),wj − w∞〉 = 〈J ′
λ(wj),wj − w∞〉 + λ

∫
�

β(x)f (Tr(wj)(x))Tr(wj − w∞)(x)dx, (35)

where

〈�′(wj),wj − w∞〉 =
∫

C�

|∇wj(x, y)|2 dxdy −
∫

C�

〈∇wj,∇w∞〉dxdy.

Since ‖J ′
λ(wj)‖∗ → 0 and the sequence {wj−w∞}j∈N is bounded inX1/2

0 (C�), taking into account
the fact that |〈J ′

λ(wj),wj − w∞〉| ≤ ‖J ′
λ(wj)‖∗‖wj − w∞‖X1/2

0 (C�)
, one has

〈J ′
λ(wj),wj − w∞〉 → 0 (36)
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as j → +∞. Furthermore, by (2) and Hölder’s inequality one has
∫

�

β(x)|f (Tr(wj)(x))||Tr(wj − w∞)(x)|dx ≤ a1 ‖β‖∞
∫

�

|Tr(wj − w∞)(x)|dx

+ a2 ‖β‖∞
∫

�

|Tr(wj)(x)|q−1|Tr(wj − w∞)(x)|dx
≤ a1 ‖β‖∞

∥∥Tr(wj − w∞)
∥∥
1

+ a2 ‖β‖∞
∥∥Tr(wj)

∥∥q−1
q

∥∥Tr(wj − w∞)
∥∥
q .

Since the embeddings Tr(X1/2
0 (C�)) ↪→ L1(�), Tr(X1/2

0 (C�)) ↪→ Lq(�) are compact, we obtain
∫

�

β(x)|f (Tr(wj)(x))||Tr(wj − w∞)(x)|dx → 0 (37)

as j → +∞.
Relations (36) and (37) force

〈�′(wj),wj − w∞〉 → 0 (38)

as j → +∞ and hence
∫

C�

|∇wj(x, y)|2 dxdy −
∫

C�

〈∇wj,∇w∞〉dxdy → 0 (39)

as j → +∞. Thus it follows by (34) and (39) that

lim
j→+∞

∫
C�

|∇wj(x, y)|2 dxdy =
∫

C�

|∇w∞(x, y)|2 dxdy,

as desired, and the third solution of (Pλ) is obtained as well. Finally, due to (2) and the essential
boundedness of β , by [3, Theorem 5.2], we get ui,λ := Tr(wi,λ) ∈ L∞(�) for i ∈ {1, 2, 3}. �

As a corollary of the previous result, we can deduce Theorem 1.1 stated in the introduction.
Proof of Theorem 1.1: Let us consider the non-negative continuous function f 	 : R → R defined
by

f 	(t) :=
⎧⎨
⎩
f (t) if 0 < t ≤ ζ

0 otherwise,

and apply Theorem 3.4 to the problem
⎧⎨
⎩
A1/2u = λβ(x)f 	(u) in �0

r
u > 0 on �0

r
u = 0 on ∂�0

r .

(40)

Now, fixing

λ >
2nh(n)

�

ωnτnβ0
inf

0<�≤ζ

�2

F(�)

there exists �̄ > 0 such that

λ >
2nh(n)

�

ωnτnβ0

�̄2

F(�̄)
.
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If we take

γ < min

⎧⎨
⎩
√
g (n)
� �̄,

(
2nh(n)

�

a2ωnτnβ0K2λ

)1/(m−1)
⎫⎬
⎭ ,

it is easily seen that all the assumptions of Theorem 3.4 are satisfied. Hence, there exist at least two
weak solutions of problem (40) and, in turn, of problem (4). �
Remark 3.5: We point out that the operator A1/2 we considered here is not to be confused with the
integro-differential operator defined, up to a constant, by

( − 
)1/2u(x) := −
∫

Rn

u(x + y) + u(x − −y) − 2u(x)
|y|n+1 dy, ∀ x ∈ R

n.

In fact, Servadei and Valdinoci in [16] showed that these two operators, though often denoted the
same way, are really different, with eigenvalues and eigenfunctions behaving quite differently (see
also Musina and Nazarov [17]). Moreover, as pointed out in the introduction, we emphasize that our
(technical) approach completely relies upon Theorem 2.1 and some classical critical point theorems
and does not require any of the abstract results of [18].
Remark 3.6: The techniques adopted in this paper are still valid if we consider the more general
problem: {

Aα/2u = λβ(x)f (u) in �

u = 0 on ∂�, (Pα,λ)

with α ∈ (0, 2). The operator Aα/2 is defined by

Aα/2u(x) := −κα lim
y→0+ y1−α ∂Eα(u)(x, y)

∂y
∀ x ∈ �,

where u belongs to the space

Hα/2
0 (�) :=

⎧⎪⎨
⎪⎩u ∈ L2(�) : u =

∞∑
j=1

ajϕj and ‖u‖Hα/2
0 (�)

:=
⎛
⎝ ∞∑

j=1

a2j λ
α/2
j

⎞
⎠

1/2

< +∞

⎫⎪⎬
⎪⎭ ,

and its α-harmonic extension Eα(u) to the cylinder C� is the unique solution of the local problem⎧⎨
⎩
div (y1−α∇Eα(u)) = 0 in C�

Eα(u) = 0 on ∂LC�

Tr(Eα(u)) = u on �.

(41)

Such an extension lies in the space

Xα/2
0 (C�) :=

{
w ∈ L2(C�) : w = 0 on ∂LC�, ‖w‖Xα/2

0 (C�)
< +∞

}
,

where

‖w‖Xα/2
0 (C�)

:=
(

κα

∫
C�

y1−α|∇w(x, y)|2dxdy
)1/2

and

κα :=
�
(α

2

)
21−α�

(
1 − α

2

)
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is a normalization constant which makes the operator Eα : H1/2
0 (�) → X1/2

0 (C�) an isometry. As a
class of test functions in Xα/2

0 (C�) necessary for our approach one can choose

w�
τ (x, y) := 1 − e−αy

αy
ω�

τ (x), ∀(x, y) ∈ C�,

ω
�
τ being defined by (3).
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