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1. Introduction

It is well known that a great attention has been focused by many authors on the study of elliptic equations 
on fractal domains and in particular on the Sierpiński gasket. See, among others, the papers [6,5,9,10,7,8,12]
and [14,16–18,20,27,28], as well as the references therein, where the authors obtained several existence and 
multiplicity results for problems on fractal domains under different growth assumptions on the data.

Motivated by this large interest in the literature, we study here the existence of weak (strong) solutions 
for the following parametric problem

{
Δu(x) + α(x)u(x) = λf(x, u(x)) x ∈ V \ V0
u|V0 = 0,

(1.1)

where V stands for the Sierpiński gasket in (RN−1, | · |), N � 2, V0 is its intrinsic boundary (consisting of 
its N corners), Δ denotes the weak Laplacian on V , λ is a positive real parameter and α and f are suitable 
functions.

The elliptic equation (1.1) models some physical phenomena such as reaction–diffusion problems, elastic 
properties of fractal media and flow through fractal non-smooth domains and in all these cases the parameter 
λ has a specific interpretation. When considering problems with parameters the interest is, on one hand, 
finding solutions, and, on the other hand, studying how these solutions depend on them.

A natural question is whether or not classical existence results for equation (1.1) considered in bounded 
domains (see, for instance, [1,22,29] and references therein) still hold in the fractal framework. Our contri-
bution in this direction is stated in the following result:

Theorem 1.1. Let α ∈ L1(V ) be a function satisfying either

α(x) � 0 for a.e. x ∈ V (1.2)

or
∫
V

|α(x)|dμ <
1

(2N + 3)2 (1.3)

and let f : V × R → R be a continuous function such that

f(x, 0) �= 0 for any x ∈ V (1.4)

and

there are ν > 2 and r0 > 0 such that

tf(x, t) � νF (x, t) < 0 for any |t| � r0, x ∈ V,
(1.5)

where F is the potential given by

F (x, t) :=
t∫

0

f(x, s) ds for any (x, t) ∈ V × R . (1.6)

Then, for any � > 0 and any



G. Molica Bisci et al. / J. Math. Anal. Appl. 452 (2017) 883–895 885
0 < λ <
�

2 max
x ∈ V

|s| � κ
√
�

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣
, (1.7)

where

κ :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2N + 3 if (1.2) holds

2N + 3√√√√1 − (2N + 3)2
∫
V

|α(x)|dμ
if (1.3) holds, (1.8)

the problem (1.1) admits at least two non-trivial weak solutions one of which lies in

B� :=
{
u ∈ H1

0 (V ) : ‖u‖α <
√
�
}
.

Roughly speaking in Theorem 1.1 we prove that, for small values of the parameter λ, problem (1.1)
admits at least two non-trivial weak solutions, provided that the continuous and nonlinear term f satisfies 
the celebrated Ambrosetti–Rabinowitz condition without any additional growth assumptions at infinity. 
A simple model for f is given by the function

f(x, t) = −a(x)
(
t3 + 1

)
(1.9)

with a ∈ C(V ) and a > 0 in V .
The proof of Theorem 1.1 is based on variational techniques. This method is not trivial for consideration 

due to the fact that several difficulties which arise in the new geometrical context given by the Sierpiński 
gasket have to be overcome. In particular, some analytical properties on the Hilbert space H1

0(V ) need 
a special care (see Subsection 2.2 for the details). Also, we emphasize that the specific functional setting 
and techniques involved in handling fractal problems are different in comparison with those considered for 
classical Dirichlet problems.

Moreover, it is worth pointing out that the variational approach used to attack problems in fractal 
domains is not often easy to perform. For instance, in this setting there is no concept of a derivative for 
a function, and so we need to clarify the notion of Laplace operator on the fractal region: we would recall 
that this can be done explicitly only on some special fractals, such as, for instance, the Sierpiński gasket V . 
Once a Laplacian is constructed on V , we can use the Hilbert space H1

0 (V ) and its compactness properties 
in order to study our problem.

More precisely, the proof of Theorem 1.1 relies on an abstract theorem proved in [23], which is a joint 
application of the classical Pucci–Serrin Theorem (see [21]) and of a local minimum result obtained in [24]
(see also [2] for related topics). As described in the forthcoming Subsection 3.1 and Section 4, our approach 
here is based on checking that the energy functional Jλ associated to problem (1.1) satisfies some geometrical 
conditions and the classical Palais–Smale property. Thanks to Proposition 3.3, in contrast with the standard 
elliptic case, the compactness condition for Jλ is satisfied without recourse to growth assumptions on the 
nonlinear term f .

Finally, it is interesting to note that in our approach the behavior of the nonlinearity f at the origin 
is weaker than the one usually considered in the classical elliptic case and so Theorem 1.1 improves the 
paradigmatic application of the Mountain Pass Theorem for elliptic partial differential equations on smooth 
domains given in [29, Theorem 6.2] (see also [1,22]). Theorem 1.1 can be seen as the fractal counterpart 
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of [23, Theorem 4], where the author studied the existence of solutions for an elliptic PDE, under growth 
conditions weaker than the usual ones (of superlinear and subcritical type).

A special case of Theorem 1.1 reads as follows:

Theorem 1.2. Let α ∈ C(V ) satisfy (1.2) and let f : V × R → R be a continuous function satisfying (1.4), 
(1.5) and such that

there are positive constants M0 and β such that

max
(x,s)∈V×[−M0,M0]

|f(x, s)| � M0

2(β + 1)(2N + 3)2 .
(1.10)

Then, the following problem
{

Δu(x) + α(x)u(x) = f(x, u(x)) x ∈ V \ V0
u|V0 = 0

(1.11)

admits at least two strong non-trivial solutions one of which lies in BM2
0/(2N+3)2 .

It is easily seen that a similar result can be obtained under the assumption (1.3) in the weight α. We 
notice that Theorem 1.2 improves the conclusions of [14, Theorem 3.5], where, under hypotheses (1.5) and 
(1.10), the authors proved just the existence of at least one (non-trivial) strong solution for problem (1.11)
by employing the Mountain Pass Theorem. Moreover, in the same result no explicit information about the 
localization of the solution is provided. Finally, we observe that the function f given in (1.9) is a prototype 
for Theorem 1.2.

The plan of the present paper is as follows. Section 2 is devoted to the abstract framework and some 
preliminaries. In Section 3 we give the notion of weak and strong solution for problem (1.1) and its variational 
formulation. Later, in Section 4 we prove Theorem 1.1 and Theorem 1.2 and we give some final comments.

2. Abstract framework

In this section we briefly recall some basic facts on the Sierpiński gasket V and the functional space 
H1

0 (V ) firstly introduced in [14] (see also [5–10,20]).

2.1. The Sierpiński gasket V

Let N � 2 be a natural number and let p1, . . . , pN ∈ R
N−1 be so that |pi − pj | = 1 for i �= j. Define, for 

every i ∈ {1, . . . , N}, the map Si : RN−1 → R
N−1 by

Si(x) = 1
2 x + 1

2 pi .

Let S := {S1, . . . , SN} and denote by L : P(RN−1) → P(RN−1) the map assigning to a subset A of RN−1

the set

L(A) =
N⋃
i=1

Si(A). (2.1)

It is well known that there is a unique non-empty compact subset V of RN−1, called the attractor of the 
family S, such that L(V ) = V (see [13, Theorem 9.1]). The set V is called the Sierpiński gasket in RN−1 of 
intrinsic boundary V0 := {p1, . . . , pN}.
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Let μ be the restriction to V of the normalized logN/ log 2-dimensional Hausdorff measure Hd on RN−1, 
so that μ(V ) = 1 (see, for instance, Breckner, Rădulescu and Varga [7] for more details). Finally, we also 
recall the following property of μ which will be useful in the sequel:

μ(B) > 0, for every non-empty open subset B of V. (2.2)

For a nice and interesting introduction to fractal geometry we refer to the monograph [13].

2.2. Functional spaces on V

In what follows we denote by C(V ) the space of real-valued continuous functions on V and by

C0(V ) :=
{
u ∈ C(V ) : u|V0 = 0

}
.

The spaces C(V ) and C0(V ) are endowed with the usual norm ‖ · ‖∞.
For any function u : V∗ → R and m ∈ N, let

Wm(u) :=
(
N + 2
N

)m ∑
x,y∈Vm|x−y|=2−m

(u(x) − u(y))2, (2.3)

where Vm := L(Vm−1), L is as in (2.1) and V∗ :=
⋃

m∈N0

Vm.

Since Wm(u) � Wm+1(u) for any m ∈ N, we can construct the function W (u) as follows

W (u) := lim
m→∞

Wm(u). (2.4)

Now, let H1
0 (V ) be the space given by

H1
0 (V ) :=

{
u ∈ C0(V ) : W (u) < ∞

}
equipped with the norm

‖u‖ :=
√
W (u). (2.5)

We conclude this subsection dealing with the compactness properties of H1
0 (V ). With this respect, in our 

setting a key ingredient is given by the following Morrey-type inequality (see [14, Lemma 2.4] for details)

sup
x,y∈V∗

|u(x) − u(y)|
|x− y|σ � (2N + 3)

√
W (u), (2.6)

where

σ := log((N + 2)/N)
2 log 2 .

We would stress that the validity of inequality (2.6) is due to the peculiar geometry of the Sierpiński 
gasket V .

The Ascoli–Arzéla Theorem and (2.6) yield that the embedding

H1
0 (V ) ↪→ C0(V ) (2.7)
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is compact (see [16]). Moreover, we get the following estimate:

|u(x)| � (2N + 3)‖u‖ for any x ∈ V . (2.8)

Inequality (2.8) will be crucial in the proof of Theorem 1.1, as we will see in the sequel (see Remark 4.1).

3. Weak and strong solutions of problem (1.1)

In this section we give the notion of weak and strong solution for problem (1.1) and we deal with its 
variational nature. At this purpose we first give the notion of the Laplace operator on the Sierpiński gasket V .

Following Falconer and Hu [14] we can define in a standard way a linear self-adjoint operator Δ : H1
0 (V ) →

H−1(V ), where H−1(V ) is the closure of L2(V, μ) with respect to the pre-norm

‖u‖H−1(V ) := sup
h∈H1

0 (V )‖h‖=1

|〈u, h〉|,

and

〈v, h〉 =
∫
V

v(x)h(x)dμ for any v ∈ L2(V, μ) and h ∈ H1
0 (V ).

Note that H−1(V ) is a Hilbert space. Then, the relation

−W(u, v) = 〈Δu, v〉 for any v ∈ H1
0 (V ),

where

W(u, v) := lim
m→∞

(
N + 2
N

)m ∑
x,y∈Vm|x−y|=2−m

(u(x) − u(y))(v(x) − v(y))

denotes the inner product in H1
0 (V ), uniquely defines a function Δu ∈ H−1(V ) for every u ∈ H1

0 (V ). We 
call the operator Δ the weak Laplacian on V .

Now, we can give the notion of weak solution for problem (1.1). We say that a function u ∈ H1
0 (V ) is a 

weak solution of problem (1.1) if

W(u, v) −
∫
V

α(x)u(x)v(x)dμ + λ

∫
V

f(x, u(x))v(x)dμ = 0

for any v ∈ H1
0 (V ).

Remark 3.1. Note that if the standard Laplacian of a function u ∈ H1
0 (V ) exists, then this implies the 

existence of the weak Laplacian of u (see, for the sake of completeness, the paper [14]). Furthermore, if 
f and α are continuous, then [14, Lemma 2.16] yields that every weak solution of problem (1.1) is also a 
strong solution of it (see [14, Section 2 and Proposition 2.12]).

3.1. Variational framework of the problem

Problem (1.1) is of variational nature, indeed the natural energy functional associated with it is given by 
Jλ : H1

0 (V ) → R defined as
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Jλ(u) := W (u)
2λ

− 1
2λ

∫
V

α(x)|u(x)|2 dμ +
∫
V

F (x, u(x))dμ . (3.1)

Note that the functional Jλ is continuously Gâteaux differentiable at u ∈ H1
0 (V ) and one has

〈J ′
λ(u), v〉 = W(u, v)

λ
− 1

λ

∫
V

α(x)u(x)v(x)dμ +
∫
V

f(x, u(x))v(x)dμ

for any v ∈ H1
0 (V ), thanks to [14, Proposition 2.19].

Thus, the critical points of Jλ are exactly the weak solutions of problem (1.1).
We recall that a C1-functional J : E → R, where E is a real Banach space with topological dual E∗, 

satisfies the Palais–Smale condition (in short (PS)-condition) when

every sequence {uj}j∈N in E such that {J(uj)}j∈N is bounded and

‖J ′(uj)‖E∗ → 0 as j → +∞ possesses a convergent subsequence in E.

The abstract tool used along the present paper in order to prove the existence of weak solutions for (1.1)
is the following theorem (see [23, Theorem 6]):

Theorem 3.2. Let E be a reflexive real Banach space and let Φ, Ψ : E → R be two continuously Gâteaux 
differentiable functionals such that

• Φ is sequentially weakly lower semicontinuous and coercive in E
• Ψ is sequentially weakly continuous in E.

In addition, assume that for each μ > 0 the functional Jμ := μΦ −Ψ satisfies the (PS)-condition. Then, for 
each � > inf

E
Φ and each

μ > inf
u∈Φ−1

(
(−∞,�)

)
sup

v∈Φ−1
(
(−∞,�)

)Ψ(v) − Ψ(u)

�− Φ(u) ,

the following alternative holds: either the functional Jμ has a strict global minimum which lies in 
Φ−1((−∞, �)), or Jμ has at least two critical points one of which lies in Φ−1((−∞, �)

)
.

Theorem 3.2 comes out from a joint application of the classical Pucci–Serrin Theorem (see [21]) and a 
local minimum result due to Ricceri (see [24]). We refer the interested reader to [3,4,20,25,26] and references 
therein for some applications of Ricceri’s variational principle and to [19] for related topics on the variational 
methods used in this paper (see also the classical reference [11]).

The (PS)-condition is one of the main compactness assumption required on the energy functional when 
considering critical point theorem. In order to simplify its proof, in the sequel we will perform the following 
result, which is valid for the functional Jλ given in (3.1):

Proposition 3.3. Let f ∈ C(V × R) and α ∈ L1(V ) and let Jλ be the energy functional defined in (3.1). If 
the sequence {uj}j∈N is bounded in H1

0 (V ) and

‖J ′
λ(uj)‖H−1(V ) → 0 as j → +∞ ,

then {uj}j∈N has a Cauchy subsequence in H1
0 (V ) and so {uj}j∈N has a convergent subsequence.
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Proof. See [14, Proposition 2.24] for a detailed proof. �
4. Main results of the paper

The aim of this section is to prove that, under natural assumptions on the nonlinear term f , problem (1.1)
admits two non-trivial solutions. As we already said, this is done by means of variational techniques.

Before proving Theorem 1.1 it will be useful to define another norm on H1
0 (V ) as follows:

‖u‖α :=

√√√√W (u) −
∫
V

α(x)|u(x)|2dμ, (4.1)

where α is the function satisfying the assumptions stated in Theorem 1.1 and W is defined in (2.4). It is 
easy to see that ‖ · ‖α is a norm on H1

0 (V ) equivalent to the usual one given in (2.5).
Indeed, if α satisfies condition (1.2) we have that

‖u‖2
α = W (u) −

∫
V

α(x)|u(x)|2dμ � W (u) = ‖u‖2, (4.2)

and, by (2.8), we get

‖u‖2
α = W (u) −

∫
V

α(x)|u(x)|2dμ

� W (u) − (2N + 3)2‖u‖2
∫
V

α(x)dμ

=
(
1 + (2N + 3)2

∫
V

|α(x)|dμ
)
‖u‖2 .

On the other hand, if α verifies condition (1.3) we have that

‖u‖2
α = W (u) −

∫
V

α(x)|u(x)|2dμ

� W (u) −
∫
V

|α(x)||u(x)|2dμ

� W (u) − (2N + 3)2‖u‖2
∫
V

|α(x)|dμ

=
(
1 − (2N + 3)2

∫
V

|α(x)|dμ
)
‖u‖2

(4.3)

and

‖u‖2
α = W (u) −

∫
V

α(x)|u(x)|2dμ

� W (u) +
∫

|α(x)||u(x)|2dμ

V
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� W (u) + (2N + 3)2‖u‖2
∫
V

|α(x)|dμ

� 2‖u‖2 ,

thanks to (2.8).
Now we can prove our main results.

4.1. Proof of Theorem 1.1

The idea of the proof consists in applying Theorem 3.2 to the functional

Jλ(u) = 1
2λΦ(u) − Ψ(u) ,

where

Φ(u) := ‖u‖2
α,

as well as

Ψ(u) := −
∫
V

F (x, u(x))dμ,

for any u ∈ H1
0 (V ). Note that here we perform Theorem 3.2 taking the parameter μ = 1

2λ .
First of all, let us consider the regularity assumptions required on Φ and Ψ. It is easy to see that Φ is 

sequentially weakly lower semicontinuous and coercive in H1
0 (V ).

Now, let us prove that Ψ is sequentially weakly continuous in H1
0 (V ). At this purpose, let {uj}j∈N be a 

sequence in H1
0 (V ) such that

uj → u weakly in H1
0 (V )

as j → +∞, for some u ∈ H1
0 (V ). Then, by (2.7), we get that

uj → u in C0(V ) ,

that is

‖uj − u‖∞ → 0 (4.4)

as j → +∞. As a consequence of (4.4) we get that there exists a positive constant K such that

‖uj‖∞ � K and ‖u‖∞ � K for any j ∈ N . (4.5)

Hence, we deduce that
∣∣∣Ψ(uj) − Ψ(u)

∣∣∣ =
∣∣∣ ∫
V

F (x, uj(x))dμ−
∫
V

F (x, u(x))dμ
∣∣∣

�
∫ ∣∣∣F (x, uj(x)) − F (x, u(x))

∣∣∣dμ

V
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=
∫
V

∣∣∣
u(x)∫

uj(x)

f(x, t)dt
∣∣∣dμ

�
∫
V

∣∣∣
u(x)∫

uj(x)

|f(x, t)|dt
∣∣∣dμ (4.6)

�
∫
V

∣∣∣
u(x)∫

uj(x)

max
|t|�K

|f(x, t)|dt
∣∣∣dμ

=
∫
V

max
|t|�K

|f(x, t)| |uj(x) − u(x)|dμ

� max
x∈V, |t|�K

|f(x, t)| ‖uj − u‖∞ ,

since (4.5) holds true, f is continuous in V × R and V is compact with μ(V ) = 1 . By (4.4) and (4.6) we 
obtain that

∣∣∣Ψ(uj) − Ψ(u)
∣∣∣ → 0

as j → +∞, so that Ψ is sequentially weakly continuous in H1
0 (V ).

Now, we observe that

the functional Jλ is unbounded from below in H1
0 (V ) . (4.7)

Indeed, assumption (1.5) implies that there exist two positive constants b1 and b2 such that

F (x, t) � −b1|t|ν + b2 for any x ∈ V and t ∈ R. (4.8)

Thus, by (4.8) and the fact that μ(V ) = 1, for any u ∈ H1
0 (V ) one has

∫
V

F (x, u(x))dμ � −b1

∫
V

|u(x)|νdμ + b2 . (4.9)

Let u0 ∈ H1
0 (V ) with ‖u0‖α = 1. Then, by (4.9) we have that

Jλ(tu0) = t2

2λ +
∫
V

F (x, tu0(x))dμ

� t2

2λ − b1|t|ν
∫
V

|u0(x)|νdμ + b2

→ −∞,

as t → +∞, since ν > 2 by assumption (1.5) and 
∫
V

|u0(x)|νdμ > 0 . This concludes the proof of (4.7).

Now, it remains to prove that the functional Jλ verifies the (PS)-condition. To this goal, it is enough to 
argue as in [14, Theorem 3.5] and to use Proposition 3.3.



G. Molica Bisci et al. / J. Math. Anal. Appl. 452 (2017) 883–895 893
Finally, let � > 0 and

χ(�) := inf
u∈B�

sup
v∈B�

Ψ(v) − Ψ(u)

�− ‖u‖2
α

,

where

B� =
{
v ∈ H1

0 (V ) : ‖v‖α <
√
�
}
.

The definition of χ yields that for every u ∈ B�

χ(�) �
sup
v∈B�

Ψ(v) − Ψ(u)

�− ‖u‖2
α

so that, using the fact that 0 ∈ B�, we obtain that

χ(�) � 1
�

sup
v∈B�

Ψ(v)

� 1
�

sup
v∈B�

∣∣∣∣∣∣
∫
V

F (x, v(x))dμ

∣∣∣∣∣∣
� 1

�
sup
v∈B�

∫
V

|F (x, v(x))| dμ.

(4.10)

Now, assume that the function α satisfies assumption (1.2). Then, if v ∈ B�, by (2.8) and (4.2) we get 
that

|v(x)| � (2N + 3)‖v‖ � (2N + 3)‖v‖α � (2N + 3)√� for any x ∈ V , (4.11)

which combined with the continuity of F and the compactness of V gives for any x ∈ V

|F (x, v(x))| � max
y ∈ V

|s| � (2N + 3)√�

∣∣∣∣∣∣
s∫

0

f(y, t)dt

∣∣∣∣∣∣ . (4.12)

Therefore, bearing in mind that μ(V ) = 1, inequality (4.12) yields

∫
V

|F (x, v(x))| dμ � max
x ∈ V

|s| � (2N + 3)√�

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣ (4.13)

for any v ∈ B�.
By (4.10) and (4.13) we have that

χ(�) � 1
�

max
x ∈ V

|s| � (2N + 3)√�

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣ <
1
2λ ,

provided λ satisfies condition (1.7).
If the function α satisfies assumption (1.3), we can argue in the same way, just replacing (4.11) with the 

following inequality
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|v(x)| � (2N + 3)‖v‖

� 2N + 3√√√√1 − (2N + 3)2
∫
V

|α(x)|dμ
‖v‖α

� 2N + 3√√√√1 − (2N + 3)2
∫
V

|α(x)|dμ

√
�

(4.14)

for any x ∈ V , thanks to (4.3).
In both cases, owing to Theorem 3.2 and taking into account (1.4) and (4.7), we conclude that prob-

lem (1.1) admits at least two non-trivial weak solutions one of which lies in B�. The proof of Theorem 1.1
is now complete.

In order to conclude this subsection, in the sequel we remark some facts.

Remark 4.1. First of all, we notice that condition (2.7) plays a crucial role in the proof of Theorem 1.1, 
whereas the Sobolev embedding theorems are employed in the classical case of bounded domains (see, among 
others, [1,22,29]).

Moreover, we would stress that the maximal interval of λ’s where the conclusion of Theorem 1.1 holds 
true is given by (0, λ∗), where

λ∗ := 1
2 sup

�>0

�

max
x ∈ V

|s| � κ
√
�

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣
= 1

2κ2 sup
z>0

z2

max
x ∈ V
|s| � z

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣
,

with κ as in (1.8).
Finally, note that if we require that α ∈ C(V ), we get the existence of two non-trivial strong solutions 

for problem (1.1) by Remark 3.1.

Remark 4.2. Note that the trivial function is a weak solution of problem (1.1) if and only if f(·, 0) = 0. 
Hence, condition (1.4) assures that all the solutions of problem (1.1), if any, are non-trivial.

In the case when f(·, 0) = 0, in order to get the existence of a non-trivial solution for (1.1) (and so 
a multiplicity result) we need some extra assumptions on the nonlinear term f . For instance, in [15] the 
authors assumed the following subquadratical growth condition at zero

lim inf
t→0+

F (x, t)
t2

= −∞ uniformly in V ,

in addition to (1.5).

4.2. Proof of Theorem 1.2

Theorem 1.2 is a direct consequence of Theorem 1.1. Indeed, as it is easily seen, condition (1.10) yields

max
(x,s)∈V×[−M0,M0]

∣∣∣∣∣∣
s∫
f(x, t)dt

∣∣∣∣∣∣ � M2
0

2(β + 1)(2N + 3)2 . (4.15)

0
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Thus, by the fact that β > 0 and (4.15) holds, we get that

1 < β + 1 � M2
0

2(2N + 3)2 max
(x,s)∈V×[−M0,M0]

∣∣∣∣∣∣
s∫

0

f(x, t)dt

∣∣∣∣∣∣
� λ∗ ,

thanks to Remark 4.1 and the fact that α satisfies (1.2).
Then, applying Theorem 1.1 with λ = 1 we obtain that problem (1.11) admits at least two non-trivial 

weak solutions one of which lies in BM2
0/(2N+3)2 . Finally, by the regularity assumptions on the nonlinear 

term f and the weight α, Remark 3.1 ensures that every weak solution of problem (1.11) is also strong and 
this concludes the proof of Theorem 1.2.
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