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Abstract
The purpose of this paper is to study the existence ofweak solutions for some classes of
one-parameter subelliptic gradient-type systems involving a Sobolev–Hardy potential
defined on an unbounded domain�ψ of the Heisenberg groupHn = C

n ×R (n ≥ 1)
whose geometrical profile is determined by two real positive functions ψ1 and ψ2 that
are bounded on bounded sets. The treated problems have a variational structure, and
thanks to this, we are able to prove the existence of an open interval� ⊂ (0,∞) such
that, for every parameter λ ∈ �, the system has at least two non-trivial symmetric
weak solutions that are uniformly bounded with respect to the Sobolev HW 1,2

0 -norm.
Moreover, the existence is stable under certain small subcritical perturbations of the
nonlinear term. The main proof, crucially based on the Palais principle of symmetric
criticality, is obtained by developing a group-theoretical procedure on the unitary
group U(n) = U (n) × {1} and by exploiting some compactness embedding results
into Lebesgue spaces, recently proved for suitable U(n)-invariant subspaces of the
Folland–Stein space HW 1,2

0 (�ψ). A key ingredient for our variational approach is a
very general min–max argument valid for sufficiently smooth functionals defined on
reflexive Banach spaces.
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1 Introduction

The purpose of the present paper is to study the existence of weak solutions for
subelliptic systems defined on unbounded domains of the Heisenberg group H

n =
C
n × R (n ≥ 1). More precisely, let ψ1, ψ2 : [0,∞) → R be two functions that are

bounded on bounded sets, with ψ1(r) < ψ2(r) for every r ≥ 0. Define

�ψ = {q ∈ H
n : q = (z, t) with ψ1(|z|) < t < ψ2(|z|)}, (1.1)

where |z| =
√∑n

i=1 |zi |2, and assume that �ψ contains the origin O = (0, 0) ∈ H
n .

We deal here with the following singular subelliptic problem:

⎧
⎪⎨
⎪⎩

−�Hn u − νV (q)u + u = λK (q)∂1F(u, v)+ μ∂1G(q, u, v) in �ψ
−�Hnv − νV (q)v + v = λK (q)∂2F(u, v)+ μ∂2G(q, u, v) in �ψ
u = v = 0 on ∂�ψ,

(1.2)

where �Hn is the Kohn–Laplace operator defined by

�Hnϕ = divH (DHnϕ)

along any ϕ ∈ C∞
0 (H

n), with

DHnϕ = (X1ϕ, . . . , Xnϕ,Y1ϕ, . . . ,Ynϕ)

as in Sect. 2, and {X j ,Y j }nj=1 is the basis of horizontal left invariant vector fields on
H

n , that is

X j = ∂

∂x j
+ 2y j

∂

∂t
, Y j = ∂

∂ y j
− 2x j

∂

∂t
,

for j = 1, . . . , n. The critical Sobolev exponent 2∗ in the Heisenberg group H
n is

defined as 2∗ = 2Q/(Q − 2), where Q = 2n + 2 is the homogeneous dimension of
H

n .
On the potentials V , K : �ψ → R, we assume that

(hV ) V is measurable, cylindrically symmetric, i.e. V (z, t) = V (|z|, t), and there
exists a constant CV > 0 such that

0 ≤ V (z, t) ≤ CV
|z|2

r(z, t)4
, (1.3)

for every q = (z, t) ∈ H
n , where r denotes the Heisenberg norm r(q) =

r(z, t) = (|z|4 + t2)1/4, z ∈ C
n , t ∈ R;
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1726 G. M. Bisci, D. Repovš

(hK ) K ∈ L∞(�ψ) ∩ L1(�ψ) is a non-negative cylindrically symmetric function
with

inf
q∈�0

K (q) > 0,

for some open set �0 ⊂ �ψ .

The parameters λ,μ > 0 and ν ∈ [0,C−1
V n2). Suppose also that the nonlinearity F

satisfies the following hypotheses:

( f1) F : R2 → R is a C1-function with F(0, 0) = 0 and there exists (η0, ζ0) ∈ R
2

such that F(η0, ζ0) > 0;

( f2) lim
η,ζ→0

∂1F(η, ζ )

|η| = lim
η,ζ→0

∂2F(η, ζ )

|ζ | = 0;

( f3) there exist ε > 0 and α ∈ (2, 2∗) such that

|∂1F(η, ζ )| ≤ ε
(
|η| + |ζ | + |η|α−1

)
,

and

|∂2F(η, ζ )| ≤ ε
(
|η| + |ζ | + |ζ |α−1

)
,

for every (η, ζ ) ∈ R
2;

( f4) there exist pF , qF ∈ (0, 2) and suitable real constants κ j > 0, such that

F(η, ζ ) ≤ κ1|η|pF + κ2|ζ |qF + κ3,

for every (η, ζ ) ∈ R
2.

Here and in the sequel, the nonlinearities ∂1F and ∂2F denote the partial derivatives
of F with respect to the first variable and the second variable, respectively.

Furthermore, for the nonlinear term G : �ψ × R
2 → R, we assume the following

conditions:

(g1) G : �ψ × R
2 → R is a continuous function, (η, ζ ) 
→ G(q, η, ζ ) is of class

C1 and G(q, 0, 0) = 0 for every q ∈ �ψ ;
(g2) lim

η,ζ→0

∂1G(q, η, ζ )

|η| = lim
η,ζ→0

∂2G(q, η, ζ )

|ζ | = 0, uniformly for every q ∈ �ψ ;
(g3) there exist κ > 0 and β ∈ (2, 2∗) such that

|∂1G(q, η, ζ )| ≤ κ
(
|η| + |ζ | + |η|β−1

)
,

and

|∂2G(q, η, ζ )| ≤ κ
(
|η| + |ζ | + |ζ |β−1

)
,

for every q ∈ �ψ and (η, ζ ) ∈ R
2;
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Gradient-Type Systems 1727

(g4) the function G(·, η, ζ ) is cylindrically symmetric for every (η, ζ ) ∈ R
2.

The nonlinearities ∂1G and ∂2G denote the partial derivatives of G with respect to the
second variable and the third variable, respectively.

Noncompact variational problems have attracted much attention since the late sev-
enties. System (1.2) is a reasonably useful generalization of most studied elliptic
problems, with singular potentials and subcritical nonlinearities, which naturally arise
in different branches of mathematics. More precisely, differential problems involv-
ing a subelliptic operator on an unbounded domain � of stratified groups have been
intensively studied in recent years by several authors, see, among others, the papers
[26,35,36,45,46] and references therein.

As observed in the recent paper [7], if the domain � is not bounded, then the
Folland–Stein space HW 1,2

0 (�) need not be compactly embeddable into a Lebesgue
space. This lack of compactness produces several difficulties in exploiting variational
methods. In order to recover compactness for the unbounded case, a standard hypoth-
esis in the above cited results was the strongly asymptotically contractive condition
on � (see [20] and [35] for related topics).

Now, we observe that a strongly asymptotically contractive domain � is geomet-
rically thin at infinity. Following [1], in the presence of symmetries, by replacing the
contractive assumption on � with a technical geometrical hypothesis, we are able to
treat here subelliptic gradient-type systems on the Heisenberg groupHn , in which the
domain �ψ is possibly large at infinity. We also notice that if the functions ψ1 and
ψ2 are bounded, the domain �ψ is strongly asymptotically contractive and the entire
space HW 1,2

0 (�ψ) is compactly embedded in Lq(�ψ) for every q ∈ (2, 2∗). We refer
to [1,26,36,45] for further details.

In the main result of the present paper (see Theorem 9), we prove the existence of
an open interval � ⊂ (0,∞) such that, for every parameter λ ∈ �, the system (1.2)
has at least two symmetric weak solutions that are uniformly bounded with respect
to the Sobolev HW 1,2

0 -norm. This existence result is stable in the presence of a small
perturbation term G for which the structural conditions (g1)–(g4) are satisfied.

In order to prove Theorem 9, we find critical points of the energy functional associ-
ated with problem (1.2) by means of a mini-max theorem and the well-known Palais
principle of symmetric criticality (see, respectively, Theorems 6 and 5). More pre-
cisely, our strategy is to use the topological unitary groupU(n) = U (n)×{1}. Indeed,
this group acts continuously on HW 1,2

0 (�ψ) by

(̂τ �u)(q) = u(τ−1z, t) for all q = (z, t) ∈ H
n,

and the T -invariant closed subspace HW 1,2
0,T (�ψ) associated to the subgroup

T = U (n1)× · · · ×U (n�)× {1}, n =
�∑

i=1

ni , with ni ≥ 1 and � ≥ 1,

is compactly embedded in the Lebesgue space Lq(�ψ), for every q ∈ (2, 2∗), as
proved in [1]; see Lemmas 2 and 3. A similar argument works for strip-like domains
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1728 G. M. Bisci, D. Repovš

� = ω × R
n−m , where ω ⊂ R

m is bounded and n − m ≥ 2, yielding the space of
cylindrically symmetric functions on H1

0 (�) via the group T = idRm × O(n − m)
(see [21] and [31]).

Successively, thanks to the left invariance of the standard Haar measure μ of the
Heisenberg group H

n , with respect to the natural action of the group ∗ : U(n) ×
HW 1,2

0 (�ψ) → HW 1,2
0 (�ψ), given by

τ̂ ∗ q = (τ z, t) for all τ̂ = (τ, 1) ∈ U(n), q = (z, t) ∈ H
n,

(see Chapter III § 2 No 4 of Bourbaki [13] and Chapter 7 § 1 No 1 of Bourbaki [14] for
related topics) the principle of symmetric criticality of Palais, see Theorem 5 below,
can be applied to the associated energy Euler–Lagrange functional

Iλ,μ(u, v) = 1

2

(
‖u‖2 + ‖v‖2

)
− λ

∫

�ψ

K (q)F(u(q), v(q))dμ(q)

−μ
∫

�ψ

G(q, u(q), v(q))dμ(q),

for every (u, v) ∈ HW 1,2
0,T (�ψ) × HW 1,2

0,T (�ψ), allowing a variational approach to
the problem (1.2).

The methods used here may be suitable for other purposes, too. Indeed, we recall
that a similar variational approach has been used in a different context, in order to
prove multiplicity results for elliptic problems defined in Euclidean strip-like domains
and involving the p–Laplacian operator (see [32, Theorem 2.2]). More precisely, in
[32] the author studied gradient-type systems of the form

⎧
⎪⎨
⎪⎩

−�pu = λFu(x, u, v) in �

−�qv = λFv(x, u, v) in �

u = v = 0 on ∂�,

where the nonlinearities Fu and Fv denote the partial derivatives of F with respect
to the second variable and the third variable, respectively, and � = ω × R

l , where
ω is a bounded open subset of the Euclidean space Rm with smooth boundary, m ≥
1, l ≥ 2 and 1 < p, q < m + l. Recently, nonlocal gradient–type systems have
been investigated by exploiting similar variational arguments (see [15, Theorem 3.1]).
In both papers [15,32], crucial roles are played by some invariant subgroups of the
orthogonal group O(n) and Lions’ embedding results (see [34, Théorèmes III.2 and
III.3]).

Theorem 9 extends the existence results obtained in [15,32] to theHeisenberg group
setting. In addition, in our case, the presence of the Sobolev–Hardy term makes the
search of weak solutions much more delicate. Indeed, in order to handle the singular
term in (1.2), it is crucial to introduce the subelliptic Hardy–Sobolev inequality

∫

Hn
ψ2 |ϕ|2

r2
dμ(q) ≤

(
2

Q − 2

)2 ∫

Hn
|DHnϕ|2

Hndμ(q), (1.4)
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Gradient-Type Systems 1729

for every ϕ ∈ C∞
0 (H

n \ {O}), where the main geometrical function ψ is defined by

ψ(q) = |DHn r |Hn = |z|
r(q)

for all q = (z, t) ∈ H
n, with q �= O, (1.5)

and 0 ≤ ψ ≤ 1, ψ(0, t) ≡ 0, ψ(z, 0) ≡ 1.
Here, r denotes the Heisenberg norm r(q) = r(z, t) = (|z|4 + t2)1/4, z = (x, y) ∈

C
n , t ∈ R. Furthermore, direct calculations show that

�Hn r = 2n + 1

r
ψ2 in H

n \ {O}.

For details, we refer to [37, Sect. 2.1].
An important incentive to the study of subelliptic systems on the entire Heisenberg

group H
n was recently provided by Pucci et al. ( [11,12,42]), see also the papers

[22,25,38,50–52].
In particular, the existence of nontrivial solutions for a subelliptic Schrödinger–

Hardy system in the Heisenberg group H
n was investigated in [42], where the author

considered the following problem:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−�p
Hn u + V (q)|u|p−2u − γψ p |u|p−2u

r(q)p
= λHu(q, u, v)+ α

p∗ |v|β |u|α−2u

−�p
Hnv + V (q)|v|p−2v − γψ p |v|p−2v

r(q)p
= λHv(q, u, v)+ β

p∗ |u|α|v|β−2v,

(1.6)

where γ and λ are real parameters, Q = 2n + 2 is the homogeneous dimension of
the Heisenberg group H

n , 1 < p < Q, the exponent α > 1 and β > 1 are such that
α+ β = p∗, p∗ = pQ/(Q − p), and�p

Hn is the p–Laplacian operator onHn , which
is defined by

�
p
Hnϕ = divH (|DHnϕ|p−2

Hn DHnϕ)

along any ϕ ∈ C∞
0 (H

n), that is �p
Hn is the familiar horizontal p-Laplacian operator.

The potential function V satisfy the following condition:
(V) V ∈ C(Hn) and infq∈Hn V (q) = V0 > 0.

The nonlinearities Hu and Hv denote the partial derivatives of H with respect to
the second variable and the third variable, respectively, and H satisfies

(H) H ∈ C1(Hn × R
2,R+), Hz(q, 0, 0) = 0 for all q ∈ H

n and there exist μ and s
such that p < μ ≤ s < p∗ and for every ε > 0 there exists Cε > 0 for which
the inequality

|Hz(q, w)| ≤ με|w|μ−1 + qCε|w|s−1, w = (u, v), |w| =
√
u2 + v2,

holds for any (q, w) ∈ H
n × R

2, where Hw = (Hu, Hv), and also

0 ≤ μH(q, w) ≤ Hw(q, w) · w forall(q, w) ∈ H
n × R

2
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1730 G. M. Bisci, D. Repovš

is valid.

In this very interesting paper [42], an existence result is obtained by an application
of the mountain pass theorem and the Ekeland variational principle. We emphasize
that the assumptions adopted here are milder and in any case much different from
the usual hypotheses in problem (1.6). Moreover, to the best of our knowledge, Theo-
rem 9 is the first multiplicity result for subelliptic gradient-type systems on unbounded
domains ofHn . In contrast with [42], the Hilbertian setting, i.e. p = 2, is peculiar for
our approach in order to recover the compactness properties stated in Lemma 3 (see
also Remark 4). In a forthcoming work, we plan to come back to problem (1.6) and
prove somemultiplicity results by exploiting suitable group-theoretical arguments and
variational methods.

Now, let us recall that the Folland–Stein horizontal Sobolev space HW 1,2
0 (�ψ) is

the completion of C∞
0 (�ψ) with respect to the Hilbertian norm

‖u‖HW 1,2
0 (�ψ)

=
(∫

�ψ

|DHn u(q)|2
Hndμ(q)+

∫

�ψ

|u(q)|2dμ(q)
)1/2

,

〈u, ϕ〉 =
∫

�ψ

(
DHn u(q), DHnϕ(q)

)
Hndμ(q)+

∫

�ψ

u(q)ϕ(q)dμ(q).

As far as we know, the abstract framework and Theorem 9 in the subelliptic setting are
new also in the non-singular case. A special and meaningful case of our main result
reads as follows:

Theorem 1 Let �ψ ⊂ H
n as in (1.1), and let K : �ψ → R be a potential satisfying

(hK ). Furthermore, let F : R2 → R be a continuous function satisfying ( f1)–( f4).
Then there exist a number σ > 0 and a nonempty open set � ⊂ (0,∞) such that,

for every λ ∈ �, the following system

⎧
⎪⎨
⎪⎩

−�Hn u + u = λK (q)∂1F(u, v) in �ψ
−�Hnv + v = λK (q)∂2F(u, v) in �ψ
u = v = 0 on ∂�ψ,

(1.7)

has at least two solutions (u( j)λ,μ, v
( j)
λ,μ) ∈ HW 1,2

0,cyl(�ψ) × HW 1,2
0,cyl(�ψ), with j ∈

{1, 2}, lying in the ball

{(u, v) ∈ HW 1,2
0,cyl(�ψ)× HW 1,2

0,cyl(�ψ) : ‖(u, v)‖ ≤ σ },

where

‖(u, v)‖ = ‖u‖HW 1,2
0 (�ψ)

+ ‖v‖HW 1,2
0 (�ψ)

,

and

HW 1,2
0,cyl(�ψ) = {u ∈ HW 1,2

0 (�ψ) : u(z, t) = u(|z|, t) for all q = (z, t) ∈ �ψ },
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Gradient-Type Systems 1731

is the linear subspace of cylindrically symmetric functions of HW 1,2
0 (�ψ).

The manuscript is organized as follows. In Section 2, we give some notations, and we
recall some properties of the functional space we work in. In order to apply critical
point methods to problem (1.2), we need to work in a subspace of the functional space
X = HW 1,2

0 (�ψ)× HW 1,2
0 (�ψ). In particular, we provide some tools which will be

useful along the paper (see Lemmas 7 and 8). Finally, in Sect. 3, we study system (1.2)
and prove our multiplicity result (see Theorem 9). An example of an application is
given in Example 10.

For general references on the subject and on methods used in the paper, we refer
to the monographs [10,33], as well as papers [6,18,40,49] and the references therein.
See also [6–9,28] for related topics.

2 Abstract Framework

In this section, we briefly recall some basic facts on the Heisenberg group and the
functional Folland–Stein space HW 1,2

0 (�ψ); see [23,24]. The simplest example of
Carnot group of step two is provided by the Heisenberg group H

n of topological
dimension m = 2n + 1 and homogeneous dimension Q = 2n + 2, that is the Lie
group whose underlying manifold is R2n+1, endowed with the non–Abelian group
law

q ◦ q ′ =
(
z + z′, t + t ′ + 2

n∑
i=1

(yi x
′
i − xi y

′
i )

)

for all q, q ′ ∈ H
n , with

q =(z, t)= (x1, . . . , xn, y1, . . . , yn, t), q ′ =(z′, t ′)= (x ′
1, . . . , x

′
n, y

′
1, . . . , y

′
n, t

′).

The vector fields for j = 1, . . . , n

X j = ∂

∂x j
+ 2y j

∂

∂t
, Y j = ∂

∂ y j
− 2x j

∂

∂t
, Z = ∂

∂t
, (2.1)

constitute a basis B∗ for the real graded Lie algebra H = ⊕2
k=1 Hk of left invariant

vector fields on H
n . More precisely, the first graded component H1 is generated by

B∗
1 = {X j ,Y j : j = 1, . . . , 2n} and the second graded component H2 is generated by

B∗
2 = {Z}. The basis B∗ satisfies the Heisenberg canonical commutation relations for

position and momentum [X j ,Yk] = −4δ jk∂/∂t , all other commutators are zero.
The natural inner product in the span of {X j ,Y j }nj=1

(
W , Z

)
Hn =

n∑
j=1

(
w j z j + w̃ j z̃ j

)
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1732 G. M. Bisci, D. Repovš

for W = {w j X j + w̃ j Y j }nj=1 and Z = {z j X j + z̃ j Y j }nj=1 produces the Hilbertian
norm

|DHn u|Hn =
√(

DHn u, DHn u
)
Hn

for the horizontal vector field DHn u. Moreover, if also v ∈ C1(Hn) then the Cauchy–
Schwarz inequality

∣∣(DHn u, DHnv
)
Hn

∣∣
Hn ≤ |DHn u|Hn |DHnv|Hn

continues to be valid.
For any horizontal vector fieldW = {w j X j + w̃ j Y j }nj=1 of class C

1(Hn;R2n), the
horizontal divergence is defined by

divHW =
n∑
j=1

[
X j (w

j )+ Y j (w̃
j )
]
.

If furthermore g ∈ C1(R), then the Leibnitz formula holds, namely

divH (gW ) = gdivH (W )+
(
DHn g,W

)
Hn .

If u ∈ C2(Hn), then the horizontal Laplacian in H
n of u, called the Kohn–Spencer

Laplacian, is defined as follows:

�Hn u =
n∑
j=1

(
X2

j + Y 2
j

)
u

=
n∑
j=1

(
∂2

∂x2j
+ ∂2

∂ y2j
+ 4y j

∂2

∂x j∂t
− 4x j

∂2

∂ y j∂t

)
u + 4|z|2 ∂

2u

∂t2
,

and �Hn is hypoelliptic according to the celebrated Theorem 1.1 due to Hörmander
[29].

Going back to (1.2), we need to introduce a suitable solution space. Let � be a
nontrivial open subset ofHn . The Folland–Stein horizontal Sobolev space HW 1,2

0 (�)

is the completion of C∞
0 (�), with respect to the Hilbertian norm

‖u‖HW 1,2
0 (�)

=
(∫

�

|DHn u(q)|2
Hn dμ(q)+

∫

�

|u(q)|2dμ(q)
)1/2

,

〈u, ϕ〉 =
∫

�

〈DHn u(q), DHnϕ(q)〉Hndμ(q)+
∫

�

u(q)ϕ(q)dμ(q).

(2.2)

Of course, if � = H
n , then HW 1,2(Hn) = HW 1,2

0 (Hn), where HW 1,2(Hn) denotes
the horizontal Sobolev space of the functions u ∈ L2(Hn) such that DHn u exists in
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Gradient-Type Systems 1733

the sense of distributions and |DHn u|Hn is in L2(Hn), endowed with the Hilbertian
norm (2.2).

Since ν ∈ [0,C−1
V n2), condition (hV ) in addition to the Hardy–Sobolev inequality

(1.4) and relation (1.5), gives that the norm ‖ · ‖HW 1,2
0 (�ψ)

which is equivalent to the

norm given by

‖u‖ =
(

‖u‖2
HW 1,2

0 (�ψ)
− ν

∫

�ψ

V (q)|u(q)|2dμ(q)
)1/2

, (2.3)

for every u ∈ HW 1,2
0 (�ψ).

More precisely, one has

√
n2 − νCV

n
‖u‖HW 1,2

0 (�ψ)
≤ ‖u‖ ≤ ‖u‖HW 1,2

0 (�ψ)
,

for every u ∈ HW 1,2
0 (�ψ).

Take q1, q2 ∈ H
n and let H�q1,q2(H

n) be the set of piecewise smooth curves γ ,
such that γ : [0, 1] → H

n , γ̇ (t) ∈ H1 a.e. t ∈ [0, 1], (γ (0), γ (1)) = (q1, q2) and

∫ 1

0
|γ̇ (t)|Hn dt < ∞.

Since H�q1,q2(H
n) �= ∅ by the celebrated Chow–Rashevskiı̆ theorem [17], it is pos-

sible to define the Carnot–Carathéodory distance on H
n , as follows:

dCC (q1, q2) = inf
γ∈H�q1,q2 (Hn)

∫ 1

0
|γ̇ (t)|Hndt,

see [43] for details.
In order to use a variational approach for studying problem (1.2), we need to work

in a special functional space. Indeed, one of the difficulties in treating our problem
is related to the lack of a compact embedding of HW 1,2

0 (�ψ) into suitable Lebesgue
spaces. In this respect the standard subelliptic Sobolev spaces are not enough in order
to study the problem. We overcome this difficulty by working in a new functional
space, whose definition will be given below.

Let (T , ·) be a closed topological group with neutral element j . The group T is
said to act continuously on H

n , if there exists a map � : T × H
n → H

n such that the
following conditions hold:

(T1) j�q = q for every q ∈ H
n ;

(T2) τ1�(τ2�q) = (τ1 · τ2)�q for every τ1, τ2 ∈ T and q ∈ H
n .

In addition, the action � is called left distributed if

(T3) τ�(p ◦ q) = (τ�p) ◦ (τ�q) for every τ ∈ T and p, q ∈ H
n .
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1734 G. M. Bisci, D. Repovš

A set � ⊂ H
n is said to be T -invariant, with respect to the action �, if T �� = �.

Let us considerT = (T , ·)be a closed infinite topological group acting continuously
and left-distributively on H

n by the map � : T × H
n → H

n . Assume that T acts
isometrically on the horizontal Folland–Stein space HW 1,2

0 (Hn), where the action

� : T × HW 1,2
0 (Hn) → HW 1,2

0 (Hn) is defined for every (̂τ , u) ∈ T × HW 1,2
0 (Hn)

by

(̂τ �u)(q) = u(̂τ−1�q) for all q ∈ H
n .

Inwhat follows,μ is the natural Haarmeasure onHn while “ lim inf ′′ is theKuratowski
lower limit of sets.

Let� be a nonempty open T -invariant subset ofHn , with boundary ∂�, and assume
that

(H) for every (qk)k ⊂ H
n such that

lim
k→∞ dCC (e, qk) = ∞ and μ

(
lim inf
k→∞ (qk ◦�)

)
> 0,

where qk ◦� = {qk ◦ q : q ∈ �}, there exist a subsequence (qk j ) j of (qk)k and
a sequence of subgroups (Tqk j ) j of T , with cardinality card(Tqk j ) = ∞, having
the property that for all τ̂1, τ̂2 ∈ Tqk j , with τ̂1 �= τ̂2, the following holds:

lim
j→∞ inf

q∈Hn
dCC ((̂τ1�qk j ) ◦ q, (̂τ2�qk j ) ◦ q) = ∞.

A domain� ofHn , for which condition (H) holds, is simply called anH domain. Let
us denote U(n) = U (n)× {1}, where

U (n) = U (n,C) = {τ ∈ GL(n;C) : 〈τ z, τ z′〉Cn = 〈z, z′〉Cn for all z, z′ ∈ C
n},

that is, U (n) is the usual unitary group. Here 〈·, ·〉Cn denotes the standard Hermitian
product on C

n , in other words 〈z, z′〉Cn = ∑n
k=1 zk · z′k .

Hence, U(n) is the unitary group endowed with the natural multiplication law
· : U(n) × U(n) → U(n), which acts continuously and left–distributively on H

n by
the map ∗ : U(n)× H

n → H
n , defined by

τ̂ ∗ q = (τ z, t) for all τ̂ = (τ, 1) ∈ U(n), q = (z, t) ∈ H
n,

thanks to [1, Lemma 3.1]. If we take T = U(n), then �ψ is U(n)-invariant and an H
domain, as shown in the proof of of [1, theorem 1.1]. Moreover,

HW 1,2
0,U(n)(�ψ) = {u ∈ HW 1,2

0 (�ψ) : u(z, t) = u(|z|, t) for all q = (z, t) ∈ �ψ },

that is HW 1,2
0,U(n)(�ψ) = HW 1,2

0,cyl(�ψ) is the space of cylindrically symmetric func-

tions of HW 1,2
0 (�ψ).
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Finally,U(n) acts isometrically on the horizontal Folland–Stein space HW 1,2
0 (Hn),

where the action � : U(n) × HW 1,2
0 (Hn) → HW 1,2

0 (Hn) is defined for every (̂τ , u)

in U(n)× HW 1,2
0 (Hn) by

(̂τ �u)(q) = u(̂τ−1 ∗ q) = u(τ−1z, t) for all q = (z, t) ∈ H
n, (2.4)

by force of [1, Lemma 3.2].
Now, let T = U (n1) × · · · × U (n�) × {1}, where n = ∑�

i=1 ni , with ni ≥ 1 and
� ≥ 1 and consider the closed subspace

HW 1,2
0,T (�ψ) = {u ∈ HW 1,2

0 (�ψ) : τ̂ �u = u for all τ̂ ∈ T }.

By keeping the same notation, we naturally extend the function u ∈ HW 1,2
0,T (�ψ) to

the entire group H
n by zero on H

n \�ψ .

2.1 Sobolev Embedding Results

Following Folland and Stein [24], we can easily deduce the following embedding
property that will be crucial in this paper.

Lemma 2 Let q ∈ [2, 2∗] and T = U (n1)× · · · ×U (n�)× {1}, where n = ∑�
i=1 ni ,

with ni ≥ 1 and � ≥ 1. Then the embeddings

HW 1,2
0,T (�ψ) ↪→ HW 1,2

0 (�ψ) ↪→ Lq(�ψ)

are continuous. Hence, there exists a constant kq such that

‖u‖q = ‖u‖Lq (�ψ) ≤ kq‖u‖HW 1,2
0 (�ψ)

for all u ∈ HW 1,2
0 (�ψ),

where kq depends on q and n.
Moreover, since the norms ‖ · ‖HW 1,2

0 (�ψ)
and ‖ · ‖ are equivalent, there exists a

constant

cq = kq
n√

n2 − νCV

,

such that

‖u‖q ≤ cq‖u‖, (2.5)

for every u ∈ HW 1,2
0 (�ψ).

On the other hand, by [27,30,48], we know that if O is a bounded open set of Hn

then the embedding

HW 1,2
0 (O) ↪→ Lq(O) (2.6)
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1736 G. M. Bisci, D. Repovš

is compact for all q, with 1 ≤ q < 2∗.
Moreover, by [1, Theorems 1.1 and 3.1], the main compactness statement reads as

follows:

Lemma 3 Let T = U (n1)× · · · ×U (n�)× {1}, where n = ∑�
i=1 ni , with ni ≥ 1 and

� ≥ 1. Then the embedding

HW 1,2
0,T (�ψ) ↪→ Lq(�ψ)

is compact for any q ∈ (2, 2∗). We also have that

HW 1,2
0,T (�ψ) = FixT (HW 1,2

0 (�ψ)),

where

FixT (HW 1,2
0 (�ψ)) = {u ∈ HW 1,2

0 (�ψ) : τ̂ �u = u for all τ̂ ∈ T },

and � : T × HW 1,2
0 (Hn) → HW 1,2

0 (Hn) is the action defined in (2.4).

Remark 4 The above lemma is a consequence of a more general result stated in [1,
Theorem 3.1]. More precisely, let G = (G, ◦) be a Carnot group of step r and homo-
geneous dimension Q > 2, with the neutral element denoted by e. Let T = (T , ·)
be a closed infinite topological group acting continuously and left distributively on
G by the map � : T × G → G. Assume furthermore that T acts isometrically on
HW 1,2

0 (G), where the action � : T × HW 1,2
0 (G) → HW 1,2

0 (G) is defined by

(̂τ �u)(q) = u(̂τ−1 � q) for all q ∈ G.

Let G0 be anH domain (see [7]). Then, the following embedding

HW 1,2
0,T (G0) ↪→ Lq(G0)

is compact for every q ∈ (2, 2∗). This result was inspired by Tintarev and Fieseler
[47].

2.2 Weak Formulation and T-Invariance

The natural solution space for (1.2) is

X = HW 1,2
0 (�ψ)× HW 1,2

0 (�ψ),

with associated norm

‖(u, v)‖ = ‖u‖ + ‖v‖.
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Let us consider the action π� : T × X → X given by

π�(̂τ , (u, v)) = (̂τ �u, τ̂ �v),

for every τ̂ ∈ T and (u, v) ∈ X .
The above definition immediately yields

FixT (X) = FixT (HW 1,2
0 (�ψ))× FixT (HW 1,2

0 (�ψ)),

where

FixT (X) = {(u, v) ∈ X : π�(̂τ , (u, v)) = (u, v) for all τ̂ ∈ T }.

A function (u, v) ∈ X is said to be a (weak) solution of problem (1.2) if

〈u, ϕ〉X ,ν + 〈v,ψ〉X ,ν = λ

∫

�ψ

K (q)∂1F(u(q), v(q))ϕ(q)dμ(q)

+ λ
∫

�ψ

K (q)∂2F(u(q), v(q))ϕ(q)dμ(q)

+ μ
∫

�ψ

∂1G(q, u(q), v(q))ψ(q)dμ(q)

+ μ
∫

�ψ

∂2G(q, u(q), v(q))ψ(q)dμ(q), (2.7)

for any (ϕ, ψ) ∈ X , where we set

〈u, ϕ〉X ,ν = 〈u, ϕ〉 − ν
∫

�ψ

V (q)u(q)ϕ(q)dμ(q),

and

〈v,ψ〉X ,ν = 〈v,ψ〉 − ν
∫

�ψ

V (q)v(q)ψ(q)dμ(q).

Problem (1.2) has a variational nature and the Euler–Lagrange functional Iλ,μ : X →
R associated to (1.2) is given by

Iλ,μ(u, v) = 1

2

(
‖u‖2 + ‖v‖2

)
− λ

∫

�ψ

K (q)F(u(q), v(q))dμ(q)

−μ
∫

�ψ

G(q, u(q), v(q))dμ(q),

for every (u, v) ∈ X .
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1738 G. M. Bisci, D. Repovš

Clearly, the functional Iλ,μ is well-defined in X and, thanks to ( f1)–( f3) as well
as (g1)–(g3), it is of class C1(X). Moreover, for every (u, v) ∈ X

〈I ′
λ,μ(u, v), (ϕ, ψ)〉 = 〈u, ϕ〉 − ν

∫

�ψ

V (q)u(q)ϕ(q)dμ(q)

+ 〈v,ψ〉 − ν
∫

�ψ

V (q)v(q)ψ(q)dμ(q)

− λ
∫

�ψ

K (q)∂1F(u(q), v(q))ϕ(q)dμ(q)

− λ
∫

�ψ

K (q)∂2F(u(q), v(q))ϕ(q)dμ(q)

− μ
∫

�ψ

∂1G(q, u(q), v(q))ψ(q)dμ(q)

− μ
∫

�ψ

∂2G(q, u(q), v(q))ψ(q)dμ(q), (2.8)

for all (ϕ, ψ) ∈ X . Hence, the critical points of Iλ,μ in X are exactly the (weak)
solutions of (1.2).

Let

YT = HW 1,2
0,T (�ψ)× HW 1,2

0,T (�ψ) ⊂ X

be endowedwith the induced norm ‖·‖, where T = U (n1)×· · ·×U (n�)×{1} ⊆ U(n),
with n = ∑�

i=1 ni , ni ≥ 1 and � ≥ 1.
A pair (u, v) ∈ YT is said to be a (weak) solution of problem (1.2) only in the YT

sense if equality (2.7) holds for every (ϕ, ψ) ∈ YT .
Then (u, v) ∈ YT is a solution of (1.2) in the entire space HW 1,2

0 (�ψ) if the
principle of symmetric criticality of Palais given in [41] holds.

To prove this, let us recall the well-known principle of symmetric criticality of
Palais stated in the general form, proved in [19] for reflexive strictly convex Banach
spaces. For details and comments, we refer to [16, Section 5].

More precisely, let E = (E, ‖ · ‖E ) be a reflexive strictly convex Banach space.
Suppose that G is a subgroup of isometries g : E → E , that is g is linear and
‖gu‖E = ‖u‖E for all u ∈ E .

Consider the G–invariant closed subspace of E

�G = {u ∈ E : gu = u for all g ∈ G}.

By [19, Proposition 3.1], we have the following result:

Theorem 5 Let E, G and � be as before and let I be a C1 functional defined on E
such that

I (gu) = I (u), ∀ u ∈ E
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for every g ∈ G.
Then u ∈ �G is a critical point of I if and only if u is a critical point of J = I |�G .

We recall that�ψ is a nonempty open subset ofHn , which is T -invariant. Furthermore,
we recall that from the invariance point of view, the unitary groups play the same role
in the Heisenberg setting as the orthogonal groups in the Euclidean framework.

Thus, we we apply the principle of symmetric criticality to the Sobolev space YT
under the action π� : T × X → X defined in (2.4). Let us again denote

�(u, v) = 1

2

(
‖u‖2 + ‖v‖2

)
, ∀ (u, v) ∈ X .

Clearly,

�(π�(̂τ , (u, v))) = �(̂τ�u, τ̂ �v)

= 1

2

(‖τ̂ �u‖2 + ‖τ̂ �v‖2)

= 1

2

(‖u‖2 + ‖v‖2)

= �(u, v), for every (u, v) ∈ X , τ̂ ∈ T ,

(2.9)

since T acts isometrically on HW 1,2
0 (�ψ) as proved in [1, Lemma 3.2]. Thus, the

functional � is T -invariant.
Moreover, the functional ϒλ,μ : X → R given by

ϒλ,μ(u, v) = λ

∫

�ψ

K (q)F(u(q), v(q))dμ(q)

+ μ
∫

�ψ

G(q, u(q), v(q))dμ(q), for every (u, v) ∈ X , τ̂ ∈ T ,

is T -invariant by assumptions (hK ) and (g4).
Indeed, let us fix τ̂ ∈ T and (u, v) ∈ X . Then putting τ−1 ∗ q = p, we get by

(T1)–(T3)

ϒλ,μ(π�(̂τ , (u, v))) = ϒλ,μ(̂τ�u, τ̂ �v)

= λ

∫

�ψ

K (q)F (̂τ �u(q), τ̂ �v(q))dμ(q)

+ μ
∫

�ψ

G(q, τ̂ �u(q), τ̂ �v(q))dμ(q)

= λ

∫

�ψ

K (q)F(u(̂τ−1 ∗ q), v(̂τ−1 ∗ q))dμ(q)

+ μ
∫

�ψ

G(q, u(̂τ−1 ∗ q), v(̂τ−1 ∗ q))dμ(q)
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1740 G. M. Bisci, D. Repovš

= λ

∫

τ̂∗�ψ
K (̂τ ∗ p)F(u(p), v(p))dμ(̂τ ∗ p)

+ μ
∫

τ̂∗�ψ
G (̂τ ∗ p, u(p), v(p))dμ(̂τ ∗ p)

= λ

∫

�ψ

K (p)F(u(p), v(p))dμ(p)

+ μ
∫

�ψ

G(p, u(p), v(p))dμ(p)

= ϒλ,μ(u, v),

since T ∗ �ψ = �ψ and K ,G are T -invariant by assumption. Moreover, the left
∗ invariance of the measure μ (keeping in mind that the Jacobian of the change of
variables has determinant 1) implies

dμ(̂τ ∗ p) = dμ(p) for all p ∈ �ψ,

which is exactly formula (10) from [14], where 1 is the multiplier of μ. See also [2,
Chapter 4].

Thus, Iλ,μ is T -invariant in X with respect to the action π� : T × X → X .
Hence, the principle of symmetric criticality of Palais ensures that (u, v) ∈ YT is

a solution of problem (1.2) if and only if (u, v) is a critical point of the functional
Jλ,μ : YT → R, where Jλ,μ = Iλ,μ|YT .

We will employ first an abstract theorem by Ricceri [44, Theorem 4] merging
together minimax and critical point theory to derive the existence of two local minima
for the energy Jλ,μ. For the convenience of the reader and to make our exposition
self–contained, we state this abstract tool below, is the version rephrased in terms of
the weak topology.

Theorem 6 Let E be a reflexive Banach space, D ⊆ R an interval, and! : E ×D →
R a function satisfying the following:

(!1) !(x, ·) is concave in D for every x ∈ E;
(!2) !(·, λ) is continuous, coercive and sequentially weakly lower semicontinuous

in E, for every λ ∈ D;
(!3) sup

λ∈D
inf
x∈E !(x, λ) < inf

x∈E sup
λ∈D

!(x, λ).

Then for every ζ > sup
λ∈D

inf
x∈E !(x, λ), there exists an a nonempty open set� ⊆ D with

the following property:
for every λ ∈ � and every sequentially weakly lower semicontinuous functional

" : E → R, there exists δ > 0 such that, for every μ ∈ (0, δ), the functional
Eλ,μ : E → R given by

Eλ,μ(x) = !(x, λ)+ μ"(x)
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has at least two local minima lying in the set

Eλζ = {x ∈ E : !(x, λ) < ζ }.

2.3 Growth Condition and Regularity Properties

Here, we use the structural assumptions on F to get some bounds from above for the
nonlinear term and its derivatives. This part is quite standard and does not take into
account the subelliptic features of the problem: the reader familiar with these nonlinear
analysis estimates may go directly to Lemma 8.

Lemma 7 Assume that conditions ( f1)–( f3) hold. Then for every ε > 0 there exists
cε > 0 such that

(i) max{|∂1F(η, ζ )|, |∂2F(η, ζ )|} ≤ ε (|η| + |ζ |)+ cε
(|η|α−1 + |ζ |(α−1)

)
,

(i i) for every (η, ζ ) ∈ R
2

|F(η, ζ )| ≤ ε
(
|η|2 + 2|η||ζ | + |ζ |2

)

+ cε
(
|η|α + |ζ |α + |ζ |(α−1)|η| + |ζ ||η|(α−1)

)
.

Proof Let ε > 0. First, we will prove that there exists cε,1 > 0 such that

|∂1F(η, ζ )| ≤ ε (|η| + |ζ |)+ cε,1
(
|η|α−1 + |ζ |(α−1)

)
, (2.10)

for every (η, ζ ) ∈ R
2. Indeed, by ( f2), it follows in particular, that

lim
η,ζ→0

∂1F(η, ζ )

|η| + |ζ | = 0.

Thus, there exists δε > 0 such that if |η| + |ζ | < δε, then |∂1F(η, ζ )| ≤ ε(|η| + |ζ |).
On the other hand, if |η| + |ζ | ≥ δε, condition ( f3) yields

|∂1F(η, ζ )| ≤ ε
(
|η| + |ζ | + |η|α−1

)

= ε
(
(|η| + |ζ |)α−1(|η| + |ζ |)2−α + |η|α−1

)

≤ ε
(
(|η| + |ζ |)α−1δ2−αε + |η|α−1

)
.

(2.11)

Moreover, since α ∈ (2, 2∗) and bearing in mind that

(|η| + |ζ |)α−1 ≤ 2α−2(|η|α−1 + |ζ |α−1), ∀ (η, ζ ) ∈ R
2

inequality (2.11) gives

|∂1F(η, ζ )| ≤ cε,1
(
|η|α−1 + |ζ |α−1

)
, (2.12)
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for every (η, ζ ) ∈ R
2 with |η| + |ζ | ≥ δε. Hence, relation (2.10) immediately follows

by (2.11) and (2.12). Arguing as above, it follows that there exists cε,2 > 0 such that

|∂2F(η, ζ )| ≤ ε (|η| + |ζ |)+ cε,2
(
|η|α−1 + |ζ |(α−1)

)
, (2.13)

for every (η, ζ ) ∈ R
2. In conclusion, relation (i) holds by (2.10) and (2.13) if taking

cε = max{cε,1, cε,2}.
In order to prove part (i i), wemake use of theMeanValueTheorem in two variables.

More precisely, by ( f1), it follows that

|F(η, ζ )| = |F(η, ζ )− F(0, 0)|
= |∇F(cη, cζ ) · (η, ζ )|
≤ |∂1F(cη, cζ )||η| + |∂2F(cη, cζ )||ζ |,

(2.14)

for every (η, ζ ) ∈ R
2 and some c ∈ (0, 1). Now, by using part (i i), it follows that

max{|∂1F(cη, cζ )|, |∂2F(cη, cζ )|} ≤ ε (|η| + |ζ |)+ cε
(
|η|α−1 + |ζ |(α−1)

)
,

(2.15)

for every (η, ζ ) ∈ R
2. A direct computation shows that (i i) follows by (2.14) and

(2.15). ��
The next result is a consequence of Lemma 7 and can be viewed as a counterpart

of some contributions obtained in several different contexts (see, among others, the
paper [32]) to the case of subelliptic gradient–type systems defined on the domain
�ψ . We emphasize that a key ingredient of the proof is given by Lemmas 2 and 3 .
They express peculiar and intrinsic aspects of the problem under consideration.

Lemma 8 Let T = U (n1)× · · · ×U (n�)× {1}, where n = ∑�
i=1 ni , with ni ≥ 1 and

� ≥ 1. Furthermore, let �ψ ⊂ H
n as in (1.1), K : �ψ → R be a potential such that

(hK ) holds, and F : R2 → R be a continuous function satisfying ( f1)–( f3).
Then the functional F : YT → R given by

F(u, v) =
∫

�ψ

K (q)F(u(q), v(q))dμ(q), ∀ (u, v) ∈ YT

is sequentially weakly continuous on YT .

Proof In order to prove that F is a sequentially weakly continuous functional, arguing
by contradiction, we assume that there exists a sequence {(u j , v j )} j∈N ⊂ YT which
weakly converges to an element (̃u, ṽ) ∈ YT , and such that

|F(u j , v j )− F(̃u, ṽ)| > ε0, (2.16)
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for every j ∈ N and some ε0 > 0. Now, fixing (u, v) ∈ YT , one has

F′(u, v)(ϕ, ψ) =
∫

�ψ

K (q)∂1F(u(q), v(q))ϕ(q)dμ(q)

+
∫

�ψ

K (q)∂2F(u(q), v(q))φ(q)dμ(q), ∀ (ϕ, ψ) ∈ YT .
(2.17)

Invoking (2.16), the Mean Value Theorem ensures that

0 < ε0 ≤ |F′(w j , y j )(u j − ũ, v j − ṽ)|, (2.18)

where

w j = u j + θ j (̃u − u j ),

and

y j = v j + θ j (̃v − v j ),

for some θ j ∈ (0, 1), for every j ∈ N.
By using Lemma 7 (part (i)), the Hölder inequality yields

|F′(w j , y j )(u j − ũ, v j − ṽ)| ≤
∫

�ψ

K (q)|∂1F(w j (q), y j (q))||u j (q)− ũ(q)|dμ(q)

+
∫

�ψ

K (q)|∂2F(w j (q), y j (q))||v j (q)− ṽ(q)|dμ(q)

≤ ε

(∫

�ψ

K (q)(|w j (q)| + |y j (q)|)|u j (q)− ũ(q)|dμ(q)

+
∫

�ψ

K (q)(|w j (q)| + |y j (q)|)|v j (q)− ṽ(q)|dμ(q)
)

+ cε

(∫

�ψ

K (q)(|w j (q)|α−1 + |y j (q)|α−1)|u j (q)− ũ(q)|dμ(q)

+
∫

�ψ

K (q)(|w j (q)|α−1 + |y j (q)|α−1)|v j (q)− ṽ(q)|dμ(q)
)

≤ ε‖K‖∞
(
(‖w j‖2 + ‖y j‖2)(‖u j − ũ‖2 + ‖v j − ṽ‖2)

)

+ cε‖K‖∞
(
(‖w j‖α−1

α + ‖y j‖α−1
α )(‖u j − ũ‖α + ‖v j − ṽ‖α)

)
.

(2.19)

Now, it is easy to note that the sequences {w j } j∈N and {y j } j∈N are bounded in
HW 1,2

0,T (�ψ). Moreover, due to the compactness Lemma 3, u j → ũ and v j → ṽ
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in Lα(�ψ). Consequently, the last expression in (2.19) tends to zero and this fact
contradicts (2.16).

In conclusion, the functionalF is sequentiallyweakly continuous and this completes
the proof. ��

3 MainMultiplicity Result

With the previous notations, the main result of the present paper reads as follows:

Theorem 9 Let T = U (n1) × · · · × U (n�) × {1}, where n = ∑�
i=1 ni , with ni ≥ 1

and � ≥ 1. Let �ψ ⊂ H
n as in (1.1) with O = (0, 0) ∈ �ψ , ν ∈ [0,C−1

V n2) fixed,
and let V , K : �ψ → R be potentials satisfying (hV ) and (hK ). Furthermore, let
F : R2 → R be a continuous function satisfying ( f1)–( f4).

Then there exist a number σ > 0 and a nonempty open set � ⊂ (0,∞) such that,
for every λ ∈ � and every continuous function G : �ψ × R

2 → R satisfying (g1)–
(g4), there exists μ0 > 0 such that, for each μ ∈ (0, μ0), the gradient–type system
(1.2) has at least two weak solutions (u( j)λ,μ, v

( j)
λ,μ) ∈ YT , with j ∈ {1, 2}, lying in the

ball

{(u, v) ∈ YT : ‖(u, v)‖ ≤ σ },

where

‖(u, v)‖ =
(

‖u‖2
HW 1,2

0 (�ψ)
− ν

∫

�ψ

V (q)|u(q)|2dμ(q)
)1/2

+
(

‖v‖2
HW 1,2

0 (�ψ)
− ν

∫

�ψ

V (q)|v(q)|2dμ(q)
)1/2

.

Proof We will show that the assumptions of Theorem 6 are fulfilled by choosing
E = YT and D = [0,∞). Moreover, let us denote

�(u, v) = 1

2

(
‖u‖2 + ‖v‖2

)
,

and

F(u, v) =
∫

�ψ

K (q)F(u(q), v(q))dμ(q),

for every (u, v) ∈ YT , and define ! : YT × D → R as follows:

!((u, v), λ) = �(u, v)− λF(u, v)+ λρ0
for every (u, v) ∈ YT , and λ ∈ D. Here ρ0 is a positive and sufficiently small real
parameter (see (3.8) below).

123



Gradient-Type Systems 1745

We observe that the function !((u, v), ·) is concave in D, for every (u, v) ∈ YT .
Moreover, the functional !(·, λ) is continuous and sequential weak lower semiconti-
nuity on YT , for every λ ∈ D.

Moreover, fixing λ ∈ D, on account of ( f4), fixing μF , νF ∈ [2, 2∗], by Hölder’s
inequality and Lemma 2, one has

!((u, v), λ) ≥ �(u, v)− λ
(∫

�ψ

(
κ1K (q)|u(q)|pF + κ2K (q)|v(q)|qF + κ3K (q)

)
dμ(q)

)

≥ �(u, v)− λ (κ1 ‖K‖μF /(μF−pF ) ‖u‖pF
μF

+ κ2 ‖K‖νF /(νF−qF ) ‖v‖qFνF + κ3 ‖K‖1
)

≥ �(u, v)− cλ
(‖u‖pF + ‖v‖qF + 1

)

for some c > 0. Thus,

lim‖(u,v)‖→∞!((u, v), λ) = ∞,

since max{pF , qF } < 2.
Hence (!1) and (!2) of Theorem 6 are verified. Next, we deal with (!3). First, let

us consider the real function f : (0,∞) → R defined by

f (ξ) = sup
(u,v)∈�−1((−∞,ξ ])

F(u, v),

for every ξ ∈ R.
By Lemma 7, we have that for every ε > 0 there exists cε > 0 such that

max{|∂1F(η, ζ )|, |∂2F(η, ζ )|} ≤ ε (|η| + |ζ |)+ cε
(
|η|α−1 + |ζ |(α−1)

)
,

and

|F(η, ζ )| ≤ ε
(
|η|2 + 2|η||ζ | + |ζ |2

)

+ cε
(
|η|α + |ζ |α + |ζ |(α−1)|η| + |ζ ||η|(α−1)

) (3.1)

for any (η, ζ ) ∈ R
2.

Integrating (3.1) and using the Young inequality, we easily get

∫

�ψ

K (q)|F(u(q), v(q))|dμ(q) ≤ 2ε‖K‖∞
∫

�ψ

(
|u(q)|2 + |v(q)|2

)
dμ(q)

+ 2cε‖K‖∞
∫

�ψ

(|u(q)|α + |v(q)|α) dμ(q),

for every (u, v) ∈ YT .
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1746 G. M. Bisci, D. Repovš

Furthermore, invoking the embeddings result stated in Lemma 2, since ν ∈
[0,C−1

V n2), we deduce that

∫

�ψ

K (q)|F(u(q), v(q))|dμ(q) ≤ εc2‖K‖∞
(
‖u‖2 + ‖v‖2

)

+ cεc
α
α‖K‖∞

(‖u‖α + ‖v‖α) .

Now, taking into account that the real function defined by ξ 
→ (aξ+bξ )1/ξ , ξ > 0,
a, b ≥ 0, is nonincreasing, it follows that

‖u‖α + ‖v‖α ≤
(
‖u‖2 + ‖v‖2

)α/2

and therefore

F(u, v) ≤ 4εc2‖K‖∞

(
‖u‖2 + ‖v‖2

2

)

+ 2α/2+1cεc
α
α‖K‖∞

(
‖u‖2 + ‖v‖2

2

)α/2
.

The above inequality yields

f (ξ) = sup
(u,v)∈�−1((−∞,ξ ])

F(u, v)

= sup
(u,v)∈�−1((−∞,ξ ])

∫

�ψ

K (q)F(u(q), v(q))dμ(q)

≤ ‖K‖∞ sup
(u,v)∈�−1((−∞,ξ ])

×
⎛
⎝4εc2

(
‖u‖2 + ‖v‖2

2

)
+ 2α/2+1cεc

α
α

(
‖u‖2 + ‖v‖2

2

)α/2⎞
⎠

≤ ‖K‖∞
(
4c2ξ + 2α/2+1cεc

α
αξ
α/2

)

for every ξ > 0.
Since the nonlinearity f is nonnegative, it follows that

lim
ξ→0+

f (ξ)

ξ
= 0. (3.2)

Now, we claim that that there exists (u0, v0) ∈ YT such that

∫

�ψ

K (σ )F(u0(q), v0(q))dμ(q) > 0. (3.3)
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Indeed, following Balogh and Kristály in [1], we construct a special test function
belonging to HW 1,2

0,T (�ψ) that will be useful for our purposes. Let

�̂0 =
⋃

τ̂∈U(n)
{̂τ ∗�0},

where �0 is the open set of Hn given in (hK ). Since K is cylindrically symmetric,
one has

inf
q∈�0

K (q) = inf
q∈�̂0

K (q) > 0. (3.4)

Furthermore, we can find (z0, t0) ∈ �ψ and

0 < R < 2|z0|(
√
2 − 1), (3.5)

such that

AR = {q ∈ H
n : q = (z, t)with ||z| − |z0|| ≤ R, |t − t0| ≤ R} ⊂ �0. (3.6)

Of course, for every ' ∈ (0, 1], it follows that

A'R ⊆ AR ⊂ �0,

and μ(A'R) > 0.
Set ' ∈ (0, 1) and c0 ∈ R. Let us consider the function vc0' ∈ HW 1,2

0,cyl(�ψ) ⊆
HW 1,2

0,T (�ψ) given by

vc0' (q) = c0
1 − '

(
1 − max

( ||z| − |z0||
R

,
||t | − |t0||

R
, '

))

+
, q = (z, t) ∈ �ψ

where �+ := max{0, �}. With the above notation, we have

(i1) supp(vc0' ) = AR ;
(i2) ‖vc0' ‖∞ ≤ |c0|;
(i3) v

c0
' (q) = c0 for every q ∈ A'R .

By ( f1), there exists (η0, ζ0) ∈ R
2 \ {(0, 0)} such that F(η0, ζ0) > 0. Moreover,

∫

�ψ

K (q)F(vη0' (q), v
ζ0
' (q)) dμ(q) =

∫

A'R
K (q)F(vη0' (q), v

ζ0
' (q)) dμ(q)

+
∫

AR\A'R
K (q)F(vη0' (q), v

ζ0
' (q)) dμ(q).
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It then follows that

∫

�ψ

K (q)F(vη0' (q), v
ζ0
' (q)) dμ(q) ≥ inf

q∈AR
K (q)F(η0, ζ0)μ(A'R)

− ‖K‖∞ max
(|η|,|ζ |)∈[0,|η0|]×[0,|ζ0|]

|F(η, ζ )|μ(AR \ A'R).

(3.7)

Since μ(AR \ A'R) → 0, as ' → 1−, we of course, get

‖K‖∞ max
(|η|,|ζ |)∈[0,|η0|]×[0,|ζ0|]

|F(η, ζ )|μ(AR \ A'R) → 0,

as ' → 1−. Moreover,

μ(A'R) → μ(AR)

as ' → 1−. Thus, there exists '0 > 0 such that

inf
q∈AR

K (q)F(η0, ζ0)μ(A'0R) > ‖K‖∞ max
(|η|,|ζ |)∈[0,|η0|]×[0,|ζ0|]

|F(η, ζ )|μ(AR \ A'0R).

Hence (3.3) can be proved by choosing

u0(q) = vη0'0 (q) = η0

1 − '0
(
1 − max

( ||z| − |z0||
R

,
||t | − |t0||

R
, '0

))

+
,

and

v0(q) = vζ0'0(q) = ζ0

1 − '0
(
1 − max

( ||z| − |z0||
R

,
||t | − |t0||

R
, '0

))

+
,

for every q = (z, t) ∈ �ψ .
Now, fix η ∈ R such that

0 < η < F(u0, v0)

(
‖u0‖2 + ‖v0‖2

2

)−1

.

By (3.2), there exists ξ0 ∈
(
0,

‖u0‖2 + ‖v0‖2
2

)
such that f (ξ0) < ηξ0.

Let ρ0 > 0 such that

f (ξ0) < ρ0 < ξ0F(u0, v0)

(
‖u0‖2 + ‖v0‖2

2

)−1

. (3.8)

Due to the choice of ξ0, one has ρ0 < F(u0, v0).
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We are now in position to prove that the following strict inequality holds:

sup
λ∈D

inf
(u,v)∈YT

!((u, v), λ) < inf
(u,v)∈YT

sup
λ∈D

!((u, v), λ),

i.e. that condition (!3) of Theorem 6 is satisfied.
Indeed, the real function

λ 
→ inf
(u,v)∈YT

!((u, v), λ)

is upper semicontinuous on D and

lim
λ→∞ inf

(u,v)∈YT
!((u, v), λ) ≤ lim

λ→∞!((u0, v0), λ) = −∞.

Consequently (see [39, Chapter I]), there exists λ̄ ∈ D such that

sup
λ∈D

inf
(u,v)∈YT

!((u, v), λ) = inf
(u,v)∈YT

!((u, v), λ̄). (3.9)

For each (u, v) ∈ �−1((−∞, ξ0]), we have

F(u, v) ≤ f (ξ0) < ρ0

and hence

ξ0 ≤ inf {�(u, v) : F(u, v) ≥ ρ0} . (3.10)

On the other hand, we also have

inf
(u,v)∈YT

sup
λ∈D

!((u, v), λ) = inf
(u,v)∈YT

(
�(u, v)+ sup

λ∈D
(λ (ρ0 − F(u, v)))

)

= inf
(u,v)∈YT

{�(u, v) : F(u, v) ≥ ρ0} ,

and therefore

ξ0 ≤ inf
(u,v)∈YT

sup
λ∈D

!((u, v), λ). (3.11)

There are two distinct cases.
If 0 ≤ λ̄ < ξ0/ρ0, it follows that

inf
(u,v)∈YT

!((u, v), λ̄) ≤ �(0, 0)− λ̄F(0, 0)+ λ̄ρ0 = λ̄ρ0 < ξ0,

and inequality (!3) is verified.

123



1750 G. M. Bisci, D. Repovš

If λ̄ ∈ (ξ0/ρ0,∞) it is easy to note that

inf
(u,v)∈YT

!((u, v), λ̄) ≤ !((u0, v0), λ̄) ≤ !((u0, v0), ξ0/ρ0) < ξ0.

Hence, also in this case inequality (!3) is satisfied.
Therefore, fixing ζ > sup

λ∈D
inf

(u,v)∈YT
!((u, v), λ), Theorem 6 assures the existence

of a nonempty open set � ⊆ D with the following property:
If λ ∈ � and G : �ψ × R

2 → R is continuous and satisfies (g1)–(g3), then there
exists δ > 0 such that, for each μ ∈ (0, δ), the functional

Eλ,μ(u, v) = !((u, v), λ)+ μ"(u, v), for every (u, v) ∈ YT

has at least two local minima in

{(u, v) ∈ YT : !((u, v), λ) < ζ },

say (u( j)λ,μ, v
( j)
λ,μ), with j ∈ {1, 2}.

Here " : YT → R is the functional defined by

"(u, v) = −
∫

�ψ

G(q, u(q), v(q))dμ(q).

Notice that, similarly to F, the functional " is sequentially weakly continuous on
YT thanks to assumptions (g1)–(g3). Now K (·) andG(·, η, ζ ) are symmetric functions
(respectively, by (hK ) and (g4)), and the action π� : T × X → X given by

π�(̂τ , (u, v)) = (̂τ �u, τ̂ �v),

for every τ̂ ∈ T and (u, v) ∈ X , is isometric. Thus, the functional Iλ,μ : X → R

Iλ,μ(u, v) = 1

2

(
‖u‖2 + ‖v‖2

)
− λ

∫

�ψ

K (q)F(u(q), v(q))dμ(q)

−μ
∫

�ψ

G(q, u(q), v(q))dμ(q),

for every (u, v) ∈ X , is T -invariant, i.e.

Iλ,μ(π�(̂τ , (u, v))) = Iλ,μ(u, v),

for every (u, v) ∈ X , see Sect. 2.2 for details.
Moreover,

Iλ,μ|YT (u, v) = Eλ,μ(u, v)− λρ0 = !((u, v), λ)+ μ"(u, v)− λρ0,

for every (u, v) ∈ YT .
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By Theorem 5, (u( j)λ,μ, v
( j)
λ,μ) ∈ YT , with j ∈ {1, 2}, turn out also to be critical points

of Iλ,μ and hence weak solutions to (1.2).

Finally, to estimate the norm of (u( j)λ,μ, v
( j)
λ,μ) ∈ YT , with j ∈ {1, 2}, we take a

nondegenerate compact interval [a, b] ⊂ �. Notice that one has

⋃
λ∈[a,b]

{(u, v) ∈ YT : !((u, v), λ) ≤ ζ }

⊆ {(u, v) ∈ YT : !((u, v), a) ≤ ζ } ∪ {(u, v) ∈ YT : !((u, v), b) ≤ ζ }

and hence the set

S :=
⋃

λ∈[a,b]
{(u, v) ∈ YT : !((u, v), λ) ≤ ζ }

is bounded. In conclusion, the local minima of the energy functional Eλ,μ (defined on
YT ) have norm at most equal to σ = sup

(u,v)∈S
‖(u, v)‖. This concludes the proof. ��

A direct application of Theorem 9 is given below.

Example 10 Let �ψ ⊂ H
n be as in (1.1), with O = (0, 0) ∈ �ψ and let V , K :

�ψ → R be potentials satisfying, respectively, (hV ) and (hK ). Furthermore, let us
fix α ∈ (2, 2∗) and let F : R2 → R be a C1-function defined by

F(η, ζ ) = sin
(|η|α + |ζ |α) ,

for every (η, ζ ) ∈ R
2. Then, if ν ∈ [0,C−1

V n2), there exist by Theorem 9 a number
σ > 0 and a nonempty open set� ⊂ (0,∞) such that, for every λ ∈ �, the following
singular subelliptic system

⎧
⎪⎨
⎪⎩

−�Hn u − νV (q)u + u = αλK (q)|u|α−2u cos(|u|α + |v|α) in �ψ

−�Hnv − νV (q)v + v = αλK (q)|v|α−2v cos(|u|α + |v|α) in �ψ
u = v = 0 on ∂�ψ,

has at least two weak solutions (u( j)λ,μ, v
( j)
λ,μ) ∈ HW 1,2

0,cyl(�ψ) × HW 1,2
0,cyl(�ψ), with

j ∈ {1, 2}, lying in the ball
{
(u, v) ∈ HW 1,2

0,cyl(�ψ)× HW 1,2
0,cyl(�ψ) : ‖(u, v)‖ ≤ σ

}
.

In other words,

(∥∥∥u( j)λ,μ
∥∥∥
2

HW 1,2
0 (�ψ)

− ν
∫

�ψ

V (q)
∣∣∣u( j)λ,μ(q)

∣∣∣
2
dμ(q)

)1/2

≤ σ,
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1752 G. M. Bisci, D. Repovš

and

(∥∥∥v( j)λ,μ
∥∥∥
2

HW 1,2
0 (�ψ)

− ν
∫

�ψ

V (q)
∣∣∣v( j)λ,μ(q)

∣∣∣
2
dμ(q)

)1/2

≤ σ,

for j ∈ {1, 2}.
Remark 11 For the sake of completeness, we point out that the results presented in
this paper could be also investigated for a larger class of elliptic equations where the
leading term is governed by some differential operators such as the ones considered in
[3–5]. However, in these cases some different technical approaches need to be adopted
in order to get analogous existence results for this wider class of energies. We will
consider these interesting cases in our future investigations.
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