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Abstract. This work is devoted to the study of the existence of at least one weak solution to nonlocal equations involving
a general integro-differential operator of fractional type. As a special case, we derive an existence theorem for the fractional
Laplacian, finding a nontrivial weak solution of the equation{

(−Δ)su = h(x)f (u) in Ω,
u = 0 in R

n \Ω,

where h ∈ L∞
+ (Ω) \ {0} and f :R → R is a suitable continuous function. These problems have a variational structure and

we find a nontrivial weak solution for them by exploiting a recent local minimum result for smooth functionals defined on
a reflexive Banach space. To make the nonlinear methods work, some careful analysis of the fractional spaces involved is
necessary.

Keywords: fractional equations, multiple solutions, critical points results

1. Introduction

The aim of this paper is to prove some existence results for fractional Laplacian problems whose
prototype is{

(−Δ)su = h(x)f (u) in Ω,
u = 0 in R

n \Ω,
(Df

h)

where (−Δ)s denotes the fractional Laplacian operator with s ∈ (0, 1), and Ω is an open bounded set
with Lipschitz boundary of Rn, requiring that n > 2s. Moreover, h ∈ L∞(Ω) \ {0} is a nonnegative
map and f :R → R represents a subcritical continuous function.

The existence of weak solutions for such type of problems has been intensively studied under different
assumptions on the nonlinearities (see, for instance, [6,8,14,16,18] and references therein).
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Moreover, the existence and multiplicity of solutions for elliptic equations in R
n, driven by a nonlocal

integro-differential operator, whose standard prototype is the fractional Laplacian, have been studied,
very recently, by Autuori and Pucci in [2] (this work is related to the results on general quasilinear
elliptic problems given in [1]).

Motivated by this wide interest, we prove in the present note some existence results (see Theorem 3.2
and its consequences) for fractional equations assuming that f has a suitable behaviour at zero together
with some global properties formulated by the means of an auxiliary function ψ.

The strategy for proving Theorem 3.2 is based on the fact that our problem can be seen as the Euler–
Lagrange equation of a suitable functional defined in a Sobolev space X0.

Hence, the solutions of (Df
h) or more generally of problem (P h,f

K ) defined in the sequel, can be found
as critical points of this functional: for this purpose, along the paper, we will exploit a critical point result
due to Ricceri (see Theorem 2.1 and Proposition 3.1).

Exploiting this result, a key point is to prove the existence of a suitable σ > 0 such that

sup‖u‖X0 �σ

∫
Ω h(x)(

∫ u(x)
0 f (t) dt) dx

σ
<

1
2
.

One of the main novelties here is that, in contrast with several known results (see references contained
in [11]), we obtain the above inequality without continuous embedding of the ambient space in C0(Ω̄).

In the nonlocal framework, denoting by λ1,s the first eigenvalue of the problem{
(−Δ)su = λu in Ω,
u = 0 in R

n \Ω,

the simplest example we can deal with is given by the fractional Laplacian, according to the following
result.

Theorem 1.1. Let s ∈ (0, 1), n > 2s and let Ω be an open bounded set of Rn with Lipschitz boundary.
Moreover, let f : [0,+∞) → [0,+∞) be a continuous function satisfying the following hypothesis:

(h1) for some q ∈ [1, 2n
n−2s ) the function

t �→ f (t)
tq−1

is strictly decreasing in (0,+∞) and limt→+∞
f (t)
tq−1 = 0.

Further, suppose that

lim
ξ→+∞

F (ξ)
ξ2

= 0 and lim inf
ξ→0+

F (ξ)
ξ2

> 0.

Then, for every

α >
λ1,s

2 lim infξ→0+
F (ξ)
ξ2

,
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the parametric nonlocal problem{
(−Δ)su = αf (u) in Ω,
u = 0 in R

n \Ω,

admits at least one nonnegative and nonzero weak solution uα ∈ Hs(Rn), such that uα = 0 a.e. in
R
n \Ω.

The plan of the paper is as follows; Section 2 is devoted to our abstract framework and preliminaries.
Successively, in Section 3 we give the main result (see Theorem 3.2). Finally, the fractional Laplacian
case is studied in the last section. A concrete example of an application is presented in Example 4.3.

2. Preliminaries

In this section we briefly recall the definition of the functional space X0, first introduced in [14,15].
Let K :Rn \ {0} → (0,+∞) be a function with the properties that:

(k1) γK ∈ L1(Rn), where γ(x) := min{|x|2, 1};
(k2) there exists β > 0 such that

K(x) � β|x|−(n+2s)

for any x ∈ R
n \ {0};

(k3) K(x) = K(−x) for any x ∈ R
n \ {0}.

The functional space X denotes the linear space of Lebesgue measurable functions from R
n to R such

that the restriction to Ω of any function g in X belongs to L2(Ω) and(
(x, y) �→

(
g(x) − g(y)

)√
K(x− y)

)
∈ L2

((
R
n × R

n
)
\ (CΩ × CΩ), dx dy

)
,

where CΩ := R
n \Ω. We denote by X0 the following linear subspace of X

X0 :=
{
g ∈ X: g = 0 a.e. in R

n \Ω
}
.

We remark that X and X0 are nonempty, since C2
0 (Ω) ⊆ X0 by [15, Lemma 11]. Moreover, the

space X is endowed with the norm defined as

‖g‖X := ‖g‖L2(Ω) +

(∫
Q

∣∣g(x) − g(y)
∣∣2
K(x− y) dx dy

)1/2

,

where Q := (Rn × R
n) \ O and O := (CΩ) × (CΩ) ⊂ R

n × R
n. It is easily seen that ‖ · ‖X is a norm

on X; see, for instance, [14].
By [14, Lemmas 6 and 7] we can take in the sequel the function

X0 	 v �→ ‖v‖X0 :=

(∫
Q

∣∣v(x) − v(y)
∣∣2
K(x− y) dx dy

)1/2

(1)
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as norm on X0. Also (X0, ‖ · ‖X0 ) is a Hilbert space with scalar product

〈u, v〉X0 :=
∫
Q

(
u(x) − u(y)

)(
v(x) − v(y)

)
K(x− y) dx dy,

see [14, Lemma 7].
Note that in (1) (and in the related scalar product) the integral can be extended to all Rn × R

n, since
v ∈ X0 (and so v = 0 a.e. in R

n \Ω).
While for a general kernel K satisfying conditions from (k1) to (k3) we have that X0 ⊂ Hs(Rn), in the

model case K(x) := |x|−(n+2s) the space X0 consists of all the functions of the usual fractional Sobolev
space Hs(Rn) which vanish a.e. outside Ω; see [18, Lemma 7].

Here Hs(Rn) denotes the usual fractional Sobolev space endowed with the norm (the so-called
Gagliardo norm)

‖g‖Hs(Rn) = ‖g‖L2(Rn) +

(∫
Rn×Rn

|g(x) − g(y)|2
|x− y|n+2s

dx dy

)1/2

.

Before concluding this section, we recall the embedding properties of X0 into the usual Lebesgue
spaces; see [14, Lemma 8]. The embedding j :X0 ↪→ Lν(Rn) is continuous for any ν ∈ [1, 2∗], while
it is compact whenever ν ∈ [1, 2∗), where 2∗ := 2n/(n − 2s) denotes the fractional critical Sobolev
exponent.

For further details on the fractional Sobolev spaces we refer to [6] and to the references therein, while
for other details on X and X0 we refer to [15], where these functional spaces were introduced, and also
to [13,14,16,18], where various properties of these spaces were proved.

Finally, our abstract tool for proving the main result of the present paper is the following local mini-
mum result due to Ricceri (see [11] and [9]).

Theorem 2.1. Let (E, ‖ · ‖) be a reflexive real Banach space and let Φ,Ψ :X → R be two sequentially
weakly lower semicontinuous functionals, with Ψ coercive and Φ(0E) = Ψ (0E) = 0. Further, set

Jμ := μΨ + Φ.

Then, for each σ > infu∈X Ψ (u) and each μ satisfying

μ > −
infu∈Ψ−1((−∞,σ]) Φ(u)

σ

the restriction of Jμ to Ψ−1((−∞,σ)) has a global minimum.

We cite the monograph [7] for related topics on variational methods adopted in this paper and [3–5]
for recent nice results in the fractional setting.
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3. The main result

Denote by A the class of all continuous functions f :R → R such that

sup
t∈R

|f (t)|
1 + |t|γ−1

< +∞

for some γ ∈ [1, 2∗). Further, if f ∈ A we put

F (ξ) :=
∫ ξ

0
f (t) dt

for every ξ ∈ R.
Let h ∈ L∞(Ω) and f ∈ A. Consider the fractional problem{

−LKu = h(x)f (u) in Ω,
u = 0 in R

n \Ω.
(P h,f

K )

We recall that a weak solution of problem (P h,f
K ) is a function u ∈ X0 such that∫

Q

(
u(x) − u(y)

)(
ϕ(x) − ϕ(y)

)
K(x− y) dx dy =

∫
Ω
h(x)f

(
u(x)

)
ϕ(x) dx

for every ϕ ∈ X0.
We observe that problem (P h,f

K ) has a variational structure, indeed it is the Euler–Lagrange equation
of the functional JK :X0 → R defined as follows

JK(u) :=
1
2
‖u‖2

X0
−

∫
Ω
h(x)F

(
u(x)

)
dx.

Note that the functional JK is Fréchet differentiable in u ∈ X0 and one has〈
J ′
K(u),ϕ

〉
=

∫
Q

(
u(x) − u(y)

)(
ϕ(x) − ϕ(y)

)
K(x− y) dx dy −

∫
Ω
h(x)f

(
u(x)

)
ϕ(x) dx

for every ϕ ∈ X0.
Thus, critical points of JK are solutions to problem (P h,f

K ). In order to find these critical points, we
will make use of Theorem 2.1.

Notations. Let 0 � a < b � +∞. If λ ∈ [a, b] and ϕ,ψ :R → R are two assigned functions, we set

gϕ,ψ
λ := λψ − ϕ.

Denote

M (ϕ,ψ,λ) :=

{
the set of global minima of gϕ,ψ

λ if λ < +∞,
∅ if λ = +∞,

α(ϕ,ψ, b) := max
{

inf
s∈R

ψ(s), sup
s∈M (ϕ,ψ,b)

ψ(s)
}
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and

β(ϕ,ψ, a) := min
{

sup
s∈R

ψ(s), inf
s∈M (ϕ,ψ,b)

ψ(s)
}

,

adopting the conventions sup ∅ = −∞ and inf ∅ = +∞.
Further, if q ∈ [1, 2∗), we denote by Fq the family of all the lower semicontinuous functions ψ :R → R

such that:

(i1) sups∈R ψ(s) > 0;
(i2) infs∈R

ψ(s)
1+|s|q > −∞;

(i3) γψ := sups∈R\{0}
ψ(s)
|s|q < +∞.

The next result, that can be viewed as a special case of [10, Theorem 1], will be crucial in the proof of
the main theorem.

Proposition 3.1. Let ϕ,ψ :R → R be two functions such that, for each λ ∈ (a, b), the function gϕ,ψ
λ is

lower semicontinuous, coercive and has a global minimum in R. Assume that

α(ϕ,ψ, b) < β(ϕ,ψ, a).

Then, for each

r ∈
(
α(F ,ψ, b),β(F ,ψ, a)

)
,

there exists λr ∈ (a, b), such that the unique global minimum of gϕ,ψ
λr

lies in ψ−1(r).

Set

cq := sup
u∈X0\{0X0 }

‖u‖qLq(Ω)

‖u‖qX0

.

Note that, since X0 ↪→ Lq(Ω) continuously, clearly cq < +∞.
With the above notations our result reads as follows.

Theorem 3.2. Let s ∈ (0, 1), n > 2s and let Ω be an open bounded set of Rn with Lipschitz boundary
and K :Rn \ {0} → (0,+∞) be a map satisfying (k1)–(k3). Moreover, let f ∈ A and h ∈ L∞

+ (Ω) \ {0}.

Assume that there exists ψ ∈ Fq such that, for each λ ∈ (a, b), the function gF ,ψ
λ is coercive and has a

unique global minimum in R. Further, suppose that there exists a number r > 0 satisfying

r ∈
(
α(F ,ψ, b),β(F ,ψ, a)

)
and

sup
ξ∈ψ−1(r)

F (ξ) <
r2/q

2(cqγψ esssupx∈Ω h(x))2/q‖h‖(q−2)/q
L1(Ω)

. (2)
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Then, problem (P h,f
K ) admits at least one weak solution which is a local minimum of the energy func-

tional JK and satisfies∫
Q

∣∣v(x) − v(y)
∣∣2
K(x− y) dx dy <

(
r‖h‖L1(Ω)

cqγψ esssupx∈Ω h(x)

)2/q

.

Proof. Let us apply Theorem 2.1 by choosing E := X0, and

Φ(u) := −
∫
Ω
h(x)F

(
u(x)

)
dx, Ψ (u) := ‖u‖2

X0

for every u ∈ E.
Set

σ :=

(
r‖h‖L1(Ω)

cqγψ esssupx∈Ω h(x)

)2/q

. (3)

We claim that

Ψ−1
(
(−∞,σ]

)
⊆ D, (4)

where

D :=

{
u ∈ Lq(Ω):

∫
Ω
h(x)ψ

(
u(x)

)
dx � r‖h‖L1(Ω)

}
.

Indeed, since X0 ↪→ Lq(Ω), it follows that

Ψ−1
(
(−∞,σ]

)
⊆

{
u ∈ Lq(Ω): ‖u‖Lq(Ω) � c1/q

q

√
σ
}
. (5)

On the other hand, taking into account that ψ ∈ Fq, one also has∫
Ω
h(x)ψ

(
u(x)

)
dx � γψ‖u‖qLq(Ω) esssup

x∈Ω
h(x). (6)

Hence, inclusion (4) follows from inequalities (5) and (6).
Now, for each parameter λ ∈ (a, b) denote by ξ�λ the unique global minimum (in R) of the real

function gF ,ψ
λ .

By Lemma 3.1, since by assumption

r ∈
(
α(F ,ψ, b),β(F ,ψ, a)

)
,

there exists λr ∈ (a, b) such that ψ(ξ�λr
) = r.

Hence, since

gF ,ψ
λr

(
ξ�λr

)
� gF ,ψ

λr
(ξ) (7)
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for every ξ ∈ R, it follows that

F
(
ξ�λr

)
= sup

ξ∈ψ−1(r)
F (ξ). (8)

Bearing in mind that h is nonnegative, by (7) one has

gF ,ψ
λ

(
ξ�λr

)
h(x) � h(x)gF ,ψ

λr
(ξ) (9)

for a.e. x ∈ Ω. Hence, inequality (9) implies that

gF ,ψ
λr

(
ξ�λr

)
‖h‖L1(Ω) �

∫
Ω
h(x)gF ,ψ

λr

(
u(x)

)
dx (10)

for every u ∈ Lq(Ω).
Exploiting (10), for every u ∈ D, one has∫

Ω
h(x)F

(
u(x)

)
dx � F

(
ξ�λr

)
‖h‖L1(Ω).

Owing to (8), the above inequality assumes the form∫
Ω
h(x)F

(
u(x)

)
dx � sup

ξ∈ψ−1(r)
F (ξ)‖h‖L1(Ω) (11)

for every u ∈ D.
Observing that

r =
cqγψσ

q/2 esssupx∈Ω h(x)
‖h‖L1(Ω)

,

and since inclusion (4) holds, it follows that

sup
u∈Ψ−1((−∞,σ])

∫
Ω
h(x)F

(
u(x)

)
dx � sup

ξ∈ψ−1(r)
F (ξ)‖h‖L1(Ω). (12)

Finally, relations (2) and (12) yield

supu∈Ψ−1((−∞,σ])

∫
Ω h(x)F (u(x)) dx

σ
<

1
2

,

that is,

1
2
> −

infu∈Ψ−1((−∞,σ]) Φ(u)

σ
.

Then, the assertion of Theorem 2.1 follows and the existence of one weak solution u ∈ Ψ−1((−∞,σ))
to our problem is established. �
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Remark 3.3. The above existence theorem extends to the nonlocal setting some results, already known
in the literature in the case of the classical p-Laplace operator (see [12]).

4. The fractional Laplacian case

As observed in Section 2, by taking K(x) := |x|−(n+2s), the space X0 consists of all the functions
of the usual fractional Sobolev space Hs(Rn) which vanish almost everywhere outside Ω; see [18,
Lemma 7].

In this case LK is the fractional Laplace operator defined as

−(−Δ)su(x) :=
∫
Rn

u(x+ y) + u(x− y) − 2u(x)
|y|n+2s

dy, x ∈ R
n.

By [16, Proposition 9 and Appendix A], we a variational characterization of the first eigenvalue (de-
noted by λ1,s) of the problem{

(−Δ)su = λu in Ω,
u = 0 in R

n \Ω,

as follows

λ1,s = min
u∈X0\{0X0 }

∫
R2n

|u(x)−u(y)|2
|x−y|n+2s dx dy∫
Ω u(x)2 dx

. (13)

In the sequel it will be useful the following regularity result for the eigenvalues of (−Δ)s proved in
[19, Theorem 1]. See also [13, Proposition 2.4] for related topics.

Proposition 4.1. Let e ∈ X0 and λ > 0 be such that

〈e,ϕ〉X0 = λ

∫
Ω
e(x)ϕ(x) dx

for every ϕ ∈ X0. Then e ∈ C0,α(Ω̄), for some α ∈ (0, 1), i.e. the function e is Hölder continuous up to
the boundary.

Taking into account the above facts, a meaningful consequence of Theorem 3.2 is the following one.

Theorem 4.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rn with Lipschitz boundary.
Moreover, let h ∈ L∞(Ω)\{0} with ess infx∈Ω h(x) > 0 and let f : [0,+∞) → [0,+∞) be a continuous
function satisfying the following hypotheses:

(h1) for some q ∈ [1, 2∗) the function

t �→ f (t)
tq−1

is strictly decreasing in (0,+∞) and limt→+∞
f (t)
tq−1 = 0;
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(h2) one has

lim inf
ξ→0+

F (ξ)
ξ2

>
λ1,s

2 ess infx∈Ω h(x)
;

(h3) there exists ξ0 > 0 such that

F (ξ0) <
ξ2

0

2(cq esssupx∈Ω h(x))2/q‖h‖(q−2)/q
L1(Ω)

.

Then, the problem∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|n+2s

dx dy =

∫
Ω
h(x)f

(
u(x)

)
ϕ(x) dx

for every

ϕ ∈ Hs
(
R
n
)

such that ϕ = 0 a.e. in R
n \Ω,

admits at least one nonnegative and nonzero weak solution u ∈ Hs(Rn), such that u = 0 a.e. in R
n \Ω.

Moreover, u is a local minimum of the energy functional JK and satisfies∫
R2n

|uj(x) − uj(y)|2
|x− y|n+2s

dx dy <

( ‖h‖L1(Ω)

cq esssupx∈Ω h(x)

)2/q

ξ2
0 . (14)

Proof. Let us define

f̃ (t) :=

{
f (t) if t � 0,
f (0) if t < 0,

and consider the following problem{
(−Δ)su = h(x)f̃ (u) in Ω,
u = 0 in R

n \Ω.
(Dh

f̃
)

By [17, Lemma 6] every weak solution of problem (Dh
f̃

) is nonnegative in Ω. Furthermore, every

nonnegative solution of problem (Dh
f̃

) also solves our initial problem. Taking a := 0 and b := +∞, and

by exploiting Theorem 2.1 with

ψ(t) := |t|q, ∀t ∈ R,

substantially arguing as in [12], the existence of one weak solution of problem (Dh
f̃

) which is a local

minimum of the associated energy functional (namely J̃K) satisfying (14) is established.
In conclusion, we prove that 0X0 is not a local minimum of J̃K , i.e. the obtained solution is nonzero.



G. Molica Bisci and D. Repovš / Existence and localization of solutions for nonlocal fractional equations 377

For this purpose, let us observe that the first eigenfunction e1 ∈ X0 is positive in Ω, see [17, Corol-
lary 8], and it follows by (13) that

‖e1‖2
X0

= λ1

∫
Ω
e1(x)2 dx. (15)

Thanks to (h2), there exists δ > 0 such that

F (ξ) >
λ1,s

2 ess infx∈Ω h(x)
ξ2

for every ξ ∈ (0, δ).
Now, by Proposition 4.1, one has that e1 ∈ C0,α(Ω̄). Hence, we can define θη(x) := ηe1(x), for every

x ∈ Ω, where

η ∈ Λδ :=

(
0,

δ

maxx∈Ω e1(x)

)
.

Taking into account (15), we easily get

∫
Ω
h(x)F

(
θη(x)

)
dx >

λ1
∫
Ω h(x)θη(x)2 dx

2 ess infx∈Ω h(x)
� λ1

2

∫
Ω
θη(x)2 dx =

1
2
‖θη‖2

X0
,

that is,

J̃K(θη) =
1
2
‖θη‖2

X0
−

∫
Ω
h(x)F

(
θη(x)

)
dx < 0

for every η ∈ Λδ.
The proof is thus complete. �

It is easy to see that Theorem 1.1 in the Introduction is a consequence of Theorem 4.2. A direct
application of this result reads as follows.

Example 4.3. Let s ∈ (0, 1), n > 2s and let Ω be an open bounded set of Rn with Lipschitz boundary.
By virtue of Theorem 4.2, for every α > λ1,s, the following nonlocal problem{

(−Δ)su =
αu

1 + u2
in Ω,

u = 0 in R
n \Ω,

admits at least one nonnegative and nonzero weak solution uα ∈ Hs(Rn), such that uα = 0 a.e. in
R
n \Ω.
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Remark 4.4. We observe that a special case of our results ensures that if f : [0,+∞) → [0,+∞) is
any positive C1-function such that f (0) = 0, f (t)/t is strictly decreasing in (0,+∞), f (t)/t → 0 as
t → +∞ and f ′(0) > λ1, then the following problem{

(−Δ)su = f (u) in Ω,
u = 0 in R

n \Ω,

admits at least one nonnegative and nonzero weak solution u ∈ Hs(Rn), such that u = 0 a.e. in R
n \Ω.
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