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This work is devoted to the study of the existence of at least one (non-zero) solution to a
problem involving the discrete p-Laplacian. As a special case, we derive an existence
theorem for a second-order discrete problem, depending on a positive real parameter a,
whose prototype is given by
�D2uðk� 1Þ ¼ af ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0:

(

Our approach is based on variational methods in finite-dimensional setting.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

We are interested in investigating nonlinear discrete boundary value problems by using variational methods. This
approach has been recently adopted, for instance, in [2–4,14,19,29].

More precisely, for every a; b 2 Z, such that a < b, set Z½a; b� :¼ fa; aþ 1; . . . ; bg and let T P 2 be a positive integer.
The aim of this paper is to prove some existence results for the following discrete problem:
�Dð/pðDuðk� 1ÞÞÞ ¼ f ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0;

�
ðDfÞ
where p > 1; /p : R! R is given by /pðsÞ :¼ jsjp�2s, for every s 2 R; f : Z½1; T� � R! R is a continuous function, and
Duðk� 1Þ :¼ uðkÞ � uðk� 1Þ is the forward difference operator.

In recent years equations involving the discrete p-Laplacian operator, subject to different boundary conditions, have been
widely studied by many authors and several approaches.

In particular, problem (Df) has been previously studied, for instance, in [3,8,15] by using various methods. See the recent
papers [9,23] for the discrete anisotropic case. Motivations for this interest arose in by different fields of research, such as
computer science, mechanical engineering, control systems, artificial or biological neural networks, economics and others.
Moreover, the main background in the real world for the discrete p-Laplacian operator are the problems on the boundary
between different substances.

Set
cðp; TÞ :¼
1
p

2
T

� �p�1 þ 2
Tþ2

� �p�1
� �

if T is even;

2p

pðTþ1Þp�1 if T is odd:

8><>:
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Via variational approach, we are able to prove the existence of a solution for problem (Df) by requiring that
PT
k¼1maxjnj6e

R n
0 f ðk; sÞds

ep < cðp; TÞ
for some e > 0. See condition (2) in Theorem 3.2.
Next, by using Theorem 3.2, we study a parametric version of problem (Df), defined as follows
�D /pðDuðk� 1ÞÞ
� �

¼ af ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0;

(
ðDf

aÞ
where a is a positive real parameter.
In this case, requiring a suitable behavior of the potentials at zero and at infinity, we obtain, for sufficiently large a, the

existence of at least one positive solution for problem ðDf
aÞ, see Theorem 4.2. This result can be achieved exploiting

Theorem 3.2 together with the well-known variational characterization of the first eigenvalue of the p-Laplacian operator
in the finite-dimensional context (see [3]).

The simplest example we can deal with is a second-order boundary value problem.

Theorem 1.1. Let f : Z½1; T� � ½0;þ1Þ ! ½0;þ1Þ be a continuous function satisfying the following hypotheses:
lim
n!þ1

PT
k¼1

R n
0 f ðk; tÞdt

n2 ¼ 0
and
cj :¼ lim inf
n!0þ

R n
0f ðk; tÞdt

n2 > 0
for every k 2 Z½1; T�. Then for every
a >
2

min
k2Z½1;T�

ck
sin2 p

2ðT þ 1Þ

	 

;

the following second-order discrete problem
�D2uðk� 1Þ ¼ af ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0;

(
ðS a Þ
has at least one positive solution.
We remark that the results obtained for second-order discrete equations in [4,12] and our theorems are mutually

independent. Moreover, the approach adopted here can be used studying the discrete counterpart of the following problem
@2u
@x2 þ @2u

@y2 þ f ððx; yÞ;uðx; yÞÞ ¼ 0;

uðx;0Þ ¼ uðx;nþ 1Þ ¼ 0; 8x 2 ð0;mþ 1Þ;
uð0; yÞ ¼ uðmþ 1; yÞ ¼ 0; 8y 2 ð0; nþ 1Þ;

8><>:

where m;n 2 N n f0g and f is a suitable continuous function. See [10,13] for details. We refer to the monograph of Cheng [7]
for a geometrical interpretation of this equations.

The plan of the paper is as follows. Section 2 is devoted to our abstract framework and preliminaries. Successively, in
Section 3 we prove our main result (see Theorem 3.2). The parametric case is discussed in the last section (see Theorem 4.2),
where, a concrete example of an application is also presented (see Example 4.5).

2. Abstract framework

On the T-dimensional Banach space
H :¼ u : Z½0; T þ 1� ! R : uð0Þ ¼ uðT þ 1Þ ¼ 0f g
endowed by the norm
kuk :¼
XTþ1

k¼1

jDuðk� 1Þjp
 !1=p

;

we define the functional J : H ! R given by
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JðuÞ :¼ 1
p

XTþ1

k¼1

jDuðk� 1Þjp �
XT

k¼1

Z uðkÞ

0
f ðk; tÞdt
for every u 2 H.
We recall that a solution of problem (Df) is a function u 2 H such that
XTþ1

k¼1

/pðDuðk� 1ÞÞDvðk� 1Þ ¼
XT

k¼1

f ðk;uðkÞÞvðkÞ
for every v 2 H.
We observe that problem (Df) has a variational structure. Indeed, the functional J is differentiable in u 2 H and one has
hJ0ðuÞ; vi ¼
XTþ1

k¼1

/pðDuðk� 1ÞÞDvðk� 1Þ �
XT

k¼1

f ðk;uðkÞÞvðkÞ
for every v 2 H.
Thus critical points of J are solutions to problem (Df). In order to find these critical points, we will make use of the

following local minimum result due to Ricceri (see [24]) recalled here on the finite-dimensional setting.

Theorem 2.1. Let ðE; k � kÞ be a finite-dimensional Banach space and let U;W : X ! R be two lower semicontinuous functionals,
with W coercive and Uð0EÞ ¼ Wð0EÞ ¼ 0. Further, set
Jl :¼ lWþU:
Then for each r > infu2XWðuÞ and each l satisfying
l > �
infu2W�1ðð�1;r�ÞUðuÞ

r

the restriction of Jl to W�1ðð�1;rÞÞ has a global minimum.

See [27,25,26] for related abstract critical points results. We also mention the monograph [18] for some topics on vari-
ational methods adopted in this paper and [1] for general facts on finite difference equations.

3. The main result

By [6, Lemma 4] one has that
kuk1 :¼ max
k2Z ½1;T�

juðkÞj 6 1
j
kuk ð1Þ
for every u 2 H, where
j :¼
2
T

� �p�1 þ 2
Tþ2

� �p�1
� �1=p

if T is even;

2
ðTþ1Þðp�1Þ=p if T is odd:

8><>:

Remark 3.1. Note that
2
T

	 
p�1

þ 2
T þ 2

	 
p�1
" #�1=p

<
ðT þ 1Þðp�1Þ=p

2
:

Indeed, since the continuous function h : ð0; T þ 1Þ ! R defined by
hðsÞ :¼ 1

ðT � sþ 1Þp�1 þ
1

sp�1
attains its minimum 2p

ðTþ1Þp�1 at s ¼ Tþ1
2 , one has
2p

ðT þ 1Þp�1 < hðT=2Þ:
Then
2

ðT þ 1Þðp�1Þ=p <
2
T

	 
p�1

þ 2
T þ 2

	 
p�1
" #1=p

¼ hðT=2Þ1=p
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and the conclusion is achieved.
Set
FkðnÞ :¼
Z n

0
f ðk; sÞds
for every k 2 Z½1; T� and n 2 R.
With the above notations our result reads as follows.
Theorem 3.2. Let f : Z½1; T� � R! R be a continuous function and assume that there exists e > 0 such that
PT
k¼1maxjnj6eFkðnÞ

ep <
jp

p
: ð2Þ
Then problem (Df) has at least one solution such that kuk1 < e.
Proof. Let us apply Theorem 2.1 by choosing E :¼ H, and
UðuÞ :¼ �
XT

k¼1

FkðuðkÞÞ; WðuÞ :¼ kukp
for every u 2 E.
Taking r :¼ jpep, clearly r > infu2EWðuÞ. Moreover, let us estimate from the above the following quantity
uðrÞ :¼
supu2W�1ðð�1;r�ÞUðuÞ

r
:

Inequality (1) yields
W�1ðð�1;r�Þ# u 2 E : kuk1 6 e
� �

:

Thus one has that
uðrÞ 6
PT

k¼1maxjnj6eFkðnÞ
jpep :
Hence it follows, by (2), that
supu2W�1ðð�1;r�Þ
PT

k¼1FkðuðkÞÞ
r

<
1
p
;

that is,
1
p
> �

infu2W�1ðð�1;r�ÞUðuÞ
r

:

Therefore, the assertion of Theorem 2.1 follows and the existence of one solution u 2 W�1ðð�1;rÞÞ to our problem is
established. h
Remark 3.3. If in Theorem 3.2 the function f is nonnegative, hypothesis (2) assumes a simpler form
PT
k¼1FkðeÞ
ep <

jp

p
:

Moreover, if for some �k 2 Z½1; T�; f ð�k;0Þ – 0, the obtained solution is clearly non-zero.
4. A parametric case

In this section we shall study the following discrete parametric problem
�Dð/p Duðk� 1Þð ÞÞ ¼ af ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0;

�
ðDf

aÞ
where a is a real positive parameter.
For our goal, in order to obtain positive solutions to problem ðDf

aÞ, i.e. uðkÞ > 0 for each k 2 Z½1; T�, we shall need the fol-
lowing consequence of the strong comparison principle, see [3, Lemma 2.3].
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Lemma 4.1. If
� Dð/p Duðk� 1Þð ÞÞP 0; 8k 2 Z½1; T�;
uð0ÞP 0; uðT þ 1ÞP 0;
then either u > 0 in Z½1; T�, or u � 0.
Moreover, let k1;p; u1 > 0 be the first eigenvalue and eigenfunction of the problem
�Dð/p Duðk� 1Þð ÞÞ ¼ k/pðuðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0:

�
ðD k ;pÞ
As observed in [3], the following variational characterization
k1;p ¼ min
Enf0Hg

PTþ1
k¼1 jDuðk� 1ÞjpPT

k¼1juðkÞj
p ð3Þ
holds. Taking into account the above facts, an important consequence of Theorem 3.2 is the following.

Theorem 4.2. Let f : Z½1; T� � ½0;þ1Þ ! ½0;þ1Þ be a continuous function satisfying the following hypotheses:
lim
n!þ1

PT
k¼1FkðnÞ

np ¼ 0
and
ck :¼ lim inf
n!0þ

FkðnÞ
np > 0
for every k 2 Z½1; T�. Then for every
a >
k1;p

pmink2Z½1;T�ck
problem ðDf
aÞ has at least one positive solution.
Proof. Let a be as in the conclusion, and define
ef ðk; tÞ :¼
f ðk; tÞ if t P 0;
f ðk;0Þ if t < 0

�

for every k 2 Z½1; T�. Consider now the following problem
�D /pðDuðk� 1ÞÞ
� �

¼ aef ðk;uðkÞÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0:

(
ðDefaÞ
By Lemma 4.1, every non-zero solution of problem ðDefaÞ is positive. Furthermore, every positive solution of ðDefaÞ also
solves our initial problem ðDf

aÞ. Now, since
lim
n!þ1

PT
k¼1FkðnÞ

np ¼ 0;
there exists e > 0 such that
PT
k¼1FkðeÞ
ep <

jp

p
:

Hence, bearing in mind Remark 3.3, condition (2) of Theorem 3.2 holds.
Thus problem ðDf

aÞ admits a solution ua 2 H with kuak < e. In conclusion, we shall prove that 0H is not a local minimum of
the functional
JaðuÞ :¼ 1
p

XTþ1

k¼1

jDuðk� 1Þjp � a
XT

k¼1

Z uðkÞ

0
f ðk; tÞdt
i.e. the obtained solution ua is non-zero.
For this purpose, let us observe that the first eigenfunction u1 2 H is positive and it follows by (3) that
ku1k
p ¼ k1;p

XT

k¼1

u1ðkÞ
p
: ð4Þ
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Since
ck > min
k2Z½1;T�

ck >
k1;p

pa
for every k 2 Z½1; T�, there exists d > 0 such that
FkðnÞ >
k1;p

pa
np ð5Þ
for every k 2 Z½1; T� and n 2 ð0; dÞ.
Hence, we can define hfðkÞ :¼ fu1ðkÞ, for every k 2 Z½0; T þ 1�, where
f 2 Kd :¼ 0;
d

max
k2Z½1;T�

u1ðkÞ

0@ 1A:

Taking into account (5) and (4), we easily get
a
XT

k¼1

FkðhfðkÞÞ >
k1;p

p

XT

k¼1

hfðkÞp ¼
1
p
khfkp

;

that is,
JaðhfÞ ¼
1
p
khfkp � a

XT

k¼1

FkðhfðkÞÞ < 0
for every f 2 Kd. The proof is thus complete. h
Remark 4.3. In Theorem 4.2, looking at the behavior of the function
hðnÞ :¼
PT

k¼1FkðnÞ
np ; ð8n > 0Þ
at infinity, the existence of one positive solution has been proved. On the other hand, if the function f ðk; �Þ : R! R has a s-
sublinear potential Fk with s < p, for every k 2 Z½1; T�, the behavior at zero of the map
vðeÞ :¼
PT

k¼1maxjnj6eFkðnÞ
ep ; ð8e > 0Þ
influences the existence of multiple solutions. More precisely, requiring that
lim
e!0þ

vðeÞ ¼ 0 ð6Þ
by using variational arguments, one can prove that there exists a real interval of parameters K such that, for every a 2 K, the
problem ðDf

aÞ admits at least three solutions. If, instead of (6), we assume that
vðcÞ < 2p�1

ðT þ 1Þp�1 hðdÞ � cp

dp vðcÞ
	 


ð7Þ
for some positive constants c < d, then for every
a 2 2

p hðdÞ � cp

dp vðcÞ
� � ; 2p

pvðcÞðT þ 1Þp�1

35 24;

there exist at least three distinct solutions of the problem ðDf

aÞ. Clearly condition (7) is technical and quite involved. Finally,
we also note that a more precise result can be obtained if T is even.
Remark 4.4. It is easy to see that Theorem 1.1 in Introduction is a consequence of Theorem 4.2 bearing in mind that the first
eigenvalue of the problem
�D2uðk� 1Þ ¼ kuðkÞ; 8k 2 Z½1; T�;
uð0Þ ¼ uðT þ 1Þ ¼ 0

(
ðD k Þ
is given by
k1 :¼ 4 sin2 p
2ðT þ 1Þ

	 

;
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see, for instance, [5, p. 150] and [28]. More precisely, as is well-known, the eigenvalues kk, for k 2 Z½1; T�, of problem ðDkÞ are
exactly the eigenvalues of the positive-definite matrix
A :¼

2 �1 0 . . . 0
�1 2 �1 . . . 0

. .
.

0 . . . �1 2 �1
0 . . . 0 �1 2

0BBBBBB@

1CCCCCCA
T�T

:

Thus it follows that
kk ¼ 4 sin2 kp
2ðT þ 1Þ

	 

; 8k 2 Z½1; T�:
A direct application of this result yields the following.
Example 4.5. For every
a 2 ðk1;þ1Þ;
the following second-order discrete problem
�D2uðk� 1Þ ¼ a uðkÞ
1þuðkÞ2

; 8k 2 Z½1; T�;

uð0Þ ¼ uðT þ 1Þ ¼ 0

(
ðS a Þ
has at least one positive solution.
Remark 4.6. In Example 4.5, for every a sufficiently large, our approach ensures the existence of at least one positive
solution ua 2 H for the discrete problem ðSaÞ. A more delicate problem is to find a concrete expression of the function ua that
one may hope to be exploited by numerical methods.
Remark 4.7. We refer to the paper of Galewski and Orpel [10] for several multiplicity results on discrete partial difference
equations. See also the papers [11,16,17,20–22] for recent contributions to discrete problems.
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[16] A. Kristály, M. Mihăilescu, V. Rădulescu, Discrete boundary value problems involving oscillatory nonlinearities: small and large solutions, J. Differ. Equ.

Appl. 17 (2011) 1431–1440.
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