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1. Introduction

Motivated by the fact that such kinds of problems are used to describe a large class
of physical phenomena, many authors have looked for multiple solutions of elliptic
equations involving biharmonic and p-biharmonic type operators (see, for instance,
[1–5]). In this work we are interested in the existence of multiple weak solutions for
the following nonlinear elliptic Navier boundary value problem involving the
p-biharmonic operator:

�
Hf
�

� DðjDujp�2DuÞ ¼ �f ðx, uÞ in �

u ¼ Du ¼ 0 on @�,

(

where � is an open bounded subset of IRN with a smooth enough boundary @�,
p4max{1,N/2}, D is the usual Laplace operator, � is a positive parameter and f is a
suitable continuous function defined on the set ��� IR.

For p¼ 2, the linear operator D2u :¼D(Du) is the iterated Laplace which
multiplied with a positive constant often occurs in Navier–Stokes equations as a
viscosity coefficient. Moreover, its reciprocal operator denoted by (D2u)�1 is the
celebrated Green operator [6].
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In [4], a Navier boundary value problem is treated where the left-hand side of the

equation involves an operator that is more general than the p-biharmonic.

Meanwhile in [7], a concrete example of application of such mathematical model

to describe a physical phenomena is also pointed out.
Further, by using the abstract and technical approach developed in [8–10], the

authors are interested in looking for the existence of infinitely many weak solutions

of perturbed p-biharmonic equations.
Here, requiring a suitable growth of the primitive of f, we are able to establish

suitable intervals of values of the parameter � for which the problem (Hf
�) admits at

least three weak solutions.
More precisely, the main result ensures the existence of two real intervals of

parameters �1 and �2 such that, for each �2�1[�2, the problem (Hf
�) admits at

least three weak solutions whose norms are uniformly bounded with respect to every

�2�2 (Theorem 3.1).
Our method is mostly based on a useful critical point theorem given in

[11, Theorem 3.1] (Theorem 2.1). We also cite a recent monograph by Kristály et al.

[12] as a general reference on variational methods adopted here.
The obtained results are related to some recent contributions from [2, Theorem 1]

where, by using a critical point result from [13], the existence of at least three weak

solutions has been obtained (see also [14, Theorem 1]). We emphasize that, in our

cases, on the contrary of the above-mentioned works, we give a qualitative analysis

of the real intervals �i (i¼ 1, 2) for which problem (Hf
�) admits multiple weak

solutions (see, for details, Remarks 2.2 and 2.2).
As an example, we present a special case of our results (see Theorem 3.5 and

Remark 3.6 for more details) on the existence of two nontrivial weak solutions.

THEOREM 1.1 Let p4max{1,N/2} and f: IR! [0,þ1[ be a continuous function.

Hence, consider the following autonomous problem:

�
Gf
�

� DðjDujp�2DuÞ ¼ �f ðuÞ in �

u ¼ Du ¼ 0 on @�:

(

Assume that there exist real positive constants � and � such that

Fð�Þ5 ��Fð�Þ,

for some 1� s� p, where �� is a precise constant depending on the geometry of the open

set �. Further, we require that

lim
t!þ1

f ðtÞ

jtjs�1
¼ 0,

for some 1� s� p.
Then there exist two real intervals of parameters �01 and �02 such that: for every

�2�01 problem ðG
f
�Þ admits two distinct nontrivial weak solutions in W2,pð�Þ \W

1,p
0 ð�Þ

and, moreover, for each �2�02 there are two distinct nontrivial weak solutions in

W2,pð�Þ \W
1,p
0 ð�Þ uniformly bounded in norm with respect to the parameter �.

See Remarks 2.2 and 3.6 for more details on the intervals �01 and �02 as well as for

a concrete expression of the constant ��.
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For completeness, we refer the reader interested in fourth-order two-point

boundary value problems to papers [15–18] and references therein.
The plan of this article is as follows. Section 2 is devoted to our abstract

framework, while Section 3 is dedicated to the main results and their consequences in

the autonomous case. A concrete example of an application is then presented

(Example 3.7).

2. Preliminaries

Here, and in the sequel, � is an open bounded subset of IRN, p4max{1, N/2}, while

X denotes a separable and reflexive real Banach space W2,pð�Þ \W
1,p
0 ð�Þ endowed

with the norm

kuk ¼

Z
�

jDuðxÞjpdx
� �1=p

, 8 u2X: ð1Þ

The Rellich–Kondrachov theorem assures that X is compactly imbedded in

C0ð ��Þ, whenever

k :¼ sup
u2Xnf0g

kukC0ð ��Þ

kuk
5 þ1, ð2Þ

where kukC0ð ��Þ :¼ supx2 �� juðxÞj, for every u2X.
Moreover, if N� 3, @� is of class C1,1 and p 2]N/2,þ1[, due to Theorem 2 and

[19, Remark 1], one has the following upper bound:

k � measð�Þ
2
Nþ

1
p0
�1 �ð1þN=2Þ2=N

NðN� 2Þ�

h�ð1þ p0Þ�ðN=ðN� 2Þ � p0Þ

�ðN=ðN� 2ÞÞ

i1=p0
,

where � is the Gamma function, p0 the conjugate exponent of p and ‘meas(�)’

denotes the Lebesgue measure of �.
For our aim, the main tool is a critical points theorem contained in [11, Theorem

3.1], which we recall here for the reader’s convenience.

THEOREM 2.1 Let X be a separable and reflexive real Banach space; �: X! IR a

nonnegative, continuously Gâteaux differentiable and sequentially weakly lower

semicontinuous functional whose Gâteaux derivative admits a continuous inverse on

X* and �: X! IR a continuously Gâteaux differentiable functional whose Gâteaux

derivative is compact. Assume that there exists an u02X such that

�ðu0Þ ¼ �ðu0Þ ¼ 0,

and that

(i) limkuk!1ð�ðuÞ � ��ðuÞÞ ¼ þ1, for all � 2 [0,þ1[. Further, assume that

there are r4 0 and �u2X such that:
(ii) r5�( �u);
(iii) sup

u2��1ð��1, r½Þ
w

�ðuÞ5
r

rþ�ð �uÞ
�ð �uÞ.
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Then, for each

�2�1 :¼
�ð �uÞ

�ð �xÞ � sup
u2��1ð��1, r½Þ

w
�ðuÞ

,
r

sup
u2��1ð��1, r½Þ

w
�ðuÞ

3
775

2
664,

the equation

�0ðuÞ � ��0ðuÞ ¼ 0 ð3Þ

has at least three distinct solutions in X and, moreover, for each h4 1, there exists an

open interval

�2 � 0,
hr

r
�ð �uÞ

�ð �uÞ
� sup

u2��1ð��1, r½Þ
w

�ðuÞ

2
6664

3
7775,

and a positive real number �4 0 such that, for each �2�2, Equation (8) has at least

three solutions in X whose norms are less than �.

Note that, in the above result, the symbol ��1ð� �1, r½Þ
w

denotes the weak

closure of the sublevel ��1(]�1, r[). For completeness, given an operator

S: X!X*, we say that S admits a continuous inverse on X* if there exists a

continuous operator T: X*!X such that T(S(x))¼x for all x2X.

Remark 2.2 As observed in [11, Remark 2.1], the real intervals �1 and �2 in

Theorem 2.1 are such that either

�1 \�2 ¼ ;

or

�1 \�2 6¼ ;:

In the first case, we actually obtain two distinct open intervals of positive real

parameters for which Equation (8) admits two nontrivial solutions; otherwise, we

achieve only one interval of positive real parameters, precisely �1[�2, for which

Equation (8) admits three solutions and, in addition, the subinterval �2 for which the

solutions are uniformly bounded. We also observe that if the two intervals are

disjoint, we do not have information about the number of solutions of Equation (8)

within the gap interval.

3. Main results

Let

� :¼ sup
x2�

distðx, @�Þ:
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Simple calculations show that there is an x02� such that B(x0, �)��, where B(x0, �)
denotes the open ball with centre x0 and radius �. Now, fix �4 0 and consider the

function u�2X defined by

u�ðxÞ :¼

0 if x2 �� n Bðx0, �Þ

16
l2

�4
� � lð Þ

2� if x2Bðx0, �Þ n Bðx0, �=2Þ

� if x2Bðx0, �=2Þ,

8>>>>>>><
>>>>>>>:

where l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � x0i Þ

2
q

.
At this point, let

Fðx, 	Þ :¼

Z 	

0

f ðx, tÞdt, 8 ðx, 	Þ 2 ��� IR,

and substitute

RFð�, �Þ :¼

Z
Bðx0,�ÞnBðx0,�=2Þ

Fðx, u�ðxÞÞdx:

Moreover, set

�p,Nð�Þ :¼

Z �

�=2

j2ðNþ 2Þs2 � 3ðNþ 1Þ�sþN�2jpsN�1ds:

Finally, let us denote

Kp,Nð�Þ :¼
�4p�ðN=2Þ

25pþ1�N=2kp�p,Nð�Þ
,

and, for �4 0, define


ð�, �Þ :¼
�4p�ðN=2Þ�p

�4p�ðN=2Þ�p þ kp25pþ1�N=2�p�p,Nð�Þ
:

With the above notations, the main result reads as follows.

THEOREM 3.1 Let f2C0ð ��� IRÞ and substitute

Fðx, 	Þ :¼

Z 	

0

f ðx, tÞdt, 8 ðx, 	Þ 2 ��� IR:

Assume that there exist two positive constants � and � such that

(h1) �4Kp,N(�)
1/p� ;

(h2) The following inequality holds:

Z
�

max
j	j��

Fðx, 	Þ dx5 
ð�, �Þ RFð�, �Þ þ

Z
Bðx0,�=2Þ

Fðx, �Þ dx

� �
:

Further, require that
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(h3) There exist a function �2L1(�) and a positive constant s with s5 p such that

Fðx, 	Þ � �ðxÞð1þ j	jsÞ,

for almost every x2� and for every 	2 IR.

Then, for each

�2�1 :¼ �1, �2� ½,

where

�1 :¼
25pþ1�N=2�p,Nð�Þ�

p

�4p�ðN=2Þ p RFð�, �Þ þ

Z
Bðx0,�=2Þ

Fðx, �Þ dx�

Z
�

max
j	j��

Fðx, 	Þ dx

� � ,

and

�2 :¼
�p

pkp
Z

�

max
j	j��

Fðx, 	Þ dx
,

problem ðHf
�Þ has at least three distinct solutions in X and, moreover, for each h4 1,

there exists an open interval

�2 � 0, �3,h
� �

,

where

�3,h :¼
h�p=ð pkpÞ

�p RFð�, �Þ þ

Z
Bðx0,�=2Þ

Fðx, �Þ dx

� �
�4p�ðN=2Þ

25pþ1kp�N=2�p,Nð�Þ�
p

�

Z
�

max
j	j��

Fðx, 	Þ dx

,

and a positive real number �4 0 such that, for each �2�2, problem ðH
f
�Þ has at least

three solutions in X whose norms are less than �.

Proof For each u2X, let �, �: X! IR defined by setting

�ðuÞ :¼
kukp

p
, �ðuÞ :¼

Z
�

Fðx, uðxÞÞdx:

It is easy to verify that �: X! IR is a nonnegative, continuously Gâteaux

differentiable and sequentially weakly lower semicontinuous functional whose

Gâteaux derivative admits a continuous inverse on X*. Meanwhile, � is continuously

Gâteaux differentiable with compact derivative and, moreover, �(u0)¼�(u0)¼ 0,

where u0 is the identically zero function in X. In particular, one has

�0ðuÞðvÞ ¼

Z
�

jDuðxÞjp�2DuðxÞDvðxÞdx,

and

�0ðuÞðvÞ ¼

Z
�

f ðx, uðxÞÞvðxÞdx,

for every u, v2X.
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Now, fixing �4 0, if we recall that a weak solution of problem (Hf
�) is a function

u2X such that Z
�

jDuðxÞjp�2DuðxÞDvðxÞdx ¼ �
Z

�

f ðx, uðxÞÞvðxÞdx,

for every v2X, it is obvious that our goal is to find critical points of the energy

functional J� :¼�� ��.
Thanks to hypothesis (h3) and bearing in mind (2), one hasZ

�

Fðx, uðxÞÞdx � k�kL1ð�Þð1þ kskuksÞ:

Hence

J�ðuÞ �
kukp

p
� �k�kL1ð�Þð1þ kskuksÞ:

Therefore, due to s5 p, the following relation holds:

lim
kuk!1

J�ðuÞ ¼ þ1

for every �4 0.
Since J� is coercive for every positive parameter �, condition (i) is verified. Next,

consider the function u�2X. Since

XN
i¼1

@2u�ðxÞ

@x2i
¼ 32d

2ðNþ 2Þl2 � 3�ðNþ 1ÞlþN�2

�4

� �
,

for every x2B(x0, �)nB(x0, �/2) and
XN
i¼1

@2u�ðxÞ

@x2i
¼ 0, 8x2 ð �� n Bðx0, �ÞÞ [ Bðx0, �=2Þ,

one has

�ðu�Þ ¼
ku�k

p

p
¼

25pþ1�N=2�p

�4p�ðN=2Þ p
�p,Nð�Þ: ð4Þ

Substitute

r :¼
�p

pkp
:

Now, it follows from �4Kp,N(�)
1/p� that �(u�)4 r. We explicitly observe that, in

view of (2), one has

��1ð� �1, r�Þ � fu2C0ð ��Þ : kuk1 � �g: ð5Þ

Moreover, taking (5) into account, a direct computation ensures that

sup
u2��1ð��1, r½Þ

w
�ðuÞ ¼ sup

u2��1ð��1, r�Þ

�ðuÞ �

Z
�

max
j	j��

Fðx, 	Þ dx: ð6Þ
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At this point, by the definition of u�, we can clearly writeZ
�

Fðx, u�ðxÞÞ dx ¼ RFð�, �Þ þ

Z
Bðx0,�=2Þ

Fðx, �Þ dx: ð7Þ

By using hypothesis (h2), from (6) and (7), we also have

sup
u2��1ð��1, r½Þ

w
�ðuÞ5

r

rþ�ðu�Þ
�ðu�Þ,

taking into account that

r

rþ�ðu�Þ
¼

�4p�ðN=2Þ�p

�4p�ðN=2Þ�p þ kp25pþ1�N=2�p�p,Nð�Þ
¼ 
ð�, �Þ:

So conditions (ii) and (iii) are verified by taking �u :¼ u�. Thus, we can apply Theorem

2.1 bearing in mind that

�ðu�Þ

�ðu�Þ � sup
u2��1ð��1, r½Þ

w
�ðuÞ

� �1

and

r

sup
u2��1ð��1, r½Þ

w
�ðuÞ

� �2,

as well as

hr

r
�ðu�Þ

�ðu�Þ
� sup

u2��1ð��1, r½Þ
w

�ðuÞ

� �3,h:

The proof is complete. g

Remark 3.2 Assume that N� 4 and let f be a global Lipschitz continuous function

(with constant L) uniformly with respect to the first variable such that f(x, 0)¼ 0, for

almost every x2 ��. Then, for every

0 � �5 �? :¼
1

k2Lmeasð�Þ
,

problem ðHf
�Þ has no solutions u with kuk � 1. Indeed, sinceZ

�

jDuðxÞjp�2DuðxÞDvðxÞdx ¼ �
Z

�

f ðx, uðxÞÞvðxÞdx,

for every v2X, choosing v¼ u, one clearly has (arguing by contradiction suppose

kuk � 1) Z
�

jDuðxÞjpdx ¼ �
Z

�

f ðx, uðxÞÞuðxÞdx

� �k2Lmeasð�Þ

Z
�

jDuðxÞjpdx:
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Hence, since �5 ��, the last estimates give that u¼ 0.

Remark 3.3 Assuming that

(j1) F(x, 	)� 0 for every (x, 	)2 (B(x0, �)nB(x0, �/2))� [0, �];
(j2) For every j	j � � one hasZ

�

max
j	j��

Fðx, 	Þ dx5 
ð�, �Þ

Z
Bðx0,�=2Þ

Fðx, �Þ dx,

it follows that hypothesis (h1) in Theorem 3.1 automatically holds.

Remark 3.4 We point out that hypothesis (h2) in Theorem 3.1 can be stated in a

more general form. Precisely, fix x02� and pick r1, r22 IR with r24 r14 0, such

that B(x0, r1)�B(x0, r2)��. Moreover, set

�p,Nðr1, r2Þ :¼

Z r2

r1

jðNþ 2Þs2 � ðNþ 1Þðr1 þ r2ÞsþNr1r2j
psN�1ds,

and denote

Kp,Nðr1, r2Þ :¼
ðr2 � r1Þ

3p
ðr1 þ r2Þ

p�ðN=2Þ

22pþ13p�N=2kp�p,Nðr1, r2Þ
:

At this point, let v� be the function defined as follows:

v�ðxÞ :¼

0 if x2 �� nBðx0, r2Þ

�ð3ðl4� r42Þ � 4ðr1þ r2Þðl
3� r32Þ þ 6r1r2ðl

2� r22ÞÞ

ðr2� r1Þ
3
ðr1þ r2Þ

if x2Bðx0, r2Þ nBðx
0, r1Þ

� if x2Bðx0, r1Þ,

8>>>>>>><
>>>>>>>:

where l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðxi � x0i Þ

2
q

.

If � and � in Theorem 3.1 satisfy �4K(r1, r2)
1/p�, instead of (h1), hypothesis (h2)

can be replaced by the following assumption, namely ðh?2Þ:Z
�

max
j	j��

Fðx, 	Þ dx5
r

rþ�ðv�Þ
RFðr1, r2, �Þ þ

Z
Bðx0,r1Þ

Fðx, �Þ dx

� �
,

where

r :¼
�p

pkp
,

RFðr1, r2, �Þ :¼

Z
Bðx0,r2ÞnBðx0,r1Þ

Fðx, v�ðxÞÞdx,

and

�ðv�Þ ¼
�p

pkpKp,Nðr1, r2Þ
:
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Then for each

�2�?
1 :¼

�ðv�Þ

�ðv�Þ �

Z
�

max
j	j��

Fðx, 	Þ dx

,
�p

pkp
Z

�

max
j	j��

Fðx, 	Þ dx

3
775

2
664,

the equation

J�ðuÞ ¼ �0ðuÞ � ��0ðuÞ ¼ 0, ð8Þ

has at least three distinct solutions in X and, moreover, for each h4 1, there exists an

open interval

�?
2 � 0,

hr

r
�ðv�Þ

�ðv�Þ
� sup

x2��1ð��1, r½Þ
w

�ðxÞ

2
6664

3
7775,

and a positive real number �4 0 such that, for each �2�2, Equation (8) has at least

three solutions in X whose norms are less than �. It is clear that if r1¼ �/2 and r2¼ �,
condition ðh?2Þ coincides with (h2).

Now, for completeness, we analyse the autonomous case

Gf
�

� � DðjDujp�2DuÞ ¼ �f ðuÞ in �

u ¼ Du ¼ 0 on @�,

(

where f : IR! IR is a continuous function. With the above notations, let us define

GFð�, �Þ :¼

Z
Bðx0,�ÞnBðx0,�=2Þ

Fðu�ðxÞÞdx:

Finally, the symbol ‘meas(B(x0, �/2))’ denotes the Lebesgue measure of the ball B(x0,

�/2).

THEOREM 3.5 Let f2C0(IR) and substitute

Fð	Þ :¼

Z 	

0

f ðtÞdt, 8 	2R:

Assume that there exist two positive constants � and � such that condition (h1) holds in

addition to

ðh02Þ Fð	Þ5

ð�, �Þ

measð�Þ
GFð�, �Þ þmeasðBðx0, �=2ÞÞFð�Þ
	 


, for every j	j � �.
Moreover. . .
ðh03Þ There exist two positive constants b and s with s5 p such that

Fð	Þ � bð1þ j	jsÞ:

Then, for each

�2�01 :¼ �01, �
0
2

� �
,
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where

�01 :¼
25pþ1�N=2�p,Nð�Þ�

p=measð�Þ

�4p�ðN=2Þ p
GFð�, �Þ þmeasðBðx0, �=2ÞÞFð�Þ

measð�Þ
�max
j	j��

Fð	Þ

� �

and

�02 :¼
�p

pkp measð�Þmax
j	j��

Fð	Þ
,

problem ðGf
�Þ has at least three distinct solutions in X and, moreover, for each h4 1,

there exists an open interval

�02 � 0, �03,h

h i
,

where

�03,h :¼
h�p=ð pmeasð�ÞkpÞ

�p GFð�, �Þ þmeasðBðx0, �=2ÞÞFð�Þ
	 


�4p�ðN=2Þ

25pþ1kp�N=2�p,Nð�Þmeasð�Þ�p
�max
j	j��

Fð	Þ

,

and a positive real number �4 0 such that, for each �2�02, problem ðG
f
�Þ has at least

three solutions in X whose norms are less than �.

Remark 3.6 The following two conditions

ðj01Þ GF(�, �)� 0;
ðj02Þ For every j	j � � one has

Fð	Þ5 
ð�, �Þ
measðBðx0, �=2ÞÞ

measð�Þ
Fð�Þ,

which implies hypotheses ðh02Þ in Theorem 3.5.

Furthermore, assumption ðj01Þ is verified by requiring that F(	)� 0 for every

	2 [0, �]. Moreover, if f is nonnegative, condition ðj01Þ automatically holds and ðj02Þ

attains a more simple form

Fð�Þ5 ��Fð�Þ,

where

�� :¼ 
ð�, �Þ
measðBðx0, �=2ÞÞ

measð�Þ
:

Hence, Theorem 1.1 is a direct consequence of the above observations. Indeed,

we observe that if

ðh?3Þ limjtj!1
f ðtÞ

jtjs�1
¼ 0,
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for some 1� s� p, the functional J� is coercive. We give just some computations in

the case s¼ p; analogous conclusion holds for s2 [1, p[. So, fix �4 0 and pick "5 1/

(�kpmeas(�)).
Now, by our assumption at infinity, there exists a c(")4 0 such that

j f ðtÞj � "jtjp�1 þ cð"Þ, 8 t2 IR:

Then the previous inequality gives

Fð	Þ �
"

p
j	jp þ cð"Þj	j, 8 	2 IR,

and, consequently, taking into account (2), one has

�ðuÞ �
"kp

p
kukp þ cð"Þkkuk

� �
measð�Þ, 8 u2X:

Since, for every u2X, the following inequality holds:

J�ðuÞ �
1

p
� �

"kp

p
measð�Þ

� �
kukp � �cð"Þkkukmeasð�Þ,

the functional J� is coercive.
Thus, all the assumptions (with ðh?3Þ instead of ðh03Þ) of Theorem 3.5 are verified

and the conclusion follows.
At the end we exhibit a concrete application of our results.

Example 3.7 Let � be a nonempty bounded open subset of the Euclidean space IR3

with a smooth boundary @� and define f : IR! IR as follows:

f ðtÞ :¼
0 if t5 2ffiffiffiffiffiffiffiffiffiffi
t� 2
p

if t � 2,

�

whose potential is given by

Fð	Þ :¼

0 if 	5 2

2ð	 � 2Þ3=2

3
if 	 � 2:

8<
:

Consider the following problem

Hf
�

� � D2u ¼ �f ðuÞ �

u ¼ Du ¼ 0 @�:

(

We easily observe that there exist two positive constants �¼ 2 and

�4 2 1,K2,3ð�Þ
1=p

� 

,

such that, taking into account Remark 3.6, all the conditions of Theorem 3.5 hold.

Then, for each

�2�01 :¼ �?1, þ1
� �

,
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where

�?1 :¼
210�3=2�2,3ð�Þ�

2

�8�ð3=2Þ GFð�, �Þ þ ðBðx
0, �=2ÞÞFð�Þ

	 
 ,
problem ðHf

�Þ has at least three distinct (two nontrivial) solutions in
W2,2ð�Þ \W1,2

0 ð�Þ and, moreover, for each h4 1, there exists an open interval

�02 � 0, �?3,h

h i
,

where

�?3,h :¼
210�3=2�2,3ð�Þ�

2h

�8�ð3=2Þ GFð�, �Þ þ ðBðx
0, �=2ÞÞFð�Þ

	 
 ¼ h�?1,

and a positive real number �4 0 such that, for each �2�02, problem ðH
f
�Þ has at least

three (two nontrivial) solutions in W2,2ð�Þ \W1,2
0 ð�Þ whose norms are less than �.
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