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1. Introduction

Many authors have studied problems of existence of periodic, almost periodic
and automorphic solutions for different kinds of differential and integral equa-
tions (cf. Adivar and Koyuncuoglu [1], Baskakov et al. [2], Bochner [3],
N’Guérékata [4], and Papageorgiou et al. [5, 6]). For example, the function

t — sint + sin\/it

is almost periodic but not periodic on R, whereas the function

1
t — sin
(2 + cost + cos ﬂt)

is almost automorphic but not uniformly continuous, hence not almost
periodic on R.
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Recently, these research directions have taken various generalizations (cf.
Ait Dads et al. [7-9], Ben-Salah et al. [10], Blot et al. [11], Chérif and
Miraoui [12], Diagana et al. [13], Li [14], Miraoui [15, 16], Miraoui et al.
[17], Miraoui and Yaakobi [18], and Zhang [19]), as well as various appli-
cations (cf. e.g. Kong and Nieto [20], and the references therein).

Let u be positive measure on R and X a Banach space. A continuous
function f : R— X is said to be measure paa (cf. Ait Dads et al. [7] and
Papageorgiou et al. [6]), if f can be written as a sum of an almost periodic
function g; and an ergodic function ¢, satisfying

im—— [ o 0)llduty) =

== ([~ 2))

where
u(-ad) = | duto)

Diagana [21] defined the network of weighted pseudo almost periodic func-
tions, which generalizes the pseudo almost periodicity in Gupta [22].

Motivated by above mentioned work, we investigate in the present paper
measure paa solutions of differential equations involving reflection of the
argument. This type of differential equations has applications in the study
of stability of differential-difference equations, cf. e.g. Sharkovskii [23], and
such equations show very interesting properties by themselves. Therefore
several authors have worked on this category of equations.

Aftabizadeh et al. [24], Papageorgiou et al. [25]. and Gupta [26] studied
the existence of unique bounded solution of equation

u'(y) =f(ruly),u(—y)),y € R.

They proved that u(y) is almost periodic by assuming the existence of
bounded solution. Piao [27, 28] studied the following equations

u'(y) = au(y) + bu(—y) +g(y), b # 0,y € R, (1)

and

W(y) = auly) + bu(—y) + flru()u(-p)b£0yeR. @)

Xin and Piao [29] obtained some results of weighted pseudo almost peri-
odic solutions for equations (1) and (2). Recently, Miraoui [30] has studied
the pseudo almost periodic (pap) solutions with two measures of equations
(1) and (2).

Throughout this paper, we shall assume the following hypothesis:

(MO): There exists a continuous and strictly increasing function f: R — R
such that for all x € AA(R,R), we have xo § € AA(R,R).
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The key goal of our paper is to study equations which are more general
than equations (1) and (2), and are given by the following expression

Y (y) = auy) + bu(—y) + £, u(B)), u(B(~))) 3)
+j K(s—p)h(s u(B(s)), u(B(—s)))ds

y

+00

+ J K(s+ y)h(s,u(s), u(—s))ds,y € R, (4)
-y

where a € R,b € R*,f,h:R* - R, and K:R" — R" are continu-
ous functions.

Let X be Banach space. We begin by defining the notion of a measure
pseudo almost automorphic function.

Definition 1.1. (Bochner [3]) Let f € C(R,X). Then f is said to be almost
automorphic, f € AA(R, X)), if for every real sequence (s,), there exists a
subsequence (s, ), such that the following limits

lim f(t+s,)=f(t) and lim g(t—s,) = f(¢),
ng—00 1g— 00
exist for every t € R.

Definition 1.2. (Blot et al. [11]) Let B is the Lebesque o-field of R and p a
positive measure on B. Then u€ M if the following conditions
are satisfied

e ([a,b])<oo, forall a < b e R; and
e uR)=+oc0.

In this paper we shall be working with a positive measure satisfying the
following two important hypotheses:
(M1) For every t € R, there exist f>0 and a bounded interval I such that

p({a+1:a€ A}) < Pu(A), whenever A € B satisfies ANT = ).

(M2) There exist m, n>0 such that for all A € B,
u(=A) < m+nu(A).

Definition 1.3. (Diagana et al. [13]) Suppose that € M. Then f €
BC(R,X) is said to be p-ergodic, f € E(R, X, u), if the following condition
is satisfied:

lim | 70 dut) o
[-27]

o pi([~22])



922 @ M. MIRAOUI AND D. D. REPOVS

Definition 1.4. (Diagana et al. [13]) Suppose that u€ M. Then f €
C(R,X) is said to be p-paa, f € PAA(R, X, ), if

f=g+h,
where ¢ € AA(R, X) and the function h is u-ergodic.
In the sequel, we shall also need the following hypotheses

(h0) There exists a continuous, strictly increasing function 4:R — R
such that dug(t) < A(t)du(t), where u € M, ug(0) = u(f~'(0)), for
all O € B(R) and

lim sup%S(T(r))< + o0,
where T(r) = |B(r)| + |f(—r)| and S(T(r)) = sup

te[=T(r), T(r)|A(T)
(h1) Given A := Va?—b?, where a > b, the following holds
Pi(Z, u) := sup { J exp (—A(t + Z))d,u(t)}<oo and

z>0

Py(Z, p) := sup Ji exp (—A(—t + z))du(t)}<oo.

z>0

(h2) There exists Ly > 0, such that f: R x R? — R satisfies the Lipschitz
condition

f (8 x1, 1) =f (£ %2, y2)| < Ly(|x1—22| + [y1—p2]), for all (x1, 1), (x2,72)
€ R

(h3) There exists L, > 0 such that
|h(t,ur,uy)—h(t,vi,v2)|<Lp(|ug—v1|+ |ua—v2]|).for all uy,us,vi,v, €R.

(h4) There exists K : Rt — R™ such that

c:= J+OO K(y)dy<oo.

0

Our first main result of the paper treats the case when Ly and L,
are constant.

Theorem 1.1. Suppose that f,h € PAAR,R,u) and that hypotheses
(h0)-(h4) and (MO0)-(M2) hold. Then equation (3) has a unique p—paa
solution if and only if
|i—a| + |2+ a| + 2|b]
/12

(Lf + 2cLy)<1.
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For the second main result of this paper we shall need the following
hypotheses for the case when Lsand Lj are not constant.

(h2) € M and f : R x R* — R satisfy
[F(tx01) —f (Bx2,92) [ Ly () (Jx1 =2+ [y1=p2l) for all (x1,p1),(x2,92) ER?,

where p>1,Lre LF(R,R,dx)NLP (R,R,dp), andl—i-1
(h’3) € M and h : R x R? — R satisfy

|h(t.x1,y1) —h(tx2,y2) | <L (£) (|61 —x2 |+ [y1 = 2| ).for all(x1,1),(x2,y2) ER?,

where p>1,L,€ LF(R,R,dx)NLP(R,R d,u)and1+1
(h’4) There exists K : R™ — R™, such that

+00
J (K(y))"dy< + oo, for all 7>1.
0

Theorem 1.2 . Suppose that f,h € PAA(R x R*, R, 1) and that hypotheses
(h0)-(h1), (W’2)-(h’4) and (M0)-(M2) hold. Then equation (3) has a unique
u-paa solution if and only if

1

oo gl
ILf 1] 2o, R, i) +2<J0 (KO’))q> 1Ll 27 (m, -, ) < B

—al+ |4+ a| +2|b]

We conclude the introduction by description of the structure of the
paper. In Section 2, we collect some basic results needed for the proofs of
the main results of this paper. In section 3, we prove both main results
(Theorems 1.1 and 1.2). In Section 4, we give an application of the measure
paa, in connection with integro-differential equations with reflection and
delay. In Section 5 we discuss the results and their applications.

2. Preliminaries

Theorem 2.1. (Diagana et al. [13]) Suppose that u € M satisfies hypothesis
(M1). Then PAA(R,X, ) is translation invariant and (PAA(R, X, w),||.]l.)
is a Banach space.

Lemma 2.1. (Miraoui [30]) Suppose that g € PAA(R, X, ) and that hypoth-
esis (M2) holds. Then

[t — g(—1)] € PAAR, X, p).

Lemma 2.2. (Miraoui [30]) If u € M satisfies hypothesis (M1), then for all
p=>1
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(R, X, dp) C E(R,X, p).

Lemma 2.3. (Ben Salah et al. [10]) Suppose that hypotheses (h0) and (MO0)
hold. If v € PAA(R, R, u), then [t—v(S(t))] € PAAR,R, u).

Lemma 2.4. Suppose that hypotheses (h0),(h2) and (M0)-(M2) hold. If f €
PAAR, R, 1), and veEPAARRp), then  [t—=f(tv(B(1)),
v(B(=1)))] EPAARR,p).

Proof. Let f € PAA(R?, R, u). Then f can be written as f = h + ¢, where
he AAUR,R), ¢ € EUR,R, 1) (see [7]). We set V(t) = v(B(t), for all
t € R. By Lemma 2.3, we can conclude that V € PAA(R,R, ), hence
V =V, + V3, where V; € AAR,R), V; € E(R,R, i), and so we have
f&V(8), V(1)) = @1 (& Vi(1), Vi(=1)) + £ (£ V(2), V(1))
— (VA Vi(=1)) + 03t Va(8), Vi(—1)).
On the one hand, we shall prove that [t — ¢,(t,Vi(t), Vi(—t))] €

AAU(R?, R). Let H(t) = ¢, (t, Vi(t), Vi(—t)). If {s,} is a sequence of real
numbers, then we can extract a subsequence {t,} of {s,} such that

1. lim ¢,(t+ 714 v,u) = ¢(t,v,u), forall t,v,u € R;
n—oo

2. lim ¢(t—1,, v, u) = @y(t,v,u), for all t,v,u € R;
n—oo

3. lim Vi(t+ 1y, v,u) = Ui(t,v,u), for all t,v,u € R;

4

n—oo

lim U, (t—1,, v,u) = Vi(t,v,u), for all t,v,u € R.
n—oo

If O(t) : R — R by ®(t) = ¢(t, V1(t), Ui (t)), then we can show that
lim H(t+ 1,) = ®(t); lim ®(t—7,) = H(t),for all t € R

n—o0
and we get

H(# + 70) =@ < [[@1 (8 4 T Vit + 70), Vi(—t 4 70)) = ( + 70, Ur (8), Ur (1)) |
F @1 (t + 70 U=1(2), Ur(=1)) = (8, Ur (£), Ur (=) .

Since V(t) is almost automorphic, it follows that Vi(t), and U (t) are
bounded. Therefore there exists a bounded subset K C R. From (3) and
(h2), we see that ¢, (¢, Vi(t), Vi(—t)) are uniformly continuous on every
bounded subset K C R, hence

Jim gy (£ + 20 Vot 4 20), Vi(—t + ) =01 (¢4 50 Us(0), Ta(—0)] [ = 0

therefore
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lim ®(t—7,) = H(t), forallt €R.

n—oo

This proves that H is an almost automorphic function. On the other
hand, we shall show that [t — f(t, V(¢), V(—t))—f(t Vi(2),
Vi(=t))] € ERR, ).

We consider now the following function ®(t) =f(¢t, V(t),
V(—t))—f(t, V1(t), Vi(—t)). Clearly, ®(¢) € BC(R,R). Since

t)
\F(t w, ua)—f (8 v, )| < Le([[ia—wi[ + [[ua—2l]),

we have
1 r
u([_m])jr||q><>|du<> i )j (6 V(0), V(=) ~F (6, Vi (), Vi (~0) | du(2)
j ()| + L21|V(—1)—Va(—1) | dut)
L[ -
s | o) s | vt lan)

so by Lemma 2.1,

jr 19(1)|du() =

rlirgou([—r,r]) _
Therefore [t —f(t,V(t),V(—t))=f(t,v(f(1)),v(f(—1))) e PAARR, ). O

Lemma 2.5. Suppose that hypotheses (h0),(h2), (h4) and (M0)-(M2) hold.
Then for every h € PAAR?, R, u),v € PAAR, R, ),

€ PAAR,R, p).

[tH | " K(s—1)h(s, v(B($)), v(B(—s)))ds

t

Proof. By Lemma 2.4, we know that [t— h(t,v(S(t)),v(B(—t)))] €
PAAR,R, 1), so
(6 v(B(2)), v(B(=1))) = h(£) + ha(2),
where h; € AA(R,R) and h, € E(R, R, u). Set
O1) = | K(s—1)hls, v{B6)). v(—s))ds

t

+00

O(t) = J+OO K(s—t)hy(s)ds + J K(s—t)hy(s)ds = 0,(¢t) + 0,(¢),

t
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where
+o0

+00
0,(t) = J K(s—t)hy(s)ds and 0,(t) = J K(s—t)hy(s)ds.
t t
Since u; € AA(R,R), it follows that for every sequence (7),),.y there
exists a subsequence (t,) such that

hl(t) = lim ul(t—{— Tn) (5)
is well-defined for each t € R and

lim h;(t—1,) = u;(¢), for each t € R. (6)

Let M(t) = [ K(s—t)u1(s)ds. Then
—+00

J+°° K(S—t)hl(s)dS—J K(s—t—s,)u; (s)ds

t t+sy

101 (6) =M(t + )| =

Jm K(s—) (I (s)—ttn (5 + 5,))ds

t

Using Eq. (5), hypotheses (h4) and the LDC Theorem, it follows that

l

Therefore, we have
0,(t) = lim M(t+ t,),for all t€R.

n—oo

+00
J K(s—t)(hi(s)—ui(s +s,))ds|| — 0,as n — oo, t € R.

t

Using the same argument, we also obtain

lim Ay (t—1,) = ui(1).

Therefore, 0; € AA(R,R). To prove that O(¢)PAA(R, R, 1), we need to
show that 0, € E(R, R, u). We know that

| les0laut) = tm

lim i
r—too U[—r1, 7] r=+oo u[—r,7] J_, J;

1 T +0o0

||K(s—t)ha(s)ds||dp(t)

1 T +00

[IK(s=0)[[llh2(s)l|dsdu(t)

im
T orotoou[=rr] ) )
1 T +00

IKW)[B2y + 6)l|dydu(t)

< lim
r—+oo u[—r,7] J_; Jo

=t [ O+ oy
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By the LDC Theorem and Theorem 2.1, we have

im L 00 llauv= ko) tim [ na0olldu(dyo.

r—-toou[—r,r])_, 0 r—toop[—1,r] ),

+00

It follows that [tHJ

t

K(s—t)h(sw(ﬁ(s»,v(ﬂ(—s)>>ds} EPAARRL). O

Remark 2.1. We have shown that

e PAARR, ).  (7)

+00
[t — L K(s=t)h(s, v(B(s)), v(B(—s)))ds
From (M2) and Eq. (7) we can also obtain

[t — J h K(s+ t)h(s,v(p(s)), v(B(—s)))ds | € PAAR,R, p).

—t

Lemma 2.6. (Ben Salah et al. [10]) Let pe€ M,ge PAA(R, R?, w),
h € PAAU(R x R%, R, ), and suppose that hypotheses (M1) and (h’3) hold.
Then

[t—h(t,g(1))] € PAA(R,R, p).

3. Proofs of main results

3.1. Proof of Theorem 1.1

Proof. By Aftabizadeh and Wiener [25], for any f,h € PAA(R, R, ), a par-
ticular solution of equation (1) is as follows

()= |exp() | exp(=29) (=0 i) -3) +F (-3l -9) 30D}y

o fewp-20) eXp(iy)((i+a)f(y,x(y)>x(—y))—bf(—y,x(—y),X(y)))dy]
1
2

(o¢]

exp(in)| epoy)<u_a>g<y>+bg<_y>>dy]

t

o exp(—mj_wexpuyxuw)g(y)—bg(—y))dy],

(8)

where
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g(y)

j " K(s—y)h(su(B(s))u(B(—s)))ds

y

+ K5+ h(su(Bs)u(B(—s))ds.

-

According to Lemmas 2.1, 2.4, and 2.5, we can conclude

[ - | " Kls—p)hls, u(B() u(B(—s))ds| € PAAR R, p)

Also, by Lemma 2.1, we have

[ '—>J OOK(S + y)h(s, u(f(s)), u(B(=s)))ds| € PAAR, R, ).
-y

Therefore ¢ € PAA(R,R, u). (We can also use the parity of g to see
that g € PAAR, R, p1).)

So, using lemmas from Section 2, we can deduce that I" is a mapping of
PAAR, R, i) into itself. Set

F(t,v(B(2)), v(B(=1)))

St B, AB(—1))
| Kl u(p),u(B(-9))as

y

* Jm K(s + y)h(s, u(B(s)), u(B(—s)))ds.

)

It remains to show that I': PAA(R,R, u) —» PAAR,R, u) is a strict

contraction. Since by hypothesis (M0), f: R — R is bijective, it follows
that for all u,v € PAA(R, R, p),

|[E(t,v(B(0), v(B(=1))) = F(t, u(B(2)), u(B(=1)))|
= [F(&v(B(®), v(B(=1)—=f (& u(B(2)), u(B(=1)))]

£,
+00

. K(t + 5)(h(s, v(B(s)), v(B(=s))) =h(s, u(B(s)), u(B(=s))))ds
(&, v(B(0), v(B(=1)))=f (£, u(B(2)), u(B(=1)))]

+00

. K(s)(h((s + ), v(B(s + 1)), v(B(=(s + 1)))) =h((s + &, u(B(s + 1)), u(B(—(s + 1)))))ds

—+00

. K(s)(h(s=t, v(B(s—=1)), v(B(=(s—1)))) —h(s—t, u(B(s—1)), u(B(—(s—1)))))ds

< 2(Ly + 2eLy) [l

therefore



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 929

A— Y 2|b
ITy(e)—Tu(e)] < oAl al w26 o
A

Since
|A—a| + |4 + a| + 2|b|
12
it follows that I' : PAAR,R, u) — PAA(R,R, i) is indeed a strict con-

traction. Therefore I' has a unique fixed point in PAA(R, R, 1) and equa-
tion (3) has a unique measure paa solution. O

< + 2CLh>

3.2. Proof of Theorem 1.2

Proof. We consider the function I' defined in system (8). Using lemmas
from Section 2 and paying attention to coefficients Ly and L, which are not
constants, we can deduce that I' is a mapping of PAA(R, R, i) into itself.
It remains to show that I" is a strict contraction. Indeed, knowing that F is
given by (9), we have

|E(t,v(B(0), v(B(=1))) = F(t, u(B(2)), u(B(=1)))|
< V(& v(B(0)), v(B(=1)))=f (& u(B(1)),

+ J ) K(s)(h((s + ), v(B(s + 1)), v(B(=(s + 1)))) =h((s + & u(B(s + 1)), u(B(— (s + 1)))))ds

0

~—
<
—
=
—~
~
—
N
=

+ [ OOK(S)(h(S—t V(B(s=1)), v(B(=(s—1))))—h(s—t, u(B(s—1)), u(B(—(s—1)))))ds

Jo

—+00 L
< |2Ls(1) + 4(L (K()’))qdy)au’h|0"(]R,]R,dx):| [ly=ull o>

where u,v € PAA(R, R, u), hence
|A—a| + |A + a| + 2|b]
A(qA)

+o00 .
“<L (K)o | Ll o g, ) | =1 Lo

[Tv(t)~Tu(t)] <

LA 2o g, R, av)

Since

+o00 q
LAl o e e,y + 2<J0 (K(y))qdy> LhEP(R,R,dx)] <1,

+ a| + 2|b|

A(q2)

the operator I' : PAA(R, R, u) — PAA(R, R, n) is indeed a strict contrac-
tion. Therefore I" has a unique fixed point in PAA(R, R, u) and equation
(3) has a unique measure paa solution. O
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4, Applications

Let a measure u be defined by du(t) = p(t)dt, where p(t)=
exp(sint), t € R. Then u€ M satisfies hypothesis (M1). Since 2+
sint > sin (—t), it follows that if I = [a,b], we have 1+ e*u(I) > u(—I)
and so hypothesis (M2) is also satisfied.

Consider the following integro-differential equations with reflection and
delay.

2 () = Vax(t) + x(—1) + w [sin x(t—p) + cosx(—t+p)]

+ J h K(s—t) M [sinx(s—p) + cosx(—s + p)|ds

t

+00 _

+ J K(s+t) M [sinx(s—p) + cosx(—s+p)]ds,  (10)
—t

where K(s) = exp (—s), for all s € R" and p is a strictly positive real num-
ber which denotes the delay. If we put f(¢) = t—p, then hypothesis (MO)
is satisfied, cf. Ben-Salah et al. [10]. Then equation (10) is a special case of
equation (3) if we take

a=+vV2,b=1,A=Va2—b? = landf(t,x,y) = h(t,x, y)

-1t
= w[sinx—i— cos y|.

%. Then
f (t,x1,y1) —f (8,32,32)| S Ly (£) (|x1 —x2| + |y1 —2|), forall (x1,y1), (x2,y2) ER?,

Letp=¢q =

and

\h(t,x1,01) —h(tx2,2) | < Lu() (|1 —x2 |+ [y1 =2

), for all (x1,y1),(x2,2) €R?,
where

taLf(t):Lh(t):M € L2(R,R,dx) N LA (R,R,du),
since

1 1
1L 2o,y = 1L || 22w R ) =35 and [|L¢[| o2 g, g = 1201l 2 Ry ) < 5\/5-
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This implies that hypothesis (h3) is satisfied. Since

+00 %
TR +2(j0 <K<y>>2dy) TR
V2+1 _ I/ 4 1
9 |A—a|l+|i+a|+2b] 242

we can deduce that all assumptions of Theorem 1.2 are satisfied and thus
equation (10) has a unique u-paa solution.

5. Epilogue

In practice, the purely periodic phenomena is negligible, which gives the
idea to find other solutions and consider single measure paa oscillations.
Based on composition, completeness, Banach fixed point theorem, and
change of variables theorems, we proved two very important results con-
cerning the existence and uniqueness of a single measure paa solution of a
new scalar integro-differential system. Compared to previous works, this is
first study of oscillations and dynamics of single measure paa solutions
for certain integro-differential equations with reflection for the case when
p(t) # t. Miraoui [30] studied pap solutions with two measures for our
equation (3) for the case when K=0 or h=0 and f5(¢) = t. Ait Dads et al.
[9] described equation (3) with matrix coefficients for the case when
B(t) = t. On the other hand, we studied the impact of functions K, f, h and
f on the uniqueness of the single measure paa solutions for equation (3).

Note that in the special case when () = t, hypotheses (M0) and (h0)
are satisfied, therefore the following new results can be deduced from
Theorems 1.1 and 1.2.

Corollary 5.1. Suppose that f,h € PAAR,R,u) and that hypotheses
(h1)-(h4) and (M1)-(M2) hold. Then the following equation

+00

W(y) = au(y) + bu(—y) + f(r, u(y), u(=y)) + J K(s=y)h(s, u(s), u(—s))ds

y
+00
+ J K(s+ y)h(s,u(s), u(—s))ds,y € R,
-y
(11)
has a unique p—paa solution if and only if
|i—a| + |/ + a| + 2|b]
/12

(Lf + 2cLy)<1.

Corollary 5.2. Suppose that f e PAA(R,R,u) and that hypotheses
(h1)-(h2) and (M1)-(M2) hold. Then the following equation
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W(y) = au(y) + bu(=y) +f (1, u(y), u(=y)).y € R, (12)
has a unique u—paa solution if and only if
|A—al + |4 j— al + 2|b| L<l.
P>

Corollary 5.3. Suppose that f,h € PAA(R x R%:, R, 1) and that hypotheses
(h1), (W’2)-(h’4) and (M1)-(M2) hold. Then equation (11) has a unique
u-paa solution if and only if

1

- a M)
TR +z(j0 <K<y>>‘f) Vs, . <

|2 —a|+|A+a|+2]b]

Corollary 5.4. Suppose that f € PAA(R x R*, R, u) and that hypotheses
(h1), (h’2), and (M1)-(M2) hold. Then equation (2) has a unique u-paa
solution if and only if

(qA)i
|2 —a|+|A+a|+2]b]

ILf[] 2o, ) <
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