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1. Introduction and preliminary results

Let X be a bounded domain in RN (N P 3) with smooth boundary oX. Assume that a : ð0;1Þ ! R is a function such that
the mapping u : R! R, defined by
uðtÞ ¼
aðjtjÞt; for t – 0;
0; for t ¼ 0;

�

is an odd, increasing homeomorphisms from R onto R. This paper studies a nonlinear boundary value problem of the type
�divðaðjrujÞruÞ ¼ kf ðx; uÞ; for x 2 X;

u ¼ 0; for x 2 @X;

�
ð1Þ
where f : X� R! R is a Carathéodory function and k is a positive parameter.
In order to go further we introduce the functional space setting where problem (1) will be discussed. In this context we

note that the operator in the divergence form is not homogeneous and thus, we introduce an Orlicz–Sobolev space setting for
problems of this type.

The first general existence results using the theory of monotone operators in Orlicz–Sobolev spaces were obtained by
Donaldson [6] and Gossez [8]. Other recent works that put the problem into this framework are contained in Clément
et al. [4,5], García-Huidobro et al. [7], Gossez and Manàsevich [9], Le and Schmitt [11], etc. In these papers, the existence
results are obtained by means of variational techniques, monotone operator methods, or fixed point and degree theory argu-
ments. The goal of our paper is to present a new multiplicity result for equations involving non-homogeneous operators.
Thus, it supplements the aforementioned results in the aspect that most of the papers guarantee existence but not multiplic-
ity of solutions.

We start by recalling some basic facts about Orlicz spaces. For more details we refer to the books by Adams and Hedberg [1],
Adams [2], Rao and Ren [17] and the papers by Clément et al. [4,5], García-Huidobro et al. [7] and Gossez [8].
. All rights reserved.
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For u : R! R introduced at the start of the paper, we define
UðtÞ ¼
Z t

0
uðsÞds; UHðtÞ ¼

Z t

0
u�1ðsÞds; for all t 2 R:
We observe that U is a Young function, that is, U(0) = 0, U is convex, and limx?1U(x) = +1. Furthermore, since U(x) = 0 if and
only if x = 0, limx?0 U(x)/x = 0, and limx?1 U(x)/x = +1, then U is called an N-function. The function Uw is called the com-
plementary function of U, and it satisfies
UHðtÞ ¼ sup st �UðsÞ; s P 0f g; for all t P 0:
We also observe that Uw is also an N-function and the Young’s inequality holds
st 6 UðsÞ þUHðtÞ; for all s; t P 0:
The Orlicz space LU(X) defined by the N-function U (see [1,2,4]) is the space of measurable functions u : X! R such that
kukLU
:¼ sup

Z
X

uvdx;

Z
X
ðUÞHðjvjÞdx 6 1

� �
<1:
Then ðLUðXÞ; k � kLU
Þ is a Banach space whose norm is equivalent to the Luxemburg norm
kukU :¼ inf k > 0;

Z
X

U
uðxÞ

k

� �
dx 6 1

� �
:

For Orlicz spaces Hölder’s inequality reads as follows (see [17, Inequality 4, p. 79]):
Z
X

uvdx 6 2kukLU
kvkLðUÞH

for all u 2 LUðXÞ and v 2 LðUÞH ðXÞ:
Next, we introduce the Orlicz–Sobolev spaces. We denote by W1LU(X) the Orlicz–Sobolev space defined by
W1LUðXÞ :¼ u 2 LUðXÞ;
@u
@xi
2 LUðXÞ; i ¼ 1; . . . ;N

� �
:

This is a Banach space with respect to the norm
kuk1;U :¼ kukU þ kjrujkU:
We also define the Orlicz–Sobolev space W1
0LUðXÞ as the closure of C10 ðXÞ in W1LU(X). By [8, Lemma 5.7] we may consider on

W1
0LUðXÞ the equivalent norm
kuk :¼ kjrujkU:
For an easier manipulation of the spaces defined above, we define
u0 :¼ inf
t>0

tuðtÞ
UðtÞ and u0 :¼ sup

t>0

tuðtÞ
UðtÞ :
In this paper we assume that we have
1 < u0 6
tuðtÞ
UðtÞ 6 u0 <1; 8t P 0: ð2Þ
The above relation implies that U satisfies the D2-condition, i.e.
Uð2tÞ 6 KUðtÞ 8t P 0; ð3Þ
where K is a positive constant (see [15, Proposition 2.3]).
On the other hand, the following relations hold:
kuku
0
6

Z
X

UðjrujÞdx 6 kuku0 8u 2W1
0LUðXÞ; kuk < 1; ð4Þ

kuku0
6

Z
X

UðjrujÞdx 6 kuku
0 8u 2W1

0LUðXÞ; kuk > 1; ð5Þ
(see, e.g. [14, Lemma 1]).
Furthermore, in this paper we shall assume that the function U satisfies the following condition:
the function ½0;1Þ 3 t ! Uð
ffiffi
t
p
Þ is convex: ð6Þ
Conditions (3) and (6) assure that the Orlicz space LU(X) is a uniformly convex space and thus, a reflexive Banach space (see
[15, Proposition 2.2]). This fact implies that also the Orlicz–Sobolev space W1

0LUðXÞ is a reflexive Banach space.
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Remark. We point out certain examples of functions u : R! R which are odd, increasing homeomorphisms from R onto R

and satisfy conditions (2) and (6). For more details the reader can consult [5, Examples 1–3, p. 243].
1) Let
uðtÞ ¼ pjtjp�2t 8 t 2 R
with p > 1. For this function it can be proved that
u0 ¼ u0 ¼ p:
Furthermore, in this particular case the corresponding Orlicz space LU(X) is the classical Lebesgue space Lp(X) while the Or-
licz–Sobolev space W1

0LUðXÞ is the classical Sobolev space W1;p
0 ðXÞ. We will use the classical notations to denote the Orlicz–

Sobolev spaces in this particular case.
2) Consider
uðtÞ ¼ logð1þ jtjsÞjtjp�2t 8 t 2 R;
with p, s > 1. In this case it can be proved that
u0 ¼ p; u0 ¼ pþ s:
3) Let
uðtÞ ¼ jtjp�2t
logð1þ jtjÞ ; if t – 0; uð0Þ ¼ 0;
with p > 2. In this case we have
u0 ¼ p� 1; u0 ¼ p:
2. The main result

In this paper we study problem (1) in the special case when
f ðx; tÞ ¼ tp�1 � tq�1;
with
1 < q < p < u0 ð7Þ
and t P 0.
More precisely, we consider the degenerate boundary value problem
�divðaðjrujÞruÞ ¼ kðup�1 � uq�1Þ; for x 2 X;

u ¼ 0; for x 2 @X
u P 0; for x 2 X:

8><
>: ð8Þ
We say that u 2W1
0LUðXÞ is a weak solution of problem (8) if u P 0 a.e. in X and
Z

X
aðjrujÞru � rv dx� k

Z
X

up�1v dxþ k
Z

X
uq�1v dx ¼ 0
for all v 2W1
0LUðXÞ.

Our main result asserts that problem (8) has at least two non-trivial weak solutions provided that k > 0 is large enough.
More precisely, we prove.

Theorem 1. Assume that condition (7) is fulfilled and
u0 < min N;
Nu0

N �u0

� �
: ð9Þ
Then there exists kw > 0 such that for all k > kw problem (8) has at least two distinct non-negative, non-trivial weak solutions.
Remark. We point out that our result was inspired by Perera [16, Theorem 1.2], where a related property was proved in the
case of the p-Laplace operators. The extension from p-Laplace operator to the differential operators involved in (8) is not triv-
ial, since the new operators have a more complicated structure than the p-Laplace operator, for example they are non-
homogeneous.
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Finally, we mention that a similar study regarding the existence and multiplicity of solutions for equations involving the
p(x)-Laplace operator can be found in Mihăilescu and Rădulescu [12].
3. Proof of Theorem 1

Let E denote the generalized Sobolev space W1
0LUðXÞ.

Define the energy functional I : E! R by
IðuÞ ¼
Z

X
UðjrujÞdx� k

c

Z
X

up
þ dxþ k

b

Z
X

uq
þ dx;
where u+(x) = max{u(x),0}.
We remember that u 2 E implies u+, u� 2 E and
ruþ ¼
0; if ½u 6 0�
ru; if ½u > 0�;

�
ru� ¼

0; if ½u P 0�;
ru; if ½u < 0�;

�

where u± = max{±u(x),0} for all x 2X (see, e.g. [4, p. 52]). That fact and some standards arguments assure that functional I is
well-defined on E and I 2 C1ðE;RÞ with the derivative given by
hI0ðuÞ;vi ¼
Z

X
aðjrujÞru � rv dx� k

Z
X

up�1
þ v dxþ k

Z
X

uq�1
þ v dx;
for all u, v 2 E.

Remark. We point out that if u is a critical point of I then using the above information and condition (2) we have
0 ¼ hI0ðuÞ;u�i ¼
Z

X
aðjrujÞru � ru� dx� k

Z
X
ðuþÞp�1u� dxþ k

Z
X
ðuþÞq�1u� dx ¼

Z
X

ajrujÞru � ru� dx

¼
Z

X
aðjru�jÞjru�j2 dx P u0

Z
X

Uðjru�jÞdx:
By the above estimates and relation (4) we deduce that u P 0. It follows that the non-trivial critical points of I are non-neg-
ative solutions of (8).

The above remark shows that we can prove Theorem 1 using the critical point theory. More exactly, we first show that for
k > 0 large enough, the functional I has a global minimizer u1 P 0 such that I(u1) < 0. Next, by means of the Mountain Pass
Theorem, a second critical point u2 with I(u2) > 0 is obtained.
Lemma 1. There exists k1 > 0 such that
k1 ¼ inf
u2E;kuk>1

R
X UðjrujÞdxR

X juj
u0 dx

:

Proof. First, we note that by condition (2) we can deduce that E is continuously embedded in the classical Sobolev space
W1;u0

0 ðXÞ. Consequently, E is continuously embedded in the classical Lebesgue space Lu0 ðXÞ. It follows that there exists
C > 0 such that
kukP CkukLu0 ðXÞ 8u 2 E:
On the other hand, by (5) we have
Z
X

UðjrujÞdx P kuku0 ; 8 u 2 E with kuk > 1:
Combining the above inequalities we obtain
Z
X

UðjrujÞdx P Cu0

Z
X
juju0 dx 8 u 2 E with kuk > 1:
The proof of Lemma 1 is complete. h
Proposition 1. (i) The functional I is bounded from below and coercive.
(ii) The functional I is weakly lower semi-continuous.
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Proof

(i) Since 1 < q < p < u0 we have
lim
t!1

1
p tp � 1

q tq

tu0
¼ 0:
Then for any k > 0 there exists Ck > 0 such that
k
1
p

tp � 1
q

tq

� �
6

k1

2
tu0 þ Ck 8t P 0;
where k1 was defined in Lemma 1.
The above inequality and condition (5) show that for any u 2 E with kuk > 1 we have
IðuÞP
Z

X
UðjrujÞdx� k1

2

Z
X
juju0 dx� CklðXÞP

1
2

Z
X

UðjrujÞdx� CklðXÞP
1
2
kuku0 � CklðXÞ:
This shows that I is bounded from below and coercive.
(ii) Similar arguments as those used in the proof of [13, Theorem 2] (see also [15, Lemma 4.3]) show that the functional

I0 : E! R defined by
I0ðuÞ ¼
Z

X
UðjrujÞdx ð10Þ
is weakly lower semi-continuous. We justify that I is weakly lower semi-continuous. Let (un) � E be a sequence which con-
verges weakly to u in E. Since I0 is weakly lower semi-continuous we have
I0ðuÞ 6 lim inf
n!1

I0ðunÞ: ð11Þ
On the other hand, since E is compactly embedded in Lp(X) and Lq(X) it follows that (un+) converges strongly to u+ both in
Lp(X) and in Lq(X). (The compact embedding of E into Lp(X) and Lq(X) is a direct consequence of the fact that E is continu-
ously embedded in the classical Sobolev space W1;u0

0 ðXÞ combined with condition (7).) This fact together with relation (11)
imply
IðuÞ 6 lim inf
n!1

IðunÞ:
Therefore, I is weakly lower semi-continuous. The proof of Proposition 1 is complete. h

From Proposition 1 and Theorem 1.2 in [18] we deduce that there exists u1 2 E a global minimizer of I. The following re-
sult implies that u1 – 0, provided that k is sufficiently large.

Proposition 2. There exists kw > 0 such that infEI < 0.
Proof. Let X1 �X be a compact subset, large enough and u0 2 E be such that u0(x) = t0 in X1 and 0 6 u0(x) 6 t0 in XnX1,
where t0 > 1 is chosen such that
1
p

tp
0 �

1
q

tq
0 > 0:
We have
1
p

Z
X

up
0 dx� 1

q

Z
X

uq
0 dx P

1
p

Z
X1

up
0 dx� 1

q

Z
X1

uq
0 dx� 1

q

Z
XnX1

uq
0 dx P

1
p

Z
X1

up
0 dx� 1

q

Z
X1

uq
0 dx� 1

q
tq

0lðX nX1Þ > 0
and thus I(u0) < 0 for k > 0 large enough. The proof of Proposition 2 is complete. h

Since Proposition 2 holds it follows that u1 2 E is a non-trivial weak solution of problem (8).
Fix k P kw. Set
gðx; tÞ ¼
0; for t < 0;
tp�1 � tq�1; for 0 6 t 6 u1ðxÞ;
u1ðxÞp�1 � u1ðxÞq�1

; for t > u1ðxÞ

8><
>:
and
Gðx; tÞ ¼
Z t

0
gðx; sÞds:
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Define the functional J : E! R by
JðuÞ ¼
Z

X
UðjrujÞdx� k

Z
X

Gðx;uÞdx:
The same arguments as those used for functional I imply that J 2 C1ðE;RÞ and
hJ0ðuÞ;vi ¼
Z

X
aðjrujÞru � rv dx� k

Z
X

gðx;uÞv dx;
for all u, v 2 E.
On the other hand, we point out that if u 2 E is a critical point of J then u P 0. The proof can be carried out as in the case of

functional I.
Next, we prove.

Lemma 2. If u is a critical point of J then u 6 u1.
Proof. We have
0 ¼ hJ0ðuÞ � I0ðu1Þ; ðu� u1Þþi ¼
Z

X
ðaðjrujÞru� aðjru1jÞru1Þ � rðu� u1Þþ dx� k

Z
X
½gðx;uÞ � ðup�1

1 � uq�1
1 Þ�ðu� u1Þþ dx

¼
Z
½u>u1 �

ðaðjrujÞru� aðjru1jÞru1Þ � rðu� u1Þdx:
Notice that since u is increasing in R we have for each n and w 2 RN
ðuðjnjÞ �uðjwjÞÞðjnj � jwjÞP 0;
with equality if and only if n = w. Thus, we can deduce that
ðaðjnjÞjnj � aðjwjÞjwjÞðjnj � jwjÞP 0;
for all n;w 2 RN , with equality if and only if n = w. On the other hand, some simple computations show that
ðaðjnjÞn� aðjwjÞwÞ � ðn� wÞP ðaðjnjÞjnj �uðjwjÞjwjÞðjnj � jwjÞ;
for all n;w 2 RN . Consequently, we conclude that
ðaðjnjÞn� aðjwjÞwÞ � ðn� wÞP 0;
for all n;w 2 RN , with equality if and only if n = w.
Using the above pieces of information we deduce that the above equality holds if and only if ru =ru1. It follows that r

u(x) =ru1(x) for all x 2x :¼ {y 2X; u(y) > u1(y)}. Hence
Z
x

Uðjrðu� u1ÞjÞdx ¼ 0
and thus
Z
X

Uðjrðu� u1ÞþjÞdx ¼ 0:
By relation (4) we obtain
kðu� u1Þþk ¼ 0:
We obtain that (u�u1)+ = 0 in X, that is, u 6 u1 in X. The proof of Lemma 2 is complete. h

In the following we determine a critical point u2 2 E of J such that J(u2) > 0 via the Mountain Pass Theorem. By the above
lemma we will deduce that 0 6 u2 6 u1 in X. Therefore
gðx;u2Þ ¼ up�1
2 � uq�1

2 and Gðx;u2Þ ¼
1
p

up
2 �

1
q

uq
2

and thus
Jðu2Þ ¼ Iðu2Þ and J0ðu2Þ ¼ I0ðu2Þ:
More precisely, we find
Iðu2Þ > 0 ¼ Ið0Þ > Iðu1Þ and I0ðu2Þ ¼ 0:
This shows that u2 is a weak solution of problem (8) such that 0 6 u2 6 u1, u2 – 0 and u2 – u1.
In order to find u2 described above we prove.
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Lemma 3. There exists q 2 (0,ku1k) and a > 0 such that J(u) P a, for all u 2 E with kuk = q.
Proof. Let u 2 E be fixed, such that kuk < 1. It is clear that
1
p

tp � 1
q

tq
6 0 8t 2 ½0;1�:
Define
Xu :¼ x 2 X; uðxÞ > min 1;u1ðxÞf gf g:
If x 2XnXu then u(x) 6min{1,u1(x)} 6 u1(x) and we have
Gðx;uÞ ¼ 1
p

up
þ �

1
q

uq
þ 6 0:
If x 2Xu \ {x 2X; u1(x) < u(x) < 1} then
Gðx;uÞ ¼ 1
p

up
1 �

1
q

uq
1 þ up�1

1 � uq�1
1

� �
ðu� u1Þ 6 0:
Define
Xu;1 :¼ Xu n x 2 X;u1ðxÞ < uðxÞ < 1f g:
Thus, provided that kuk < 1 by relation (4) we get
JðuÞP
Z

X
UðjrujÞdx� k

Z
Xu;1

Gðx; uÞdx P kuku
0
� k

Z
Xu;1

Gðx;uÞdx: ð12Þ
By relation (9) it follows that u0 < uH

0 :¼ Nu0
N�u0

. On the other hand, as we already pointed out, by condition (2) we deduce that
E is continuously embedded in the classical Sobolev space W1;u0

0 ðXÞ. Consequently, there exists s 2 ðu0; Nu0
N�u0
Þ such that E is

continuously embedded in the classical Lebesgue space Ls(X). Thus, there exists a positive constant C > 0 such that
kukLsðXÞ 6 Ckuk; 8 u 2 E:
Using the definition of G, Hölder’s inequality and the above estimate, we obtain
Using the definition of G and the above estimate, we obtain
k
Z

Xu;1

Gðx;uÞdx ¼ k
Z

Xu;1\½u<u1 �

1
p

up
þ �

1
q

uq
þ

� �
dxþ k

Z
Xu;1\½u>u1 �

1
p

up
1 �

1
q

uq
1

� �
dx

þ k
Z

Xu;1\½u>u1 �
up�1

1 � uq�1
1

� �
ðu� u1Þdx 6

k
p

Z
Xu;1\½u<u1 �

up
þ dxþ k

q

Z
Xu;1\½u>u1 �

uq
1 dx

þ k
Z

Xu;1\½u>u1 �
up�1

1 udx 6 kD
Z

Xu;1

up
þ dx 6 kD

Z
Xu;1

us
þ dx 6 kD1kuks

; ð13Þ
where D and D1 are two positive constants. Combining inequalities (12) and (13) we find that for a q 2 (0,min{1,ku1k}) small
enough we have
JðuÞP 1� kD1kuks�u0
� �

kuku
0
;

and taking into account that s > u0 we infer that the conclusion of Lemma 3 holds true. h
Lemma 4. The functional J is coercive.
Proof. For each u 2 E with kuk > 1 by relation (5) and Hölder’s inequality we have
JðuÞP
Z

X
UðjrujÞdx� k

Z
½u>u1 �

Gðx; uÞdx� k
Z
½u<u1 �

Gðx;uÞdx

P kuku0 � k
p

Z
½u>u1 �

up
1 dx� k

p

Z
½u>u1 �

up�1
1 udx� k

p

Z
½u<u1 �

up
þ dx P kuku0 � k

p

Z
X

up
1 dx� 2k

p

Z
X

up
þ dx

P kuku0 � k
p
½lðXÞ�1�p=u0 C1kukp � C2 P kuku0 � C23kukp � C2;
where C1, C2 and C3 are positive constants. Since p < u0 the above inequality implies that J(u) ?1 as kuk?1, that is, J is
coercive. The proof of Lemma 4 is complete. h
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The following result yields a sufficient condition which ensures that a weakly convergent sequence in E converges
strongly, too.

Lemma 5. Assume that the sequence (un) converges weakly to u in E and
lim sup
n!1

Z
X

aðjrunjÞrun � ðrun �ruÞdx 6 0:
Then (un) converges strongly to u in E.
Proof. Since un converges weakly to u in E implies that it follows that (kunk) is a bounded sequence of real numbers. That fact
and relations (4) and (5) imply thet the sequence (I0(un)) is bounded, where I0 is defined by relation (10). Then, up to a sub-
sequence, we deduce that I0(un) ? c. Furthermore, the weak lower semi-continuity of I0 (pointed out above) implies
I0ðuÞ 6 lim inf
n!1

I0ðunÞ ¼ c:
On the other hand, since I0 is convex (because U is convex), we have
I0ðuÞP I0ðunÞ þ hI00ðunÞ; u� uni:
Next, by the hypothesis lim supn!1
R

X aðjrunjÞrun � ðrun �ruÞdx 6 0, we conclude that I0(u) = c.
Taking into account that (un + u)/2 converges weakly to u in E and using again the weak lower semi-continuity of I0 we

find
c ¼ I0ðuÞ 6 lim inf
n!1

I0
un þ u

2

� �
: ð14Þ
We assume by contradiction that un does not converge to u in E. Then by (4) it follows that there exist � > 0 and a subse-
quence ðunm Þ of (un) such that
I0
unm � u

2

� �
P � 8 m: ð15Þ
On the other hand, relations (3) and (6) enable us to apply [10, Lemma 2.1] in order to obtain
1
2

I0ðuÞ þ
1
2

I0ðunm Þ � I0
uþ unm

2

� �
P I0

u� unm

2

� �
P � 8 m: ð16Þ
Letting m ?1 in the above inequality we obtain
c � �P lim sup
m!1

I0
uþ unm

2

� �
dx
and that is a contradiction with (14). It follows that un converges strongly to u in E and Lemma 5 is proved. h

Proof of Theorem 1 completed. Using Lemma 3 and the Mountain Pass Theorem (see [3] with the variant given by The-
orem 1.15 in [19]) we deduce that there exists a sequence (un) � E such that
JðunÞ ! c > 0 and J0ðunÞ ! 0; ð17Þ
where
c ¼ inf
c2C

max
t2½0;1�

JðcðtÞÞ
and
C ¼ c 2 Cð½0;1�; EÞ; cð0Þ ¼ 0; cð1Þ ¼ u1f g:
By relation (17) and Lemma 4 we obtain that (un) is bounded and thus passing eventually to a subsequence, still denoted by
(un), we may assume that there exists u2 2 E such that un converges weakly to u2. Since E is compactly embedded in Li(X) for
any i 2 [1,u0], it follows that un converges strongly to u2 in Li(X) for all i 2 [1,u0]. Hence
hI00ðunÞ � I00ðu2Þ;un � u2i ¼ hJ0ðunÞ � J0ðu2Þ;un � u2i þ k
Z

X
½gðx;unÞ � gðx;u2Þ�ðun � u2Þdx ¼ oð1Þ;
as n ?1, where I0 is defined by relation (10). By Lemma 5 we deduce that un converges strongly to u2 in E and using relation
(17) we find
Jðu2Þ ¼ c > 0 and J0ðu2Þ ¼ 0:
Therefore, J(u2) = c > 0 and J0(u2) = 0. By Lemma 2 we deduce that 0 6 u2 6 u1 in X. Therefore
gðx;u2Þ ¼ up�1
2 � uq�1

2 and Gðx;u2Þ ¼
1
p

up
2 �

1
q

uq
2
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and thus
Jðu2Þ ¼ Iðu2Þ and J0ðu2Þ ¼ I0ðu2Þ:
We conclude that u2 is a critical point of I and thus a solution of (8). Furthermore, I(u2) = c > 0 and I(u2) > 0 > I(u1). Thus u2 is
not trivial and u2 – u1. The proof of Theorem 1 is now complete. h
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